Erdős-Simonovits-Stone Theorem_____

Theorem. (Erdős-Stone, 1946) For arbitrary fixed integers $r \ge 2$ and $t \ge 1$

$$ex(n,T_{rt,r}) = \left(1 - \frac{1}{r-1}\right)\binom{n}{2} + o(n^2).$$

Corollary. (Erdős-Simonovits, 1966) For any graph H,

$$ex(n,H) = \left(1 - \frac{1}{\chi(H) - 1}\right) \binom{n}{2} + o(n^2).$$

Corollaries of the Corollary.

$$ex(n, \text{octahedron}) = \frac{n^2}{4} + o(n^2)$$
$$ex(n, \text{dodecahedron}) = \frac{n^2}{4} + o(n^2)$$
$$ex(n, \text{icosahedron}) = \frac{n^2}{3} + o(n^2)$$
$$ex(n, \text{cube}) = o(n^2)$$

Proof of the Erdős-Simonovits Corollary_

Theorem. (Erdős-Stone, 1946) For arbitrary fixed integers $r \ge 2$ and $t \ge 1$

$$ex(n, T_{rt,r}) = \left(1 - \frac{1}{r-1}\right) \binom{n}{2} + o(n^2).$$

Corollary. (Erdős-Simonovits, 1966) For any graph H,

$$ex(n,H) = \left(1 - \frac{1}{\chi(H) - 1}\right) \binom{n}{2} + o(n^2).$$

Proof of the Corollary. Let $r = \chi(H)$.

- $\chi(T_{n,r-1}) < \chi(H)$, so $e(T_{n,r-1}) \le ex(n,H)$.
- $T_{r\alpha,r} \supseteq H$, so $ex(n, T_{r\alpha,r}) \ge ex(n, H)$, where α is a constant depending on H; say $\alpha = \alpha(H)$.

Proof of the Erdős-Stone Thm_

Erdős-Stone Theorem. (Understanding precisely what it actually says) For any $\epsilon > 0$ and integers $r \ge 2$, $t \ge 1$ there exists an integer $M = M(r, t, \epsilon)$, such that any graph G on $n \ge M$ vertices with more than $\left(1 - \frac{1}{r-1} + \epsilon\right) {n \choose 2}$ edges contains $T_{rt,r}$.

We derive this through the following statement.

Seemingly Weaker Theorem. For any $\epsilon > 0$ and integers $r \ge 2, t \ge 1$ there exists an integer $N = N(r, t, \epsilon)$, such that any graph G on $n \ge N$ vertices and with $\delta(G) \ge \left(1 - \frac{1}{r-1} + \epsilon\right) n$ contains $T_{rt,r}$.

Note that w.l.o.g. $\epsilon < \frac{1}{r-1}$.

Derivation of the Erdős-Stone Theorem from the Seemingly Weaker Theorem.

Let *G* be a graph on $n \ge M(r, t, \epsilon)^*$ vertices with more than $\left(1 - \frac{1}{r-1} + \epsilon\right) {n \choose 2}$ edges. Recursively delete vertices which are adjacent to less than $\left(1 - \frac{1}{r-1} + \frac{\epsilon}{2}\right)$ -fraction of the remaining vertices.

What is the number n' of vertices we are left with?

We deleted at most
$$\sum_{j=n'+1}^{n} j\left(1 - \frac{1}{r-1} + \frac{\epsilon}{2}\right)$$
 ed-

ges. So

$$e(G) \leq \left(\binom{n+1}{2} - \binom{n'+1}{2}\right) \left(1 - \frac{1}{r-1} + \frac{\epsilon}{2}\right) + \binom{n'}{2}.$$

This implies

$$\frac{\epsilon}{2} \binom{n}{2} - n \le \left(\frac{1}{r-1} - \frac{\epsilon}{2}\right) \binom{n'}{2} - n'.$$

We choose $M(r, t, \epsilon)$ such that $n \ge M(r, t, \epsilon)$ implies $n' \ge N(r, t, \epsilon/2)$.

*At this point we don't know $M(r, t, \epsilon)$ yet!!! We'll define it in the proof through $N(r, t, \epsilon/2)$. (which is known!)

Proof of the Seemingly Weaker Theorem.

Induction on r.

For r = 2 the claim is true provided $\frac{\binom{\epsilon n}{t}n}{\binom{n}{t}} > t - 1$, which is certainly true from some threshold $N(2, t, \epsilon)$.

Let $r \ge 2$ and G be a graph on $n \ge N(r+1, t, \epsilon)^*$ vertices with $\delta(G) \ge \left(1 - \frac{1}{r} + \epsilon\right) n$. We would like to find a $T_{(r+1)t,r+1}$ in G.

Let $s = \left\lceil \frac{t}{\epsilon} \right\rceil$. By the induction hypothesis[†] there is a $T_{rs,r}$ in G with vertex-set $A_1 \cup \ldots \cup A_r$, where $|A_1| = \ldots = |A_r| = s$.

$$U = V(G) \setminus (A_1 \cup \ldots \cup A_r).$$

 $W = \{w \in U : |N(w) \cap A_i| \ge t, i = 1, ..., r\}$ is the set of vertices eligible to extend some part of $A_1, ..., A_r$ into a $T_{(r+1)t,r+1}$.

*Again, we don't know $N(r + 1, t, \epsilon)$ yet. [†]Here we assume $N(r + 1, t, \epsilon) \ge N(r, s, \epsilon)$. Double-count the number of edges missing between U and $A_1 \cup \ldots \cup A_r$. They are

- at least (|U| |W|)(s t) ($\approx (s t)n$ if W is small)
- at most $rs\left(rac{1}{r}-\epsilon
 ight)n$ ($pprox (s-rt)n, rac{1}{r}$ if W is small)

From this we have

$$|W| \ge \frac{(r-1)\epsilon}{1-\epsilon}n - rs$$

Thus if n is large enough^{*} then

$$|W| > {\binom{s}{t}}^r (t-1).$$

So we can select t vertices from W, which are adjacent to the same t vertices in each A_i .

*If
$$N(r+1,t,\epsilon) > \left(\binom{s}{t}^r(t-1)+rs\right)\frac{1-\epsilon}{(r-1)\epsilon}$$