Exercise Sheet 6

Due date: 12:30, June 22nd, at the beginning of the exercise class.

You should try to solve all of the exercises below, and submit two solutions to be graded — each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each individual solution.

Exercise 1 For $2 \le l < k < n$ denote by M(n, k, l) the minimum size of a family of k-sets having the property that every *l*-set is contained in at least one of the k-sets. Similarly let m(n, k, l) be the maximum size of a family of k-sets having the property that every *l*-set is contained in at most one of the k-sets. Prove that for fixed k, l

$$\lim_{n \to \infty} \frac{M(n,k,l)}{\binom{n}{l} / \binom{k}{l}} = 1 \quad \text{if and only if} \quad \lim_{n \to \infty} \frac{m(n,k,l)}{\binom{n}{l} / \binom{k}{l}} = 1.$$

Exercise 2 Let X be a random variable with expectation $\mathbb{E}[X] = 0$ and variance σ^2 . Prove that for all $\lambda > 0$,

$$\mathbb{P}[X \ge \lambda] \le \frac{\sigma^2}{\sigma^2 + \lambda^2}$$

Exercise 3 Let $v_1 = (x_1, y_1), \ldots, v_n = (x_n, y_n)$ be *n* two-dimensional vectors, where each x_i and y_i is an integer whose absolute value does not exceed $\frac{2^{n/2}}{100\sqrt{n}}$. Show that there are two non-empty disjoint sets $I, J \subset \{1, 2, \ldots, n\}$ such that

$$\sum_{i \in I} v_i = \sum_{j \in J} v_j.$$

Exercise 4 Show that there is a positive constant c such that the following holds. For any n reals a_1, \ldots, a_n satisfying $\sum_{i=1}^n a_i^2 = 1$, if $(\varepsilon_1, \ldots, \varepsilon_n)$ is a $\{-1, 1\}^n$ -random vector obtained by choosing each ε_i randomly and independently with unifrom distribution to be either 1 or -1, then

$$\mathbb{P}\left[\left|\sum_{i=1}^{n}\varepsilon_{i}a_{i}\right|\leq1\right]\geq c.$$