## Exercise Sheet 1

## Due date: 12:30, Apr 27th, at the beginning of the exercise class.

You should try to solve all of the exercises below, and submit two solutions to be graded — each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each individual solution.

**Exercise 1** Suppose  $n \ge 4$  and let H be an n-uniform hypergraph with at most  $\frac{4^{n-1}}{3^n}$  edges. Prove that there is a coloring of the vertices of H by 4 colors so that in every edge all four colors are represented.

**Exercise 2** From the lecture we know that for every integer k > 0 there is a tournament  $T_k = (V, E)$  with |V| > k such that for every set U of at most k vertices of  $T_k$  there is a vertex v so that all directed arcs  $\{(v, u) : u \in U\}$  are in E. Show that each such tournament contains at least  $\Omega(k2^k)$  vertices.

Hint: Probability theory is not necessarily needed.

**Exercise 3** Let F be a finite collection of binary strings of finite lengths and assume no member of F is a prefix of another one. Let  $N_i$  denote the number of strings of length i in F. Prove that

$$\sum_{i} \frac{N_i}{2^i} \le 1.$$

**Exercise 4** Prove that there is an absolute constant c > 0 with the following property. Let A be an n by n matrix with pairwise distinct entries. Then there is a permutation of the rows of A so that no column in the permuted matrix contains an increasing subsequence of length at least  $c\sqrt{n}$ .

**Exercise 5** Prove that there is a positive constant c so that every set A of n real nonzero reals contains a subset  $B \subset A$  of size  $|B| \ge cn$  so that there are no  $b_1, b_2, b_3, b_4 \in B$  satisfying

$$b_1 + 2b_2 = 2b_3 + 2b_4.$$