
Erdős-Simonovits-Stone Theorem

Theorem. (Erdős-Stone, 1946) For arbitrary fixed in-
tegers r � 2 and t � 1

ex(n, Trt,r) =
✓
1�

1

r � 1

◆ ⇣n
2

⌘
+ o(n2).

Corollary. (Erdős-Simonovits, 1966) For any graph
H,

ex(n,H) =

 

1�
1

�(H)� 1

!⇣n
2

⌘
+ o(n2).

Corollaries of the Corollary.

ex(n,octahedron) =
n2

4
+ o(n2)

ex(n,dodecahedron) =
n2

4
+ o(n2)

ex(n,icosahedron) =
n2

3
+ o(n2)

ex(n,cube) = o(n2)
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Proof of the Erdős-Simonovits Corollary

Theorem. (Erdős-Stone, 1946) For arbitrary fixed in-
tegers r � 2 and t � 1

ex(n, Trt,r) =
✓
1�

1

r � 1

◆ ⇣n
2

⌘
+ o(n2).

Corollary. (Erdős-Simonovits, 1966) For any graph
H,

ex(n,H) =

 

1�
1

�(H)� 1

!⇣n
2

⌘
+ o(n2).

Proof of the Corollary. Let r = �(H).

• �(Tn,r�1) < �(H), so e(Tn,r�1) ex(n,H).

• Tr↵,r ◆ H, so ex(n, Tr↵,r)� ex(n,H), where ↵

is a constant depending on H; say ↵ = ↵(H).

2
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Proof of the Erdős-Stone Thm

Erd

˝

os-Stone Theorem. (Understanding precisely what
it actually says) For any ✏ > 0 and integers r � 2,
t � 1 there exists an integer M = M(r, t, ✏), such
that any graph G on n � M vertices with more than⇣
1� 1

r�1 + ✏
⌘ ⇣

n
2

⌘
edges contains Trt,r.

We derive this through the following statement.

Seemingly Weaker Theorem. For any ✏ > 0 and in-
tegers r � 2, t � 1 there exists an integer N =
N(r, t, ✏), such that any graph G on n � N vertices
and with �(G) �

⇣
1� 1

r�1 + ✏
⌘
n contains Trt,r.

Note that w.l.o.g. ✏ < 1
r�1.
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Derivation of the Erd

˝

os-Stone Theorem from the See-

mingly Weaker Theorem.

Let G be a graph on n � M(r, t, ✏)⇤ vertices with mo-
re than

⇣
1� 1

r�1 + ✏
⌘ ⇣

n
2

⌘
edges. Recursively delete

vertices which are adjacent to less than
⇣
1� 1

r�1 + ✏
2

⌘
-

fraction of the remaining vertices.
What is the number n0 of vertices we are left with?

We deleted at most
nX

j=n0+1

j
✓
1�

1

r � 1
+

✏

2

◆
ed-

ges. So

e(G) 
 ⇣n+1

2

⌘
�
⇣n0 +1

2

⌘!✓
1�

1

r � 1
+

✏

2

◆
+
⇣n0

2

⌘
.

This implies

✏

2

⇣n
2

⌘
� n 

✓ 1

r � 1
�

✏

2

◆ ⇣n0

2

⌘
� n0.

We choose M(r, t, ✏) such that n � M(r, t, ✏) implies
n0 � N(r, t, ✏/2).
⇤At this point we don’t know M(r, t, ✏) yet!!! We’ll define it in the
proof through N(r, t, ✏/2). (which is known!)
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Proof of the Seemingly Weaker Theorem.

Induction on r.
For r = 2 the claim is true provided (✏nt )n

(nt)
> t � 1,

which is certainly true from some threshold N(2, t, ✏).

Let r � 2 and G be a graph on n � N(r + 1, t, ✏)⇤

vertices with �(G) �
⇣
1� 1

r + ✏
⌘
n.

We would like to find a T(r+1)t,r+1 in G.

Let s =
l
t
✏

m
. By the induction hypothesis† there is a

Trs,r in G with vertex-set A1 [ . . . [Ar, where
|A1| = . . . = |Ar| = s.

U = V (G) \ (A1 [ . . . [Ar).

W = {w 2 U : |N(w) \Ai| � t, i = 1, . . . , r}
is the set of vertices eligible to extend some part of
A1, . . . , Ar into a T(r+1)t,r+1.

⇤Again, we don’t know N(r +1, t, ✏) yet.
†Here we assume N(r +1, t, ✏) � N(r, s, ✏).

15



Double-count the number of edges missing between
U and A1 [ . . . [Ar. They are

• at least (|U |� |W |)(s� t) (⇡ (s� t)n if W is small)

• at most rs
⇣
1
r � ✏

⌘
n (⇡ (s� rt)n, if W is small)

From this we have

|W | �
(r � 1)✏

1� ✏
n� rs

Thus if n is large enough⇤ then

|W | >
⇣s
t

⌘r
(t� 1).

So we can select t vertices from W , which are adja-
cent to the same t vertices in each Ai .

⇤If N(r +1, t, ✏) >
��s

t

�r
(t� 1) + rs

�
1�✏

(r�1)✏
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