Erdős-Simonovits-Stone Theorem

Theorem. (Erdős-Stone, 1946) For arbitrary fixed integers $r \geq 2$ and $t \geq 1$

$$
e x\left(n, T_{r t, r}\right)=\left(1-\frac{1}{r-1}\right)\binom{n}{2}+o\left(n^{2}\right)
$$

Corollary. (Erdős-Simonovits, 1966) For any graph H,

$$
e x(n, H)=\left(1-\frac{1}{\chi(H)-1}\right)\binom{n}{2}+o\left(n^{2}\right)
$$

Corollaries of the Corollary.

$$
\begin{aligned}
e x(n, \text { octahedron }) & =\frac{n^{2}}{4}+o\left(n^{2}\right) \\
e x(n, \text { dodecahedron }) & =\frac{n^{2}}{4}+o\left(n^{2}\right) \\
e x(n, \text { icosahedron }) & =\frac{n^{2}}{3}+o\left(n^{2}\right) \\
e x(n, \text { cube }) & =o\left(n^{2}\right)
\end{aligned}
$$

Proof of the Erdős-Simonovits Corollary

Theorem. (Erdős-Stone, 1946) For arbitrary fixed integers $r \geq 2$ and $t \geq 1$

$$
e x\left(n, T_{r t, r}\right)=\left(1-\frac{1}{r-1}\right)\binom{n}{2}+o\left(n^{2}\right) .
$$

Corollary. (Erdős-Simonovits, 1966) For any graph H,

$$
e x(n, H)=\left(1-\frac{1}{\chi(H)-1}\right)\binom{n}{2}+o\left(n^{2}\right)
$$

Proof of the Corollary. Let $r=\chi(H)$.

- $\chi\left(T_{n, r-1}\right)<\chi(H)$, so $e\left(T_{n, r-1}\right) \leq e x(n, H)$.
- $T_{r \alpha, r} \supseteq H$, so ex $\left(n, T_{r \alpha, r}\right) \geq e x(n, H)$, where α is a constant depending on H; say $\alpha=\alpha(H)$.

Proof of the Erdős-Stone Thm

Erdős-Stone Theorem. (Understanding precisely what it actually says) For any $\epsilon>0$ and integers $r \geq 2$, $t \geq 1$ there exists an integer $M=M(r, t, \epsilon)$, such that any graph G on $n \geq M$ vertices with more than $\left(1-\frac{1}{r-1}+\epsilon\right)\binom{n}{2}$ edges contains $T_{r t, r}$.

We derive this through the following statement.

Seemingly Weaker Theorem. For any $\epsilon>0$ and integers $r \geq 2, t \geq 1$ there exists an integer $N=$ $N(r, t, \epsilon)$, such that any graph G on $n \geq N$ vertices and with $\delta(G) \geq\left(1-\frac{1}{r-1}+\epsilon\right) n$ contains $T_{r t, r}$.

Note that w.l.o.g. $\epsilon<\frac{1}{r-1}$.

Derivation of the Erdős-Stone Theorem from the Seemingly Weaker Theorem.

Let G be a graph on $n \geq M(r, t, \epsilon)^{*}$ vertices with more than $\left(1-\frac{1}{r-1}+\epsilon\right)\binom{n}{2}$ edges. Recursively delete vertices which are adjacent to less than $\left(1-\frac{1}{r-1}+\frac{\epsilon}{2}\right)$ fraction of the remaining vertices. What is the number n^{\prime} of vertices we are left with?

We deleted at most $\sum_{j=n^{\prime}+1}^{n} j\left(1-\frac{1}{r-1}+\frac{\epsilon}{2}\right)$ edges. So

$$
e(G) \leq\left(\binom{n+1}{2}-\binom{n^{\prime}+1}{2}\right)\left(1-\frac{1}{r-1}+\frac{\epsilon}{2}\right)+\binom{n^{\prime}}{2} .
$$

This implies

$$
\frac{\epsilon}{2}\binom{n}{2}-n \leq\left(\frac{1}{r-1}-\frac{\epsilon}{2}\right)\binom{n^{\prime}}{2}-n^{\prime} .
$$

We choose $M(r, t, \epsilon)$ such that $n \geq M(r, t, \epsilon)$ implies $n^{\prime} \geq N(r, t, \epsilon / 2)$.
*At this point we don't know $M(r, t, \epsilon)$ yet!!! We'll define it in the proof through $N(r, t, \epsilon / 2)$. (which is known!)

Proof of the Seemingly Weaker Theorem.

 Induction on r.For $r=2$ the claim is true provided $\frac{\binom{\epsilon n}{t} n}{\binom{n}{t}}>t-1$, which is certainly true from some threshold $N(2, t, \epsilon)$.

Let $r \geq 2$ and G be a graph on $n \geq N(r+1, t, \epsilon)^{*}$ vertices with $\delta(G) \geq\left(1-\frac{1}{r}+\epsilon\right) n$.
We would like to find a $T_{(r+1) t, r+1}$ in G.
Let $s=\left\lceil\frac{t}{\epsilon}\right\rceil$. By the induction hypothesis ${ }^{\dagger}$ there is a $T_{r s, r}$ in G with vertex-set $A_{1} \cup \ldots \cup A_{r}$, where $\left|A_{1}\right|=\ldots=\left|A_{r}\right|=s$.
$U=V(G) \backslash\left(A_{1} \cup \ldots \cup A_{r}\right)$.
$W=\left\{w \in U:\left|N(w) \cap A_{i}\right| \geq t, i=1, \ldots, r\right\}$ is the set of vertices eligible to extend some part of A_{1}, \ldots, A_{r} into a $T_{(r+1) t, r+1}$.
*Again, we don't know $N(r+1, t, \epsilon)$ yet.
${ }^{\dagger}$ Here we assume $N(r+1, t, \epsilon) \geq N(r, s, \epsilon)$.

Double-count the number of edges missing between U and $A_{1} \cup \ldots \cup A_{r}$. They are

- at least $(|U|-|W|)(s-t) \quad(\approx(s-t) n$ if W is small)
- at most $r s\left(\frac{1}{r}-\epsilon\right) n \quad(\approx(s-r t) n$, , if W is small)

From this we have

$$
|W| \geq \frac{(r-1) \epsilon}{1-\epsilon} n-r s
$$

Thus if n is large enough* then

$$
|W|>\binom{s}{t}^{r}(t-1) .
$$

So we can select t vertices from W, which are adjacent to the same t vertices in each A_{i}.

$$
{ }^{*} \text { If } N(r+1, t, \epsilon)>\left(\binom{s}{t}^{r}(t-1)+r s\right) \frac{1-\epsilon}{(r-1) \epsilon}
$$

