On the exclusion of forest minors: a short proof of the path-width theorem

Reinhard Diestel

Robertson and Seymour proved that excluding any fixed forest F as a minor imposes a bound on the path-width of a graph. We give a short proof of this, reobtaining the best possible bound of |F| - 2.

1. Introduction

At the start of their Graph Minors series, Robertson and Seymour [1] proved, by a long and involved argument, that for every forest F there exists an integer n such that every graph without an F minor has path-width at most n. This bound was brought down to the best possible value by Bienstock, Robertson, Seymour and Thomas [2], who proved the following:

Theorem 1. [2] For every forest F, every graph of path-width $\ge |F| - 1$ has a minor isomorphic to F.

The authors remark that this result is best possible in two ways. First, the value of |F| - 1 is sharp, because the complete graph K_{n-1} has path-width n-2 but no (forest) minor on n vertices. Second, if F is not a forest then the exclusion of F as a minor does not bound the path-width of a graph: as noted without proof in [1], trees can have arbitrarily large path-width (but will never contain F as a minor if F contains a cycle).

The proof of Theorem 1 in [2], already much shorter than [1], relies on a non-trivial minimax theorem involving the concept of "blockages". (These were adapted from "tangles", a central concept in the Graph Minors series concerning tree-width.) Although interesting in its own right, it turns out that this minimax theorem is not needed for a proof of Theorem 1; the purpose of this note is to give a short direct proof.

2. Definitions

Graphs in this paper are finite, and they may have loops or multiple edges. Let G be a graph. If $X \subset V(G)$ or $X \subset G$, then G[X] denotes the subgraph of G induced by the vertices in X. Following [2], we denote by att (X) (for "attachment") the set of those vertices in X that have a neighbour in G - X, and write $\alpha(X) := |\operatorname{att}(X)|$. A *minor* of G is a graph obtained from a subgraph of G by contracting edges.

A path-decomposition of G is a sequence (W_1, \ldots, W_s) of subsets of V(G) such that

- (i) $W_1 \cup \ldots \cup W_s = V(G)$, and for every edge e of G there exists an $r \leq s$ such that both endvertices of e are in W_r ;
- (ii) $W_p \cap W_r \subset W_q$ whenever $1 \leq p \leq q \leq r \leq s$.

The width of a path-decomposition as above is the number

$$\max\left\{ \left| W_r \right| - 1 : 1 \leqslant r \leqslant s \right\},\$$

and the *path-width* of G is the smallest width of any path-decomposition of G.

For each positive integer n, we denote by $\mathcal{B}_n = \mathcal{B}_n(G)$ the unique minimal subset of the power set of G satisfying the following two conditions:

(i) $\emptyset \in \mathcal{B}_n$;

(ii) if $X \in \mathcal{B}_n$, $X \subset Y \subset V(G)$ and $\alpha(X) + |Y \setminus X| \leq n$, then $Y \in \mathcal{B}_n$. Thus, a set $X \subset V(G)$ is in \mathcal{B}_n if and only if there is a sequence

$$\emptyset = X_0 \subset \ldots \subset X_s = X$$

such that $\alpha(X_r) + |X_{r+1} \setminus X_r| \leq n$ for all r < s.

For example, if (W_1, \ldots, W_s) is a path-decomposition of G of width < n, then all the sets $W_1 \cup \ldots \cup W_r$ for $r \leq s$, including V(G) (for r = s), are in \mathcal{B}_n . This is easy to verify by induction on r from the axioms of a pathdecomposition, but will not be used below. Its converse is also true, and will be needed later:

(2.1) If $V(G) \in \mathcal{B}_n$ then G has path-width < n.

Indeed, if $V(G) \in \mathcal{B}_n$ then there is a sequence $\emptyset = X_0 \subset \ldots \subset X_s = V(G)$ such that $\alpha(X_r) + |X_{r+1} \setminus X_r| \leq n$ for all r < s. With

$$W_r := \operatorname{att} (X_{r-1}) \cup (X_r \setminus X_{r-1})$$

for all $1 \leq r \leq s$, the sequence (W_1, \ldots, W_s) is easily seen to be a pathdecomposition of G of width < n.

3. Proof of the theorem

In our proof of Theorem 1, we essentially follow the proof of [2, (3.1)], albeit in a less elegant and rather more straighforward inductive set-up (for a bit of mathematical glasnost). Instead of [2]'s minimax theorem on blockages, we shall use the following lemma.

Lemma. Let G be a graph, $Y \in \mathcal{B}_n(G)$, and $Z \subset Y$. Assume that there is a set $\{P(z) : z \in \operatorname{att}(Z)\}$ of disjoint paths in G such that each P(z) starts in z, has no other vertex in Z, and ends in $\operatorname{att}(Y)$. Then $Z \in \mathcal{B}_n(G)$.

Proof. By definition of \mathcal{B}_n , there are sets $\emptyset = Y_0 \subset \ldots \subset Y_s = Y$ such that $\alpha(Y_r) + |Y_{r+1} \setminus Y_r| \leq n$ for all r < s. We claim that, with

$$Z_r := Y_r \cap Z,$$

we likewise have $\alpha(Z_r) + |Z_{r+1} \setminus Z_r| \leq n$ for all r < s, showing that $Z = Z_s \in \mathcal{B}_n$.

Fix r. Since

$$Z_{r+1} \setminus Z_r = Z_{r+1} \setminus Y_r \subset Y_{r+1} \setminus Y_r$$

it suffices to show that $\alpha(Z_r) \leq \alpha(Y_r)$. We prove this by constructing a 1–1 map $z \mapsto y$ from att $(Z_r) \setminus \operatorname{att} (Y_r)$ to att $(Y_r) \setminus \operatorname{att} (Z_r)$.

Consider a vertex $z \in \operatorname{att}(Z_r)\setminus\operatorname{att}(Y_r)$. Then z has a neighbour in $Y_r\setminus Z_r = Y_r\setminus Z$, so $z \in \operatorname{att}(Z)$. Now P(z) is a path from $(Z_r \subset) Y_r$ to att (Y), and att (Y_r) separates these two sets in G. Therefore P(z) has a vertex y in att (Y_r) ; note that $y \neq z$ by the choice of z. As z is the only vertex of P(z) in Z, we thus have $y \in \operatorname{att}(Y_r) \setminus \operatorname{att}(Z_r)$. By definition of the paths P(z), the vertices y are distinct for different z, so $\alpha(Z_r) \leq \alpha(Y_r)$ as claimed. \Box

We are now ready to prove Theorem 1. Let us assume, without loss of generality, that F is a tree. Let G be a graph of path-width at least n = |F| - 1, and let (v_1, \ldots, v_{n+1}) be an enumeration of V(F) such that $F[v_1, \ldots, v_i]$ is connected for all i. Then, for each $i \leq n$, exactly one vertex in $\{v_1, \ldots, v_i\}$ is adjacent to v_{i+1} .

For every i = 0, ..., n, we shall define a set $C^i = \{C_0^i, ..., C_i^i\}$ of disjoint subgraphs of G, so that $C_j^k \subset C_j^\ell$ whenever $j \leq k \leq \ell$, and all C_j^i with j > 0are connected. We shall write $X^i := V(\bigcup C^i)$. For each i, the following four statements will hold:

- (i) G contains a $C_j^i C_k^i$ edge whenever $1 \leq j < k \leq i$ and $v_j v_k \in E(F)$ (so $F[v_1, \ldots, v_i]$ is a minor of $G[C_1^i \cup \ldots \cup C_i^i]$);
- (ii) $\alpha(X^i) = i$, and $|V(C^i_i) \cap \operatorname{att} (X^i)| = 1$ for all $1 \leq i \leq i$;
- (iii) $X^i \in \mathcal{B}_n$;
- (iv) $\alpha(X) > i$ for all $X \in \mathcal{B}_n$ with $X^i \subsetneq X$.

Let C_0^0 be an inclusion-maximal subgraph of G with $V(C_0^0) \in \mathcal{B}_n$ and $\alpha(C_0^0) = 0$ (possibly $C_0^0 = \emptyset$). Then (i)–(iv) hold for i = 0. Assume now that \mathcal{C}^i has been defined so that (i)–(iv) holds, for some $i \leq n$. If i = 0, let x be any vertex of $G \setminus C_0^0$; note that $G \setminus C_0^0 \neq \emptyset$, since $V(C_0^0) \in \mathcal{B}_n$ but $V(G) \notin \mathcal{B}_n$ by (2.1). If i > 0, consider the unique $j \leq i$ such that $v_j v_{i+1} \in E(F)$, and let $x \in G - X^i$ be a neighbour of the unique vertex in $V(C_j^i) \cap \operatorname{att}(X^i)$. Let $X := X^i \cup \{x\}$.

If i = n, then (i) and the choice of x imply that F is a minor of G[X] and we are done. So we assume that i < n. Then, by (ii), (iii) and the definition of \mathcal{B}_n , we have $X \in \mathcal{B}_n$. Thus, $\alpha(X) > i$ by (iv). As clearly att $(X) \cap X^i \subset \operatorname{att}(X^i)$, this means that att $(X) = \operatorname{att}(X^i) \cup \{x\}$ and $\alpha(X) = i + 1$. Let Y be inclusion-maximal in \mathcal{B}_n with $X \subset Y$ and $\alpha(Y) = i + 1$. (This set Y will later be our X^{i+1} .)

By Menger's theorem, there exist a set \mathcal{P} of disjoint $X - \operatorname{att}(Y)$ paths in G[Y] and an $X - \operatorname{att}(Y)$ separator $S \subset Y$ in G[Y] consisting of a choice of exactly one vertex from every path in \mathcal{P} . Let Z denote the union of S and all the vertex sets of components of G - S meeting X. Then $X^i \subsetneq X \subset Z$. By the choice of S and definition of $\operatorname{att}(Y)$, we further have $Z \subset Y$. Since $\operatorname{att}(Z) = S$, this means that $Z \in \mathcal{B}_n$ by the Lemma. By (iv), then, $|\mathcal{P}| = |S| = \alpha(Z) > i$. By definition of $\operatorname{att}(X)$, each of the paths in \mathcal{P} meets $\operatorname{att}(X)$. Thus $i < |\mathcal{P}| \leq \alpha(X) = i + 1$, so $|\mathcal{P}| = i + 1$ and the paths in \mathcal{P} contain a perfect path matching between $\operatorname{att}(X)$ and $\operatorname{att}(Y)$.

We now define \mathcal{C}^{i+1} . Let $C_0^{i+1} := C_0^i \cup (Y \setminus (X \cup V(\bigcup \mathcal{P})))$. For $1 \leq j \leq i$, let x_j be the unique vertex of C_j^i in att (X^i) and P_j the path in \mathcal{P} containing it, and define C_j^{i+1} as the union of C_j^i with the final segment of P_j starting at x_j . Finally, let C_{i+1}^{i+1} be the final segment from x of the path in \mathcal{P} containing x. Then $X^{i+1} = V(\bigcup \mathcal{C}^{i+1}) = Y$. Now $\mathcal{C}^{i+1} = \{C_0^{i+1}, \ldots, C_{i+1}^{i+1}\}$ satisfies, for i+1, condition (i) by the choice of x and of C_{i+1}^{i+1} ; conditions (ii) and (iii) since $X^{i+1} = Y$; condition (iv) by the choice of Y and $X^i \subset Y = X^{i+1}$ together with (iv) for i.

As remarked before, the assertion of the theorem follows from the definition of X in the case of i = n.

References

- N. Robertson and P.D. Seymour, Graph minors I: excluding a forest, J. Combin. Theory B 35 (1983), 39-61.
- [2] D. Bienstock, N. Robertson, P.D. Seymour and R. Thomas, Quickly excluding a forest, J. Combin. Theory B 52 (1991), 274–283.

Author's current address: Mathematical Institute, Oxford University, 24–29 St. Giles', Oxford OX1 3LB, UK.