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of K if, for each z # 0, either z € B or z ! € B (or both).
Every valuation ring B is a local ring. The only maximal ideal consists of those
elements £ € K for which 27! ¢ B.

Theorem A.19 (Corollary 5.22. of [?] or Theorem 10.4 of [7]) Let A be a subring of
a field K. Then the integral closure A of A in K 1s the intersection of the valuation
rings of K which contain A.

Let A be a local ring and m its maximal ideal. Let M be a finitely generated A-
module. M/mM is annihilated by m, hence it carries a natural A/m-module structure.
Since m is a maximal ideal of A, A/m is a field. Thus, M/mM is a finite-dimensional
vector space over A/m (A module over a field is a vector space). The following statement
is an immediate consequence of Nakayama’s Lemma.

Proposition A.20 (Proposition 2.8. [?]) Let z; (1 < 1 < n) be elements of M whose
images i M/mM form a basts of this vector space. Then the z; generate M as a
module over A.

We will repeatedly use the following weak form of Hilbert’s Nullstellensatz:

Theorem A.21 Let K be algebraically closed field. Let fi,...,f: € K|z1,...,T,] poly-
nomauals having no common zero in K™. Then (fi,...,f:) = (1), that is there exist
9; € K[z1,...,2,] such that >, figi = 1.

For the basics of commutative algebra we refer to [?], [?], [?]; especially [?, Chap. 5.

A.4 Eigenvalues of graphs

In this section by a graph G = (V, E) we understand a simple graph on n = |V/| vertices
with at most one loop at each vertex. The adjacency matrix A = A(G) of Gisann xn
matrix, where the rows and columns are labeled with the vertices of G and the entry
a,, = 1 if and only if uv € E, otherwise a,, = 0. The following special case of the
Spectral Theorem is clearly relevant for adjacency matrices.

Theorem A.22 Let M be a symmetric n X n matriz with real entries. Then all eigen-
values of M are real and there 1s an orthonormal basis consisting of eigenvectors
M.

Hence each graph has a multiset of n real eigenvalues A\; > Ay > --- > A,. If G is
d-regular then d is clearly an eigenvalue with eigenvector 1p,) = (1,1, --,1).
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A.4.1 The second eigenvalue and quasirandomness

Ever since randomness was introduced in Theoretical Computer Science, great efforts
have also been made for its elimination. Whenever a random graph is utilized to perform
an algorithmic task efficiently, but random bits are expensive or a deterministic answer
would simply be more desirable, the need for a replacement arises. This demand is
one of the main motivations behind the interest in explicit constructions of families of
quasirandom graphs. Quasirandom graphs possess certain random-like properties and
can, in some cases, serve as substitutes of truly random graphs.

There are several different ways to understand and define the quasirandomness of a
graph. Here we consider the one through the second eigenvalue, which is linked strongly
to the graph’s edge distribution and expansion properties; both crucial concepts for
applications in combinatorics or computer science (see [?, Chapter 9] for more details).
Given a graph G, let \; > Ay > ...\, be the eigenvalues of its adjacency matrix. The
second etgenvalue of G is defined to be A = A(G) = max{X,, |A\,|}. Graphs whose second
eigenvalue is smaller order than the largest one possess some properties of random graphs
with appropriate edge probability. The larger this “spectral gap” is the more randomness
the graph has.

Our central definition is the one of (n, d, A)-graphs. A graph G is called (n, d, A)-graph
if its number of vertices is n, it is d-regular (with possibly one loop at some vertices, but
no multiple edges) and its second eigenvalue is A.

As the second eigenvalue of any graph (of maximum degree at most n/2) is at least
the square root of the degree up to a constant factor, graphs with A\(G) = ©(1/d) are of
particular interest.

Exercise A.1 Let G be an (n,d, \)-graph with d < n/2. Show thatd > X\ > \/d/2.

Remark. Observe that here we restrict our discussion to regular graphs. There is a
generalization of these statements to non-regular graphs via the Lagragian matrix of the
graph, but since that approach does not really add extra information for our purposes,
we stick with the technically much less demanding regular case.

The next couple of lemmas show that (n,d, A)-graphs with small A behave like truly
random graphs in some sense.

Lemma A.22.1 Let G = G(V, E) be an (n,d, A\)-graph and B C V be an arbitrary subset
of the vertices. Then

2 (dB(v) - !B!%f < X(B (1 _ @)

veV

Proof. Let A be the adjacency matrix of G (in case of a loop, there is a 1 at the diagonal.)
with eigenvalues d = A\; > Ay > .-+ > A,. By the above, there is an orthonormal basis of
the form {u, us, ..., u,}, where u,; is an eigenvector corresponding to eigenvalue )\; and
of course, u; = \/iﬁ]lm is an eigenvector for the eigenvalue d.
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The connection to combinatorics is provided by the simple facts that dg(v) is the
v-entry of the vector Al g and that no shift by a multiple of the leading eigenvector, 1,
changes the “combinatorial structure” of 1p.

The vector 15 can be expressed as a linear combination ) ., u;u; of the eigenvectors
where the first coeeficient is yu; = (15,u;) = |B|/+/n. Hence the projection u = 15 —
piuy € RY of 1p on the subspace generated by the lower eigenvectors is defined by

_(1-b ifveB
*=1 -b ifvé¢B.

As u=> ", uu; we obtain that

(Au, Au) = Z)F <\ Zuf = X (u,u).
1=2
The inequality of the Lemma is just expressing this fact. Indeed, the entry of Au at

vertex v is
> auwtiy = (1 - b)dp(v) — b(d — dp(v)),

weV
and the value of (u,u) is
> ul = |BI(L = b + (n — |B)¥".
wev

O

Often we will use the following corollary of Lemma A.22.1. For two subsets B,C C
E(H) let
e(B,C) = #{(u,v):u e B,ve C,uv € E(H)}.
Corollary A.23 If G is an (n,d, \)-graph, then for any two subsets B,C C V of the
vertices

d
o(8,C) - 51B|C] < AVIBIC.

Proof. Since e(B,C)—2|B||C| =", cc (d5(w) — £|B|), by the Cauchy-Schwarz inequal-
ity we have

o(8,0) - §Illcl| < 3

veC

d
Na(o) - |1

< m\z(NB(v)—\ng)z

veC

< Vel Now)— 182
\ 3 (o) 817)
VIClV/X|B]

VAN
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Here the last inequality follows from Lemma A.22.1. 0

Now an upper bound on the independence number is immediate.

Corollary A.24 Let G be an (n,d,\)-graph. Then

An
G) < —.
o(G) < =

Proof. Let I C V be an independent set of maximum size. Then |I| = a(G) and
e(I,I)=0, so

d

o~ 2117 < A,

n

which implies the statement. O

Finally, we mention an important result concerning the case of linear degree, that
is, when d = pn for some constant p, 0 < p < 1. Then many quasi-random properties
turned out to be equivalent.

e Property P,:For everyB,C C V,e(B,C) = p|B||C| + o(n?)

e Property P;:For everyB C V,e(B) = p('5) + o(n?)

e Property P3:A = o(n)
Let N*(H) denote the number of induced labeled copies of H in G.

e Property P,(s): For every graph H on s vertices N*(H) = n°p*(¥)(1 — p)(g)_e(H)(l +0(1))
Let N(H) denote the number of labeled copies of H in G.

e Property Ps(s): For every graph H on s vertices N(H) = n*p*()(1 + o(1))

e Property Ps: N(Cy) = n*p*(1 + o(1))

Obviously all of these properties are satisfied by the random graph G(n,p). In a
seminal paper, Chung, Graham, and Wilson proved that they are equivalent for every
graph (sequence)!

Theorem A.25 Let G be a (sequence of) (n,d, A)-graph(s) with d = pn, with p,0 < p <
1, a constant. Then Py, P,, Ps(s) for some s > 4, Py(s) for some s > 4, B;, Bs.

The most suprising that the weak-looking property P about the number of C, implies
the bound on the second eigenvalue and the number of arbitrary fixed subgraph

Observe that the theorem cannot be true in this form for d < n. The C,-free
polarity graph discussed in Subsection 2.1.3 has the best possible quasi-random second
eigenvalue /d and still contains NO C,, while the corresponding random graph with
edge-probability p = n~ 2 contains ©(n?p*) = ©(n?) C..
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A.5 Cayley graphs and Characters

All what was said so far about eigenvalues applies for any d-regular graph. The graphs
we construct are often defined algebraically, in which case they are often possible to cast
as Cayley graphs and their eigenvalues are most conveniently expressed in terms of the
group’s characters.

A.5.1 Cayley graphs

Given a group H and a subset S C H with the properties that 0 ¢ S and S = —S (that
is, for every a,b € H, a — b € S if and only if b — a € S), we define the Cayley graph
G(H, S) = G as follows:

e V(G)=H

e E(G)={ab:a—be S}.

Examples

1. The Cayley graph G((Zn,+),{1,—1}) is just the cycle C,.

2. The Cayley graph G(F;, QR(g)) is the Payley graph we defined in ....

It turns out that eigenvalues of Cayley graphs are connected to the more general con-
cept of group characters. Below we define the general notion, but soon will concentrate
on abelian groups, which come up in our applications.

A.5.2 Basics of characters of Abelian groups

The following are based partly on the notes of Babai ].

Let H be a finite abelian group. For the sake of the this exposition we mostly write
the group operation additively (denoted by +), however later we will also use characters
of multiplicative groups and even mix the two.

The homomorphisms of (H, +) into the multiplicative group (C*,-) of the complex
numbers are called characters of H. Formally, x : H — C* is a character of H if

x(a+b) = x(a)x(b) for every a,b € H.

How many characters are there? Just a few? Or many? Maybe an infinite number?
We show that there are exactly as many characters as group elements and their structure
is really restricted: they themselves form a group isomorphic to H.

Ezamples. 1. One immediate example of a character is the principal character x,,
which is defined by

X,(a) =1, for every a € H,

and exists for an arbitrary group H.
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2. Another important example is the quadratic residue character p, of the multi-
plicative group (I}, -) of a finite field:

|1 ifzeQR(g)
po(z) = { —1 otherwise.

The map p, is a homomorphism because as we saw earlier in Appendix A.2, a square
times a square or a non-square times a non-square is a square, while a square times a
non-square is a non-square.
3. For the cyclic group (Z,,+) an obvious choice transferring the (mod n) addition
to complex multiplication is the character x;. For every = € Z, we define
Xl(m) = w®,

where w = €*™in.

The fact that the quadratic residue character has only values 1 and —1 and the values
of x; are also roots of unity is not an accident: all character values must be some root
of unity.

Exercise A.2 Prove that
o x(a) s a |H['" root of unity.
o x(—a) =x(a)™" = x(a)

All the nth roots of unity, i.e., the values of the character x;, sum up to 0. This is
again not a coincidence: the values of any non-principal character sum up to O.

Proposition A.26 For any character x # X,,
> x(a)=0.
acH

Proof. Let b € H be such that x(b) # 1; such an element b exists since x is not principal.
Then, using that a — a + b is a bijection from H to H, we have that

> x(@)=> x(a+b) = (Z x(a)> x(b)-

acH acH acH
Then the claim follows. O

Let H be the set of characters. It will turn out that H has exactly |H| characters.
Even more, there is a natural group structure on H and the two groups are isomorphic.

Proposition A.27 H is an abelian group with the operation -, defined by

(x - ¥)(a) == x(a)¥(a).
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Proof. Exercise. O

The group H and its group of characters are isomorphic.
Theorem A.28 H = H.

Proof. We establish the proof in two steps. First we explicitely give the characters of the
cyclic group (Z,, +).

Proposition A.29 Let w be an arbitrary primitive n'* root of unity (i.e. w* =1 if and
only if n|t) and define the map X, : Z, — C* by x,(a) := w’®. Then

® X, 15 a character for every j € Zy.

e the mapping sending j € Z, to X; € 7., is an isomorphism between Z, and Z,.

Proof. The first statement follows easily from the definition: x;(a + b) = wi(@+?) =
ww? = x;(a)x;(b).
For the second statement let us see first that the mapping is a homomorphism from
(Zn,+) to (Zy,-). Indeed, j + £ € Z, is mapped to Xj+¢ = X; * Xe- The mapping is
injective, since x;(1) = x.(1) would mean that w’ * = 1 and since w is primitive, we
have n dividing 7 — ¢, so 7 = £. Let us see finally that the mapping is surjective. Let
X be an arbitrary character of (Z,,+). Since x(1) is an nth root of unity by Exercise
... and w is primitive, there is a 7, such that x(1) = w’. Then, since x is a character,
x(a) = x(1+ -+ 1) = x(1)* = w?® = x;(a) for every a € Z,, so x is identical to x;.
]

Secondly we show how to obtain the characters of a direct sum from the characters
of its summands.

Proposition A.30 If H = H, x H,, then H= H, x H,

Proof. Exercise 0

To conclude the proof of Theorem A.28 note that any finite abelian group is the direct
product of cyclic groups, hence by the previous two proposition

112
1%

H=7Zs X+ X1, Zsl X e XZST H.
O
k
——— A~
Example Let H = Z, x --- x Z,. Then H = {x, : w € {0, 1}*}, where x_(a) = (-1)**
and w-a = Zle w;a; is the usual scalar product of vectors.
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Inner product and orthonormal basis

CH := {f : H — C} is an n-dimensional linear space over C. We define an inner product

on CH: E—
(f,9) = f(a)g(a).

a€EH

SRS

Corollary A.31 (First orthogonality relation) For any x,v € H,
L1 .
1 if x =19

0 otherw:ise.

(X ¥) =

Proof. Exercise. O

Corollary A.32 H forms an orthonormal basis in CH.

Discrete Fourier transform

Corollary A.33 Every f € CH can be written uniquely as the linear combination of

characters: 1
f — ch’
xC€H
where ¢, = (¥, f) are called the Fourier coefficients of f.

Proof. By the previous Corollary the characters form an ormal basis in C#, so we
can express f uniquely as their linear combination f = ¢, x with ¢, € C. Taking the
inner product of both sides with any fixed character 9 from the left, we see by the first
orthogonality relation that all terms cancel except (9, f) and cy. 0
Definition: The Fourier transform of f : H — C is a function f : H — C, defined by

. 1

Fx)=nc, = x(a)f(a).

a€eG

The following formula of the Inverse Fourier transform:
I 1 [ 1
f= ex= 7Gx

xeH xEH

S|

Quasi-randomness of Cayley-graphs
For a subset S C H let us define
&(5) = max{|H|kslx) : x € H,x # xo}-

Just to have an idea about ho e $(5) is let us calculate an upper bound (why
is it that??): |H|ksfxo) = [H|75 s Xo(s) = |S|. For a lower bound see the following
small Claim
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Claim 7
&(5) = VISI2,

provided |S| < 2.

Let now S C H be a subset such that S = —S. The Cayley graph G = G(H, S) is
defined on the vertex set V(G) = H. Two vertices u,v € V are adjacent if v —u € S.
In other words, the neighborhood of each vertex w € H is the set w + S and thus the
Cayley graph is d-regular with d = |S]|.

Exercise A.3 Give a proof of the following on the language of characters:
Let (H,+) be an abelian group and S be a subset, such that S = —S. Let G be the
corresponding Cayley graph. For any subsets B,C C V(G),

e(B,C) - |B||C|% < 8(5)V/[BC].

Solution:
The following theorem shows that the closer $(.S) is to the lower bound of the Claim
the stronger pseudorandom properties the corresponding Cayley graph exhibits.

Theorem A.34 For any subsets B,C C V(G(S)),

e(B,C) - |B||c|‘%‘| < (5)V/[BIC],

where e(B,C) denotes the number of ordered pairs (u,v) € B x C, such that uv €
E(G(5))-

Proof.

e(B,C) = ZZZH{O}(u—i— s —v)

uEB veC sES

= >33 Tam(x(u+s—v)

u€EB veC sES XGI:'\I

- YTy ﬁx(U)x(S)x(—v)

XEITI uEB veC sES

= 3 @Y x(@)

|B|||13|||S| s |17|(Z xW)(HTs0)) (D x(2))
xx0 uEB ze-C

On the one hand |(|H[Ls(x))| < ¥(S).
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On the other hand by the Cauchy-Schwartz-inequality

SO xw)(D x@)] < D Do x| x(2)

X#Xo uEB z€-C X#xo |u€EB ze—C
< Z > x(w) Z z)
< Y (Z x(u)) > (Z X(Z))
< S (H1s00) |3 (1H1E-c00)
\ xeﬁ \ xeﬁ
< [HP \/]13,13 (1-c,1¢)
< ‘B
- \/ |H] \/ !H
< |H|V|BIVIC|
and the theorem follows. O

The following is an easy corollary.
Corollary A.35 Let G = G(H, S) be a Cayley graph. Then
®(S)|H
NERLCL

Proof. Let I be an independent set of maximum size, that is |/| = a(G). By Theorem A.34
we have that

Bl
eI, 1) ~ |1 | < ()
Since e(I,I) = 0, we have |I|2||fz|| < $(9)|I|, which implies the statement. O

The following simple proposition shows that in fact we already proved Theorem A.34
and Corollary A.35 in the previous section.
Proposition A.36 The spectrum of the Cayley graph G(H, S) is the n-element multiset
D sesx(8) i x € H} = {|H|1s(x) : x € H}. The eigenvectors are the n characters.
In particular, the eigenvectors do not depend on S.

Proof.

(Ax)e= > xw)=> x(v+s)= (Z x(8)> x(v)

wEGW—vES seS seS
Hence x is indeed an eigenvector with eigenvalue ) ¢ x(s) O
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Character sum estimates

The following famous theorem of Weil states that the values of a polynomial substituted
into a non-principal character behave uniformly (in some weak sense) .

Theorem A.37 (Weil) Let g be a prime power and let x be a multiplicative character
of F; of order d, extended to F, by x(0) = 0. Then for any polynomial f(z) € F,[z]
which has precisely m distinct zeros and is not a dth power (over the algebraic
closure) we have

Y x(f(@)] < (m-1)a.

z€Fy

Note that Proposition A.26 is a special case of Weil’s theorem for f(z) = z.

In light of how hard it is to estimate the sum of characters (Weil’s theorems about
various character sums are highly non-trivial), it is refreshing to see the simple proof of
the following precise formula involving the additive and multiplicative charecters of a
finite field together.

Theorem A.38 (Gaussian sums) Let F be a finite field and let x be a character of
the additive group of F, while let i be a character of the multiplicative group of F.

Then
|F‘_1 if X = Xo and ¥ = v
_J 0 if X = Xo and P # g
C@ZMX(CW(C) =91 if X % Xo and ¥ = o

VIFl i x # xo and ¢ # 9o,

where xo 1S the pricipal additive character and 1, 1s the prinicipal multiplicatice
character.

Proof. In fact the whole proof is just applying Proposition A.26 over and over again; the

first three cases being quite straightforward. To appply Proposition A.26 for the fourth
case, we need a couple of simple manipulations.

= (ZX(C) )(ZX (C)>
C#0 C#0
= > Y x x(C1(C)+ > x(C)(C)x(C)W(C)

> x(C)¥(C)

C#£0

C+#0 D£C,0 C#0
C
-y Y X(C—D)¢(5>+ZIX ) (o)
C+#0 D£C,0 C#0

Each character value is a root of unity, thus its norm is 1 implying that the second term
consits of sum of 1s and thus equal to |F| — 1. To manipulate the first term we change
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variables.

> S xe-ow(g) = ¥ o - )
C#0 D£C,0 W£0,1 D£0
= Y0y
W#0,1
=1

The next to last ineaquality follows from Proposition A.26 since for a fixed W # 1 the
values D(W — 1) run through the nonzero elements of F, while D runs through the
nonzero elements of F. The last inequality also follows from Proposition A.26; this time

employed for the multiplicative character .
O



