On the exclusion of forest minors:
a short proof of the path-width theorem

Reinhard Diestel

Robertson and Seymour proved that excluding any fixed forest F' as
a minor imposes a bound on the path-width of a graph. We give a
short proof of this, reobtaining the best possible bound of |F| — 2.

1. Introduction

At the start of their Graph Minors series, Robertson and Seymour [ 1] proved,
by a long and involved argument, that for every forest F' there exists an
integer n such that every graph without an F minor has path-width at
most n. This bound was brought down to the best possible value by Bien-
stock, Robertson, Seymour and Thomas [ 2], who proved the following:

Theorem 1. [2] For every forest F, every graph of path-width > |F|—1
has a minor isomorphic to F.

The authors remark that this result is best possible in two ways. First,
the value of | F'| — 1 is sharp, because the complete graph K,,_ has path-width
n — 2 but no (forest) minor on n vertices. Second, if F' is not a forest then
the exclusion of F' as a minor does not bound the path-width of a graph: as
noted without proof in [1], trees can have arbitrarily large path-width (but
will never contain F' as a minor if F' contains a cycle).

The proof of Theorem 1 in [2], already much shorter than [1], relies on
a non-trivial minimax theorem involving the concept of “blockages”. (These
were adapted from “tangles”, a central concept in the Graph Minors series
concerning tree-width.) Although interesting in its own right, it turns out
that this minimax theorem is not needed for a proof of Theorem 1; the
purpose of this note is to give a short direct proof.



2. Definitions

Graphs in this paper are finite, and they may have loops or multiple edges.
Let G be a graph. If X C V(G) or X C G, then G[X | denotes the subgraph
of G induced by the vertices in X. Following [2], we denote by att (X) (for
“attachment” ) the set of those vertices in X that have a neighbour in G — X,
and write a(X) = |att (X)]. A munor of G is a graph obtained from a
subgraph of G by contracting edges.

A path-decomposition of G is a sequence (Wy, ..., Wy) of subsets of V(G)
such that

(i) Whu...UW, = V(G), and for every edge e of G there exists an r < s
such that both endvertices of e are in W,;

(i) W,NW, C W, whenever 1 < p< ¢ < r < s.

The width of a path-decomposition as above is the number
max{|W,|—=1:1<r <s},

and the path-width of G is the smallest width of any path-decomposition
of G.

For each positive integer n, we denote by B,, = B,,(G) the unique minimal
subset of the power set of G satistying the following two conditions:

(i) 0 € By;
(i) f X € B,, X CY C V(G) and a(X)+ |Y\X]| < n, then Y € B,.
Thus, a set X C V(G) is in B, if and only if there is a sequence

l=X,C...cX,=X

such that a(X,)+ | X141\ X, < nfor all r < s.

For example, if (W7,...,W;) is a path-decomposition of G of width < n,
then all the sets Wy U...UW, for r < s, including V(G) (for r = s), are
in B,,. This is easy to verify by induction on r from the axioms of a path-
decomposition, but will not be used below. Its converse is also true, and will

be needed later:
(2.1) If V(G) € By, then G has path-width < n.

Indeed, if V(G) € B, then there is a sequence ) = X, C ... C X, = V(G)
such that «(X,)+ | X,41\X,| < nfor all r < s. With

W, = att (X,—1) U (X \Xr21)

for all 1 < r < s, the sequence (Wy,...,W,) is easily seen to be a path-
decomposition of G of width < n.



3. Proof of the theorem

In our proof of Theorem 1, we essentially follow the proof of [2, (3.1)], albeit
in a less elegant and rather more straighforward inductive set-up (for a bit
of mathematical glasnost). Instead of [2]’s minimax theorem on blockages,
we shall use the following lemma.

Lemma. Let G be a graph, Y € B,(G), and Z C Y. Assume that there is
aset { P(z):z €att(Z)} of disjoint paths in G such that each P(z) starts
in z, has no other vertex in Z, and ends in att (). Then Z € B,(G).

Proof. By definition of B,,, there are sets ) =Yy C ... C Y, = Y such that
a(Y )+ Y41 \Y, | < nfor all » < s. We claim that, with

Z, =Y, N2,

we likewise have a(Z,) + |Z,41\Z;|] < n for all r < s, showing that
Z =27, € B,.
Fix r. Since

Zr—l—l\Zr = Zr—l—l\Yr C Yr+1\Yr7

it suffices to show that a(Z,) < a(Y,). We prove this by constructing a 1-1
map z — y from att (Z,)\att (¥;) to att (Y, )\att (Z,).

Consider a vertex z € att(Z,)\att (Y,). Then z has a neighbour in
Y \Z, =Y, \Z,s0 z € att (Z). Now P(z) is a path from (Z, C) Y, to att (Y),
and att (Y, ) separates these two sets in G. Therefore P(z) has a vertex y in
att (Y, ); note that y # z by the choice of z. As z is the only vertex of P(z)
in Z, we thus have y € att(Y,)\ att (Z,). By definition of the paths P(z),
the vertices y are distinct for different z, so «(Z,) < a(Y}) as claimed. O

We are now ready to prove Theorem 1. Let us assume, without loss
of generality, that F' is a tree. Let G be a graph of path-width at least
n = |F|—1, and let (vy,...,v,41) be an enumeration of V(F') such that
Flvy,...,v;]1is connected for all . Then, for each ¢ < n, exactly one vertex
in {vy,...,v; } is adjacent to v;4q.

For every 1 = 0,...,n, we shall define a set C' = { C¢,..., C!} of disjoint
subgraphs of GG, so that C’f C C’f whenever j < k < /, and all C’} with 7 > 0
are connected. We shall write X* := V( UC’) For each ¢, the following four
statements will hold:

(i) G contains a C’}FC',i edge whenever 1 < j < k < 7 and vjv; € E(F)

(so F'lvy,...,v;]is a minor of G[CIU...UC!));

(i) «(X") =1, and |V(C})ﬂatt (X)) =1foralll<j <
(ili) X! € By;
(iv) a(X) > i for all X € B, with X* ;Ct X.
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Let C{ be an inclusion-maximal subgraph of G with V(C?) € B, and
a(C) = 0 (possibly C§ = 0). Then (i)-(iv) hold for 7 = 0. Assume now that
C' has been defined so that (i)-(iv) holds, for some ¢ < n. If i = 0, let = be
any vertex of G\CJ; note that G\C{ # 0, since V(CP) € B,, but V(G) ¢ B,
by (2.1). If ¢ > 0, consider the unique j < ¢ such that v;v,4; € E(F), and
let + € G — X' be a neighbour of the unique vertex in V(C}) Natt (X'). Let
X =X"U{xz}.

If ¢ = n, then (i) and the choice of x imply that F' is a minor of
G [X] and we are done. So we assume that ¢ < n. Then, by (ii), (iii)
and the definition of B,, we have X € B,. Thus, a(X) > ¢ by (iv). As
clearly att (X)N X" C att (X?), this means that att (X) = att (X")U{x}
and a(X) = ¢+ 1. Let Y be inclusion-maximal in B, with X C Y and
a(Y) =i+ 1. (This set Y will later be our Xi'i'l.)

By Menger’s theorem, there exist a set P of disjoint X —att (Y") paths in
G Y] and an X —att (Y') separator S C Y in G[Y'] consisting of a choice of
exactly one vertex from every path in P. Let Z denote the union of S and all
the vertex sets of components of G — S meeting X. Then X° ;Ct X CZ. By
the choice of S and definition of att(Y'), we further have Z C Y. Since
att (Z) = S, this means that Z € B, by the Lemma. By (iv), then,
|P| = |S| = a(Z) > i. By definition of att (X), each of the paths in P
meets att (X). Thusi < |P| < a(X) =141, s0 |P| =i+ 1 and the paths in
P contain a perfect path matching between att (X) and att (Y7).

We now define C**'. Let C’é‘H = C¢U (Y\(XUV(U P))) For1<j <1,
let x; be the unique vertex of €' in att (X?") and P; the path in P containing
it, and define C’;"H as the union of C’} with the final segment of P; starting
at z;. Finally, let C’Z’j_'ll be the final segment from z of the path in P contain-
ing . Then X'*' = V() =Y. Now Ot = {CiH, .., C’Zill } satisfies,
for ¢ + 1, condition (i) by the choice of + and of C’Zill, conditions (ii) and
(iii) since X! = Y; condition (iv) by the choice of ¥ and X! C ¥ = X!
together with (iv) for 1.

As remarked before, the assertion of the theorem follows from the defi-
nition of X in the case of 1 = n.
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