
On the exclusion of forest minors:a short proof of the path-width theoremReinhard DiestelRobertson and Seymour proved that excluding any �xed forest F asa minor imposes a bound on the path-width of a graph. We give ashort proof of this, reobtaining the best possible bound of jF j� 2.1. IntroductionAt the start of their GraphMinors series, Robertson and Seymour [ 1 ] proved,by a long and involved argument, that for every forest F there exists aninteger n such that every graph without an F minor has path-width atmost n. This bound was brought down to the best possible value by Bien-stock, Robertson, Seymour and Thomas [ 2 ], who proved the following:Theorem 1. [ 2 ] For every forest F , every graph of path-width > jF j � 1has a minor isomorphic to F .The authors remark that this result is best possible in two ways. First,the value of jF j�1 is sharp, because the complete graphKn�1 has path-widthn� 2 but no (forest) minor on n vertices. Second, if F is not a forest thenthe exclusion of F as a minor does not bound the path-width of a graph: asnoted without proof in [ 1 ], trees can have arbitrarily large path-width (butwill never contain F as a minor if F contains a cycle).The proof of Theorem 1 in [ 2 ], already much shorter than [ 1 ], relies ona non-trivial minimax theorem involving the concept of \blockages". (Thesewere adapted from \tangles", a central concept in the Graph Minors seriesconcerning tree-width.) Although interesting in its own right, it turns outthat this minimax theorem is not needed for a proof of Theorem 1; thepurpose of this note is to give a short direct proof.
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2. De�nitionsGraphs in this paper are �nite, and they may have loops or multiple edges.Let G be a graph. If X � V (G) or X � G, then G [X ] denotes the subgraphof G induced by the vertices in X. Following [ 2 ], we denote by att (X) (for\attachment") the set of those vertices in X that have a neighbour in G�X,and write �(X) := jatt (X)j. A minor of G is a graph obtained from asubgraph of G by contracting edges.A path-decomposition of G is a sequence (W1; : : : ;Ws) of subsets of V (G)such that(i) W1 [ : : :[Ws = V (G), and for every edge e of G there exists an r 6 ssuch that both endvertices of e are in Wr;(ii) Wp \Wr � Wq whenever 1 6 p 6 q 6 r 6 s.The width of a path-decomposition as above is the numbermax f jWrj � 1 : 1 6 r 6 s g ;and the path-width of G is the smallest width of any path-decompositionof G.For each positive integer n, we denote by Bn = Bn(G) the unique minimalsubset of the power set of G satisfying the following two conditions:(i) ; 2 Bn;(ii) if X 2 Bn, X � Y � V (G) and �(X)+ jY nXj 6 n, then Y 2 Bn.Thus, a set X � V (G) is in Bn if and only if there is a sequence; = X0 � : : : � Xs = Xsuch that �(Xr)+ jXr+1nXrj 6 n for all r < s.For example, if (W1; : : : ;Ws) is a path-decomposition of G of width < n,then all the sets W1 [ : : : [Wr for r 6 s, including V (G) (for r = s), arein Bn. This is easy to verify by induction on r from the axioms of a path-decomposition, but will not be used below. Its converse is also true, and willbe needed later:(2.1) If V (G) 2 Bn then G has path-width < n.Indeed, if V (G) 2 Bn then there is a sequence ; = X0 � : : : � Xs = V (G)such that �(Xr)+ jXr+1nXrj 6 n for all r < s. WithWr := att (Xr�1)[ (XrnXr�1)for all 1 6 r 6 s, the sequence (W1; : : : ;Ws) is easily seen to be a path-decomposition of G of width < n. 2



3. Proof of the theoremIn our proof of Theorem 1, we essentially follow the proof of [ 2, (3.1) ], albeitin a less elegant and rather more straighforward inductive set-up (for a bitof mathematical glasnost). Instead of [ 2 ]'s minimax theorem on blockages,we shall use the following lemma.Lemma. Let G be a graph, Y 2 Bn(G), and Z � Y . Assume that there isa set fP (z) : z 2 att (Z) g of disjoint paths in G such that each P (z) startsin z, has no other vertex in Z, and ends in att (Y ). Then Z 2 Bn(G).Proof. By de�nition of Bn, there are sets ; = Y0 � : : : � Ys = Y such that�(Yr)+ jYr+1nYrj 6 n for all r < s. We claim that, withZr := Yr \Z;we likewise have �(Zr) + jZr+1nZrj 6 n for all r < s, showing thatZ = Zs 2 Bn.Fix r. Since Zr+1nZr = Zr+1nYr � Yr+1nYr ;it su�ces to show that �(Zr) 6 �(Yr). We prove this by constructing a 1{1map z 7! y from att (Zr)natt (Yr) to att (Yr)natt (Zr).Consider a vertex z 2 att (Zr)natt (Yr). Then z has a neighbour inYrnZr = YrnZ, so z 2 att (Z). Now P (z) is a path from (Zr �) Yr to att (Y ),and att (Yr) separates these two sets in G. Therefore P (z) has a vertex y inatt (Yr); note that y 6= z by the choice of z. As z is the only vertex of P (z)in Z, we thus have y 2 att (Yr) n att (Zr). By de�nition of the paths P (z),the vertices y are distinct for di�erent z, so �(Zr) 6 �(Yr) as claimed. �We are now ready to prove Theorem 1. Let us assume, without lossof generality, that F is a tree. Let G be a graph of path-width at leastn = jF j � 1, and let (v1; : : : ; vn+1) be an enumeration of V (F ) such thatF [ v1; : : : ; vi ] is connected for all i. Then, for each i 6 n, exactly one vertexin f v1; : : : ; vi g is adjacent to vi+1.For every i = 0; : : : ; n, we shall de�ne a set Ci = fCi0; : : : ; Cii g of disjointsubgraphs of G, so that Ckj � Cj̀ whenever j 6 k 6 `, and all Cij with j > 0are connected. We shall write Xi := V �SCi�. For each i, the following fourstatements will hold:(i) G contains a Cij {Cik edge whenever 1 6 j < k 6 i and vjvk 2 E(F )(so F [ v1; : : : ; vi ] is a minor of G [Ci1 [ : : :[Cii ]);(ii) �(Xi) = i, and jV (Cij)\ att (Xi)j = 1 for all 1 6 j 6 i;(iii) Xi 2 Bn;(iv) �(X) > i for all X 2 Bn with Xi $ X.3



Let C00 be an inclusion-maximal subgraph of G with V (C00 ) 2 Bn and�(C00 ) = 0 (possibly C00 = ;). Then (i){(iv) hold for i = 0. Assume now thatCi has been de�ned so that (i){(iv) holds, for some i 6 n. If i = 0, let x beany vertex of GnC00 ; note that GnC00 6= ;, since V (C00 ) 2 Bn but V (G) =2 Bnby (2.1). If i > 0, consider the unique j 6 i such that vjvi+1 2 E(F ), andlet x 2 G�Xi be a neighbour of the unique vertex in V (Cij)\ att (Xi). LetX := Xi [f x g.If i = n, then (i) and the choice of x imply that F is a minor ofG [X ] and we are done. So we assume that i < n. Then, by (ii), (iii)and the de�nition of Bn, we have X 2 Bn. Thus, �(X) > i by (iv). Asclearly att (X) \Xi � att (Xi), this means that att (X) = att (Xi) [ fx gand �(X) = i + 1. Let Y be inclusion-maximal in Bn with X � Y and�(Y ) = i+1. (This set Y will later be our Xi+1.)By Menger's theorem, there exist a set P of disjoint X { att (Y ) paths inG [Y ] and an X { att (Y ) separator S � Y in G [Y ] consisting of a choice ofexactly one vertex from every path in P. Let Z denote the union of S and allthe vertex sets of components of G�S meeting X. Then Xi $ X � Z. Bythe choice of S and de�nition of att (Y ), we further have Z � Y . Sinceatt (Z) = S, this means that Z 2 Bn by the Lemma. By (iv), then,jPj = jSj = �(Z) > i. By de�nition of att (X), each of the paths in Pmeets att (X). Thus i < jPj 6 �(X) = i+1, so jPj = i+1 and the paths inP contain a perfect path matching between att (X) and att (Y ).We now de�ne Ci+1. Let Ci+10 := Ci0[�Y n (X [V (SP))�. For 16 j 6 i,let xj be the unique vertex of Cij in att (Xi) and Pj the path in P containingit, and de�ne Ci+1j as the union of Cij with the �nal segment of Pj startingat xj . Finally, let Ci+1i+1 be the �nal segment from x of the path in P contain-ing x. ThenXi+1 = V (S Ci+1) = Y . Now Ci+1 = fCi+10 ; : : : ; Ci+1i+1 g satis�es,for i+ 1, condition (i) by the choice of x and of Ci+1i+1 ; conditions (ii) and(iii) since Xi+1 = Y ; condition (iv) by the choice of Y and Xi � Y = Xi+1together with (iv) for i.As remarked before, the assertion of the theorem follows from the de�-nition of X in the case of i = n.References[ 1 ] N.Robertson and P.D. Seymour, Graph minors I: excluding a forest, J.Combin.The-ory B 35 (1983), 39{61.[ 2 ] D.Bienstock, N.Robertson, P.D. Seymour and R.Thomas, Quickly excluding a forest,J.Combin.Theory B 52 (1991), 274{283.Author's current address: Mathematical Institute, Oxford University,24{29 St. Giles', Oxford OX1 3LB, UK.4


