Chapter 5

The symmetric Ramsey-problem

5.1 What sort of explicit?
Let us recall that the Ramsey number
R(k,l) = min{n : V graph on n vertices contains either K or K;}.

The most interesting question concerns the symmetric case, i.e. when £k = [. We call
a graph k-Ramsey if both the largest independent set and clique are of order less than
k. R(2,2) = 2 is a triviality, while R(3,3) = 6 is a standard first year combinatorics
exercise. It is already a nontrivial task to construct a 4-Ramsey graph of order 17 and
prove that it is the best possible, i.e. that R(4,4) = 18. About R(5,5) we only know
that it is between 43 and 49.

In 1935 Erdés and Szekeres showed that R(k,1) < (*77?), so in particular R(k, k) <
4%, For a while the Turdn graph (1941) on (k—1)? vertices provided the best lower bound.
In fact Turdn believed this to be the truth, i.e. that R(k,k) = (k — 1)?. It came as a
great surprise in 1947 when Erdés, using non-constructive methods proved that R(k, k)
is of exponential order. His paper, showing the existence of k-Ramsey graphs of order

\/§k, is often considered the starting point of the Probabilistic Method in combinatorics.

It is a frustrating fact that today, these two ingenious but relatively simple arguments
provide more or less the best known bounds. Some small improvements came along later,
but only by a polynomial factor for the upper bound and a constant factor for the lower
bound, requiring more and more advanced methods. The upper bound improvements
culminated in the recent work of Conlon who managed to slice down a factor slightly
larger than polynomial from the upper bound, though his bound is still way below
an exponential improvement. The 70-year-old lower bound of Erdds and the 80-year-old
upper bound of Erdés and Szekeres still stand rock solid, noone can show R(k, k) > 1.42*
or R(k,k) < 3.99*. 1t is one of the great open problems of combinatorics to prove that

limy o0 W exists and if it does to determine its value.

The lower bound of \/§k obtained by Erdds was using the probabilistic method, and
did not give any pointers how to construct a good Ramsey graph explicitly, not even
with significantly worse parameters. The best constructive lower bound for decades was
provided by the Turdn graph on (k — 1)? vertices.
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86 Chapter 5. The symmetric Ramsey-problem

A notable candidate for good Ramsey-graphs are the Paley graphs. The Paley graph
P, is defined on V(P,) = F, for every prime p for that —1 is a quadratic residue modulo
p (i.e., p = 1 (mod 4)). Vertices z and y are adjacent if z — y is a quadratic residue.
Observe that, because of our assumption on p, £ — y is a quadratic residue if and only if
y — x is a quadratic residue; that is adjacency is well-defined. It is a common beleif that
the Paley graphs provide good k-Ramsey graphs — except noone can prove it. In fact, to
prove that w(P,) < p'/2~¢ for some positive € would be a major number theoretic advance.
Modulo the generalized Riemann hypothesis (GRH), it was proven by Montgomery that

1.40
1352
1.30
1.251
1.20%
1.15
1.10
1.05
1.00
0.95+
0.90
0.85
0.80
0.75
0.70
0.65-
0.60
0.55

0 1000 2000 3000 4000 5000 6000 7000

Figure 5.1: The quotient 1°gzl(P)”) in the Payley-graph P, for the primes p < 7000

there is some constant ¢ > 0, such that the first clogploglogp integers form a clique
in the Paley graph P, for infinitely many primes p. This means that the Paley graphs
k

cannot be expected to provide constructive k-Ramsey graphs on p = 2¢e* vertices in
general. However, it is also true modulo the GRH that there is a constant C such that
the first C'log ploglog p integers do not form a clique. This might be a good indication

to believe that the Paley graphs are k-Ramsey graphs onp= 9ciee® vertices for arbitrary

prime p? (It is worth to compare the exponent Clogk with the best known probabilistic

lower bound where the main term in the exponent is 7 k and the constructive lower bound
of the Turdn graph where the exponent would be logz(k — 1) ~2logk.)

These results show that even though Paley graphs are k-Ramsey graphs of not ex-
ponential order in general, there is indication that they are pretty close to that. Not
to mention that for sporadic values of p, they could still be reaching exponential order.
Figure 5.1 is based on computer calculations made by Shearer about the clique number
(and hence independence number) of Paley graphs for primes up to p < 7000. One can
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always observe some irregularly small values, like the clique number of Fsg; is only 16,
it is remarkable to compare this with the upper bound that one can actually prove in
general, which is |4/5501| = 74.

Exercise 5.1 Show that the Paley graph P, s self-complementary and edge-transitive
(that is for each pair of edges zy and uv € E(P,) there is a graph automorphism

¢:V(P,) — V(P,) such that ¢({z,y}) = f({u,v}).

Exercise 5.2 Observe that P; provides the construction for R(3,3) = 6. Prove that Py
does not contain a cliqgue or independent set of order 4 and show that R(4,4) = 18.

Exercise 5.3 One can define the Paley graph P, analogously for prime powers q. Show
that +f q itself is an odd square, then w(F,) = \/q.

Knowing the existence of certain combinatorial structures is great, however in theoret-
ical computer science, in particular in questions related to various models of complexity,
it is desirable having the the structure in our hand, constructed explicitly. Moreover, as
the best known ” construction” of a k-Ramsey graph is the random graph G(n, 1/2), good
explicit constructions for the Ramsey problem might also be useful in imitating random-
ness efficiently, another key feature in theoretical computer science. I doubt Erdés had
any of these motivations in mind, when in the late 60s he had the the good taste to ask
for an explicit construction of k-Ramsey graphs on 1.01% vertices. Still, as it is the case
with many of his beautiful questions, this one also hit something important right on
the head; something whose importance turned out only later. In the last section of this
chapter we will see that besides the above connections to computer science, the question
of explicit constructions had a great influence in motivating extremal hypergraph theory;
a completely unexpected development.

5.1.1 The Abbott-product

Answering the challenge of Erdds, in 1972 Abbott gave a curious super-quadratic con-
structive lower bound. For any integer ¢, he gave a method to construct an infinite
sequence of k-Ramsey graphs on k' vertices “efficiently”. Given two graphs G and H (to
simplify the definition assume they contain one loop at each vertex) let us define their
product G ® H by
V(G® H) = V(G)x V(H), and
E(G X® H) = {(91, hl)(gg,hg) 10102 € E(G) or g1 = g and hlhg € E(H)}
Informally, one can imagine that we take v(G) copies of the graph H and then include
all edges between two such copies if the vertices of G corresponding to the copies are
adjacent in G. One can easily check (please do!) that
v(G® H) =v(G) - v(H),
w(G® H) =w(G)-w(H) and (5.1)
a(G® H) =a(G) -a(H)
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Exercise 5.4 Prove the properties in (5.1).

Suppose that we got for birthday a graph G with n(G) > max{w(G), a(G)}*°. Then by
the multiplicativity of these parameters, for G ® G we have a similar inequality:

n(G ® G) = n(G)? > max{w(G), a(G)}* = max{w(G ® G),a(G ® G)}*°,

The same is true for any Abbott-power of G, which gives us the infinite sequence of
explicit Ramsey graphs — provided that we have the graph to start from.
How can we get a hold of just one k-Ramsey graph for some k with, say, k'° vertices?

Well, we know k-Ramsey graphs do ezist if the number of vertices is not more than \/§k.
Certainly, at one point \/ﬁk overtakes k'°, so let ky, be the smallest integer such that

V2" > ki°. Check the graphs on ki° vertices, one of them certainly will be ko-Ramsey.
How long will this take? Nothing... only constant time... Never mind that k£, = 144
so you might have to calculate the clique number and independence number of possibly

14410 .
2("3 ) graphs on 144!° vertices.

Is this now an "explicit construction”? Apparently Erdés did not think so and was not
too content with it. Today, one would disagree with him (not about being non-content).
In the age of computer and efficiency, it sounds completely reasonable to call the above
an explicit construction: there is a fast (that is, polynomial time) algorithm telling us
which vertices are adjacent and which vertices are not, i.e., the graph is constructable in
polynomial time. What else would you want to call explicit?

Exercise 5.5 Prove that the Abbott product is an explicit construction in the ”effi-
cient”, computer scientific sense. That 1s, show that for any n you are able to
construct the adjacency matriz of a ‘Yn-Ramsey graph G, on m wvertices, in time
polynomaial in n. Give a concrete upper bound, bounded by a polynomial in n, on
the number of steps this takes.

Even more, show that given any two vertices 1 and j from the vertex set [n| of
G., you can tell whether they are adjacent in time polynomaal in just logn. Thas
question 1s motivated by the fact that describing v and 5 only takes logn bits.

Intuitively it is clear what Erdés didn’t like about the Abbott construction: it is
“cheating” to look at that many graphs to find our starter. In the first phase the
construction uses brute force in finding the object it knows to exist. It is not using
any kind of clever idea or structure to pull out the hay from the haystack, but rather
goes in there, picks up every single object from the haystack, studies it carefully, and finds
the hay eventually (which is BTW not real hay, more like a pseudo-hay with still more
features similar to a needle...). On the other hand, one must also not forget that such
brute force is used only in a very small (constant size) haystack, which will eventually
be negligible compared to the graphs constructed from it.

Before going on to study constructions more to Erdds’ liking in the next section, we
further explore the Abbott-product in particular to enhance our definition of an explicit
construction.
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One problem with the above argument in its current form is that it won’t give us
anything superpolynomial, that is no k-Ramsey graph on &/(*) vertices with f(k) — oo.
Even if we had a starter ko-Ramsey-graph with kg8 '°8'°8% vertices, by taking its Abbott-
powers we don'’t get an infinite sequence with the same parameters. The Abbott-product
takes away the superpolinomial relation between the order and the clique number: al-
ready for the square of the starter we would not have n > w'°glogloew,

How can we get something really superpolynomial? Well, we know that most of the
graphs on n vertices are incredibly good Ramsey graphs: in other words the random
graph G(n,1/2) has clique number and independence number that are both at most
2log, n with extremely high probability. Hence it looks to be a good idea to take the
Abbott-product of all graphs on n vertices, since most of them have very small clique-
and independence-numbers.

To be more precise, let X C [n] be a subset of k vertices. One can easily calculate
the probability that K induces a clique (or an independent set) in G(n, 1/2):

1
Pr[K is a clique] = —; (5.2)
2(2)
Then by the union bound
) Y\ (%) < ne >k
Pr[3 clique of order k] < <k>2 < ga-nz) (5.3)

2logyn
: : e 1 _
which is at most («/ﬁngJ < foam for k = 2log,n. In other words, less than
1

logzn—fraction of the family D = D,, of all labeled graphs on n vertices contains a
clique of order 2log, n.

Let G be the Abbott-product of all graphs from D. Then

o(G) =,

€ =

where |D| = 2(3). By the above one can estimate the clique number of G using (5.1)
as follows:

w (G) < (2logy n) 1~ 9IPnPl < (210g, n)PlnPl = (41og, n)P.

Remark. Here we estimated the clique number of (1 — €)|D| graphs by 2log, n, but
were seemingly pretty generous when we estimated the clique number of the rest of the
graphs by n. Nevertheless our estimate is relatively precise since random graph theory

tells us that almost all graphs do have clique number at least log,n, so w >

(]_og2 n)(1*0(1))|D\ .
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Since the independence number can be estimated analogously by (5.1), G is an
infinite sequence of k-Ramsey graphs with

( logloglogk )
k loglog loglog k

vertices. (Check the calculation!) Moreover G is clearly an explicit construction, it

can be constructed in polynomial time. G is finally a construction of superpolynomial
order: the exponent % does tend to infinity, though pretty slowly, it reaches
the value 3 for example only when k > 225,

Looking at the number of vertices n/P! and the clique number (4logn)/®! of G
it becomes apparent that the larger the family D the more we lose from the Ramsey
properties of the majority of its members by the product. So it would be nice if we
could guarantee the same calculations, properties with a smaller family. For this we
need to look closer what we really did need about the family D in order to carry out
the critical calculations? Well, we needed to know the probability that a particular set
of k vertices forms a clique and then just used the union bound. Why did we know that

the probability that a particular k-set forms a clique is 2_(5)? Because when we select a
member of D uniformly at random the appearance of each edge is independent from the
appearence of all other edges. The crucial observation is now that we do not need the
full power of independence of the coordinates in the family D. We use this calculation
for k = 2log, n so the independence of any set of 2login > (%) variables is enough to
guarantee (5.2). And then, everything else follows.

5.1.2 d-wise independent sample spaces

Let us make the previous wishful thinking more precise.

Definition: A sample space S C {0,1}" is a multiset of vectors endowed with the
uniform distribution.

Remark: 1. We rather choose to avoid using the formal notation of a multiset. For ex-
ample when we talk about the cardinality of a sample space S and write |S|, we mean
the cardinality as a multiset, where each element is counted with multiplicity.

2. The concept of a multiset with the uniform distribution is a convenient way to approx-
imate a probability space on the set of vectors {0,1}" with an arbitrary distribution:
first we approximate the probabilities of the vectors with rational numbers having a
common denominator D and then we take the sample space of cardinality D where each
vector has multiplicity of the numerator of its probability.

3. We adopt the usual convention and think of vectors written vertically, i.e., members
of the sample space are N x l-matrices. Then a sample space can be thought of as a
N x |Sy|-matrix whose columns are endowed with the uniform distribution.

Definition: A sample space S C {0, 1} is independent if for any a € {0, 1}", we have

1

Prycs[s=a] = oN
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Remark: In fact independent sample spaces are pretty boring. The sample space S = 2V
is independent and all independent sample spaces are essentially of this form: members
of 2["! must have the same multiplicity.

The problem with the perfect independence of independent sample spaces is their
size 2V. The following is the key definition of this subsection.
Definition: For a sample space S C {0,1}" and a subset J = {71,...,14} C [N] of the
coordinates, let

S|y:=1{(ss,..-,8,):s€S}yC{0,1}°

be the sample space in dimension d with cardinality |S|;| = |S|. The sample space S|;
is called the projection of S onto J.

A sample space S C FY is called d-wise independent if for any J C [N], |J| = d, the
projection S|; C {0,1}¢ is independent.

Remark: 1. The d-wise independence of a sample space Sy is equivalent to the (well-
established) notion of d-wise independence of the set of N uniform random variables
obtained from the rows of the matrix whose columns are the elements of Sy.

Exercise 5.6 Show that d-wise independence of a sample space implies its d -independence
for every d' < d.

The following theorem claims that if one is content with just d-wise independence one
can have a sample space of size significantly smaller than 2¥. Even more importantly,
the solution is constructive.

Theorem 5.1 (Alon, Babai, Itai) For every odd integer d and N = 2t — 1 with t € N,
we can construct a d-wise independent linear sample space S C {0,1} of size

S| = 2(N +1)% .

Remark: The restriction of d being odd is not significant one. For an even d, one could
take the (d + 1)-independent sample space of size 2(N + 1) from the theorem and use
Exercise 5.6 to conclude its d-wise independence.

Note the word lznear in the statement. It means that we willingly restrict our search
for a d-wise independent sample space to those ones that are closed under addition
(and constant multiplication, which, in characteristic 2, is not saying too much). In
particular, we focus on finding a generating set of vectors whose span possesses the
d-wise independence property.

We will use the following simple fact about linear maps: if L : F™ — F¢ is a linear
map, where m > d and I is a (finite) field, then the number of solutions z € F™ to Lz = a
is either |[F|™ 7e"*() or 0, depending on whether a is in the image of L. In particular,
to prove that the number of solution is the same for each a, it is enough to check that
the linear map L is surjective, that is its matrix of L has rank d. Consequently, if the d
rows of the matrix L with entries from I, are linearly independent, then the multiset

St :={Lz:z € Fy} C {0,1}*
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is an independent sample space of size 2™ in dimension d. Note that S¥ can also be
written as the sample space generated by the columns ¢; € F$ of L, that is,

St = {Z:mzcz 1T € F’;}
i=1

Hence we observed the following connection between linear and “probabilistic” indepen-
dence.

Claimb Let L be a d x m-matriz with 0 or 1 entries, where d < m. The following
are equivalent

e the rows of L are linearly independent over FFy
o the sample space St generated by the columns of L is independent.

The whole point of the above simple training with basic linear algebra was to formu-
late the following immediate consequence for d-wise independence.

Corollary 5.2 The linear sample space S* C {0,1}" generated by vectors c¢i,...,Cm €
{0, 1}V is d-wise independent if and only if any d rows of the matriz L with columns
C1,...Cm are linearly independent.

Proof. (of Theorem 5.1) Now how to get the magic matrix expressed in Corollary 5.27
When we hear the condition of Corollary 5.2 that any d rows of a matrix are linearly in-
dependent, it immediately rings the bell: ”moment curve” (recall Wenger’s construction
of Cs- and Cio-free graphs with many edges from Section 3.3). We saw there that for
any field IF and any d < |F| vectors from the set My = {(1,a,0?,...,a* ') : a € F} C F¢
is linearly independent. This gives rise to an (|F| x d)-matrix with the required property
and we could choose F to be a however large finite field. Hence we would have a linear
sample space of size 2¢ (independent of the length N) and keep the d-wise independence
property. Wow! At the same time this also sounds suspicious, too good to be true ...

Yes, first of all we ignored that for a sample space we need 0/1-vectors and not
coordinates from an arbitrary finite field. Let us try to fix this and start with a a bit of
wishful thinking. If we could just encode the elements of the finite field as bit-vectors,
but still keep the linear independence property ... In principle the elements of, say, Fs;
can be encoded with bit-vectors of length [log, 37| = 6. But then, to keep the linear
independence, we would need somehow that when we add the bit-vector of o* and the
bit-vector of 8° ( mod 2) the result would be the bit-vector of their sum in the field Fa;.
Furthermore linear independence of the vectors in M3; is over F37, while the independence
of the bit-vectors should be over F,. So just an arbitrary bit-vector encoding will not
do.



5.1. What sort of explicit? 93

That’s how the field Fo: comes into play. The elements of F,: have a canonical
encoding with elements of F%, which is a linear space over F,, such that addition in the
field Fy: is just usual addition of vectors.!

Set N = 2°. The dimensions of our matrix A will be N times t(d — 1) + 1, where
d < N is an arbitrary integer.

Let ay, ...,y be an arbitrary ordering of the elements of Fo:. We define the ** row
vector as the concatenation of an entry 1 and all the powers of the element o, up to the
(d— 1)th power. In fact the first coordinate 1 just represents the Oth power, which is the
same for every a;. More precisely, labelling the coordinates from 0 up to ¢(d — 1), the
row vector r; between coordinates (j — 1)t + 1 and jt is o (where the power is computed
in Fy: but the result is written as an element of F%).

Example. To continue our example of ¢t = 3, let N = 2% = 8 and let, say, d = 4. The
matrix we define will have dimension 8 x 10. The rows are labelled by the binary vectors
of length 3. Let us look at what is in the fifth row (labelled by the field element z* + 1).
The first element is a 1. The next three are 1,0, 1, which are just the coordinates of z2+1
when written in F3. For the next three entry we must calculate that (z? + 1)? = 2% +z
in the field Fg and for the last three we calculate that (z? + 1)* = z + 1. Hence the fifth
row is 1,1,0,1,1,1,0,0,1, 1.

Let us now take d arbitrary rows of this matrix, for notational simplicity we denote
them by 7i,...,7ry4, defined by elements ay,...,a4. How could a linear combination
z17T1 + - -+ + x47rq be the zero vector for some z = (zy,...,24) € Fg? For that to happen
first we would need "% | z; = 0 to hold, because of the first column and then also that
¢ z;0] = 0 holds, because of the columns from (j — 1)t + 1 to j¢. Note that here
we started to interpret the equations over [F,q, even though we would only be concerned
about a nontrivial solution z from Fg. But at this point it is not clear how to distinguish
them from other solutions in ng.

!The elements of Fy: are polynomials of degree at most ¢ — 1 over F, factored with an irreducible

degree t polynomial. So once the irreducible polynomial is fixed, such a representation can be given as
the coefficients of the terms of degree at most ¢ — 1.
Example. To give an example for a finite field, let ¢ = 3. We fix the degree 3 polynomial f(z) = z° + z + 1;
it is irreducible, (please belive me, I checked it...). The members of the field Fg are the polynomials
0,1,z,z+1,z2,22 + 1,22 + 2,22 + =+ 1. These members can of course be denoted by 0/1 vectors of length
3, the coefficient of the monomials z2, z, and 1 giving the three coordinates. This is in fact completely
meaningful when talking about add:ition in Fg as that is defined exactly as it would happen in the linear
space F3. For multiplaction, however, we need the fixed polynomial f(z). The product of two field
elements is their usual product as polynomials modulo the equation z% + z 4+ 1 = 0; that is, whenever we
see a power larger than 2, we simplify by substituting > = —z — 1 = z + 1. To take an example, consider
(Z2+z)(z+1)=z*+22%+z+1l=z z+z+1l=(z+l)z+z+1=22+2z+1=22+1.
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Hence we have the following system of d equations in Fya.

7 + - 4+ g =0
101 I o Tg0g = 0
ti0f + - + zgai = 0 (5.4)
Ti08 + - + zg08 = 0

The matrix of this system is the Vandermonde matrix, which is non-singular, so the
unique solution = € ]ng is the 0-vector: the d rows ry,..., 74 are linearly independent.

Concluding, we constructed a N x (¢(d— 1)+ 1)-matrix A with every d of its rows lin-
early independent over F,. Then Corollary 5.2 implies that the linear sample space
S4 C {0,1}" generated by the columns of A is d-wise independent and its size is
o(d-1)t+1 _ g prd—1

This is roughly the square of the size we promised in the theorem. In order to improve,
we must pinpoint what was wasted in the previous argument. The clear candidate for
this is our inability so far to use that that the coefficients z; of the linear combination of
the rows are not just arbitrary elements from [F,q, but either 0 or 1. How can we make
use of that? Squares of sums in characteristic 2 are very simple to handle, because the
mixed terms fall out, so let us consider the square of equation of the first powers of the
(o 7

2 2.2 2.2 2 2
0= (2101 + -+ z404)° = zi0] + - - + 505 + E 2z,z;Q,00; = T105 + -+ + ag.
1<J

We just derived that the equation for the squares of the o; is a consequence of the
equation for the first powers. In the last equality we did use that z; = 0 or 1, because
we replaced z? with z;.

The same squaring trick applies to the equation for the bth powers for arbitrary b.
The mixed terms fall out as they have coefficient 2, and z? can be replaced with z;
because z, € F, and thus we obtain the equation for the (2b)th powers:

0= (z:05 4 +z405)* =22a® + ... + 2202 + Z 2z;z;0008 = rial” 4+ - + o
1<7

Hence the equation 0 = z,05 + - - - + o for any even power s = b-2" < 2° — 1, where
r > 1 and b is odd, can be obtained from the equation 0 = z,a8 + - - - + a, by squaring
it 7 times.

Hence we can construct a shorter matrix B using only the odd powers as follows. Let
N = 2 — 1. The dimensions of our matrix B will be N times t£ + 1, where £ < N/2 is
an arbitrary integer, and our d = 2£ + 1.

Recall that ay,...,ay is an arbitrary ordering of the nonzero elements of Fy:. The
1t* row vector is the concatanation of a 1 and all the odd powers of the element ;. More
precisely, labeling the coordinates from 0 up to ¢l, the vector r; between coordinates
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jt+1and (5 +1)tis 27!
as an element of F%).

Let us take d = 2£ + 1 rows 74, ..., ry of the matrix, defined by elements ay,...,aq.
How could a linear combination z;7; + - -+ + z474 be the zero vector for some z € F2?
For that we would need >.¢ | z; = 0, because of the first column and 3¢ | z,02" ' =0,
because of the rows from jt + 1 to (5 + 1)t. These are £ equations and 2 + 1 variables.
We obtain however the equations for the even powers as described above and end with
the thesame equation system (5.4) and the same conclusion as above: there is only the
trivial £ = 0 solution. The d rows are independet.

The dimensions of our matrix B is N xt{+1, whose columns generate a d-independent

sample space of size 2%t = 2(N + 1)

(where the power is computed in Fa: but the result is written

O

Remark: The matrix constructed above is well-known in classical coding theory: it is es-
sentially the parity check matrix of the famous BCH-codes discovered by Hocquenghem
(1959) and independently by Bose and Ray-Chaudhuri (1960). Matrices with our prop-
erty define linear codes where the weight of each code-word is at least d, and as such
these codes correct up to d/2 errors.

Let us now return to our original problem of constructing Ramsey graphs. We define
N = (), d = 2logj n, and take our d-wise independent sample space of size 2(N+1)(¢-1)/2
we have just constructed. We interpret the members of this sample space as graphs on
n vertices and denote their family by A. If we take the Abbott product of all graphs in
A, we have a graph G with nl4 vertices and clique- and independence number at most

(41log, n)Ml. After doing the math we obtain that we constructed a k-Ramsey graph of
Order k logloglogk .

Exercise 5.7 Verify the calculation.

This is alright: we improved from three times iterated logarithm in the exponent to
two-times iterated logarithm.

Can we get even better? We will further reduce the size of our sample space signifi-
cantly by being content with providing 2log> n-wise independence only approzimately.

5.1.3 Almost independent sample spaces

We relax the requirement of independent sample spaces and not require any longer that
each bit-vector appears with the same probability, but only that each appears with
roughly the same probability (up to an error of ¢).
Definition: A sample space S C FY is called e-close to independent if for any a € {0, 1}%,
we have

|Prics(s=a) —27V| <e.

Note that being 0-close to independent is equivalent to being independent.



