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1 The 36 officers problem

Theorem 1.0.1. A transversal design TD(6, 4) does not exist (and hence
no pair of orthogonal Latin squares of order 6).

Let X be the set of points, |X| = 24, A the blocks, |A| = 36, |B| = 4 for
B ∈ A, G = {G1, G2, G3, G4} the groups, |Gi| = 6.

Set B = A ∪ G, then the design P = (X,B) satisfies:

|X| = 24, |B| = 40; 4 blocks have size 6; 36 blocks have size 4.

(A) Every element is in precisely 7 blocks.

(B) Any two distinct elements are in exactly one common block.

Let M = (mij) be the 24× 40-incidence matrix

mij =

{
1 if xi ∈ Bj

0 if xi /∈ Bj.

1.1 A

Consider the rows as vectors in F40
2 , and denote by V the vector space gen-

erated by the rows r1, · · · , r24. By (A), (B)

〈ri, rj〉 = 1 for any i, j (since 7 ≡ 1 (mod 2)).

Lemma 1.1.1. The vector space V ⊆ F40
2 has dim(V ) ≤ 20.
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Proof. Let {r1, . . . , rd} be a basis of V . Now 〈ri, rj+rk〉 = 〈ri, rj〉+〈ri, rk〉 = 0
for all i, j, k, hence r1 + r2, r1 + r3, . . . , r1 + rd ∈ V ⊥, and they are clearly
independent. Hence

dim(V ) ≥ dim(V ∩ V ⊥) ≥ d− 1,

and therefore

dim(V ) = 40− dim(V ⊥) ≤ 40− (dim(V )− 1).

This implies 2 dim(V ) ≤ 41, thus dim(V ) ≤ 20.

Since M has 24 rows and dim(V ) ≤ 20, there must be at least 4 linearly
independent relations between the rows. Such a relation corresponds to a
subset Y ⊆ X, such that |Y ∩Bi| is even for i = 1, . . . , 40.

Examples of such are: Y = G1 ∪ G2, Y = G1 ∪ G3, G1 ∪ G4, whose
characteristic vectors are linearly independent. The other three combinations
Gi ∪Gj, i, j ≥ 2 are linearly dependent on these.

Hence there must be a set Y 6= Gi ∪ Gj which corresponds to a linearly
dependent set of rows. Let us call such a set Y ⊆ X an even set:

|Y ∩Bi| even for i = 1, . . . , 40.

Note that the complement of an even set is even. The goal is therefore to
show that such an even set cannot exist.

1.2 B

Let Y be an even set, where by taking complements we may assume |Y | ≤ 12,
and let Q = (Y, Y ∩Bi) be the sub-design. Suppose |Y | = m ≤ 12, and that
Q has bi blocks of size i. Then

b0 + b2 + b4 + b6 = 40, (1)

which is clear since the number of blocks did not change and the size of each
block in P is an even number at most 6. For the next equation, recall that
each element of X is contained in exactly seven blocks in P and this property
is carried over to Q. Hence,∑

B∈Q

∑
x∈Y

1x∈B =
∑
x∈Y

∑
B∈Q

1x∈B,

which gives ∑
B∈Q

|B| =
∑
x∈Y

7
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and therefore
2b2 + 4b4 + 6b6 = 7m. (2)

For the next equation, we double count the triples (x, y, B) in Q where
{x, y} ∈ B. ∑

B∈Q

∑
{x,y}∈(X

2 )

1{x,y}⊆B =
∑

{x,y}∈(X
2 )

∑
B∈Q

1{x,y}⊆B,

yielding ∑
B∈Q

(
|B|
2

)
=

∑
{x,y}∈(X

2 )

1,

and hence

b2 + 6b4 + 15b6 =
m(m− 1)

2
. (3)

Subtracting half of (2) from (3) yields

4b4 + 12b6 =
m(m− 8)

2
,

that is

b4 + 3b6 =
m(m− 8)

8
=

m2

8
−m. (4)

It follows that m ≥ 8 and m ≡ 0 (mod 4), and therefore m = 8 or m = 12.
Now note that if Y1, Y2 are even sets, then so is their symmetric difference

Y1∆Y2 = (Y1 ∪ Y2) \ (Y1 ∩ Y2) = (Y1 \ Y2) ∪ (Y2 \ Y1). To see this, recall that
for i ∈ [24], ri is the ith row of the incidence matrix of our original design P .
Then

0 =
∑
i∈Y1

ri +
∑
j∈Y2

rj =
∑

i∈Y1\Y2

ri +
∑

i′∈Y1∩Y2

ri′ +
∑

j′∈Y1∩Y2

rj′ +
∑

j∈Y2\Y1

rj,

where on the right hand side the two summands in the middle sum up to
zero. Hence we get∑

i∈Y1\Y2

ri +
∑

j∈Y2\Y1

rj =
∑

k∈(Y1\Y2)∪(Y2\Y1)

rk = 0.

Now suppose |Y | = 12. Then the following distributions of the points
among the 4 groups are the only possibilities (up to permutation of the
groups):

Y : 6 4 2 0 ; 6 2 2 2 ; 4 4 4 0 ; 4 4 2 2.
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Note that 6 6 0 0 is excluded since then Y = Gi ∪ Gj for some i 6= j. Take
(G1 ∪G2)∆Y , then we get even sets with distribution

Y ′ : 0 2 2 0 ; 0 4 2 2 ; 2 2 4 0 ; 2 2 2 2.

The first is impossible since we require m ≥ 8 for every even set. Each of
the other cases yields m = 8.

Theorem 1.2.1 (conclusion). If an even set Y exists at all, then there is
one with |Y | = 8.

1.3 C

We will assume in the following that |Y | = 8. It follows immediately from
equation (4) that in this case b4 = b6 = 0. Inserting into (3) gives b2 = 28
and so b0 = 12 by (1). Hence no 3 elements are in a block Y ∩ B, which
means

|Y ∩Gi| = 2, i = 1, . . . , 4.

Let Q̂ be the complementary design, corresponding to the even X \ Y ,

Q̂ = (X \ Y, (X \ Y ) ∩Bi).

Q̂ has 16 points, 4 blocks of size 4 of the form (X \ Y ) ∩ Gi, 12 blocks of
size 4 in A (b0 = 12) and 24 blocks of size 2 in A (b2 = 28 and we already
counted the 4 groups).

Let Y = {a, b, c, . . . , h}, X \ Y = {1, 2, . . . , 16} and let the groups be

G1 = {1, 2, 3, 4, a, b} , G2 = {5, 6, 7, 8, c, d} ,

G3 = {9, 10, 11, 12, e, f} , G4 = {13, 14, 15, 16, g, h} .

The main tool in studying Q̂ is the graph G(V,E) with the following prop-
erties:

(i) V = {1, 2, . . . , 16}.

(ii) ij ∈ E iff {i, j} is a 2-block in Q̂.

We immediately see that |E| = 24.

Lemma 1.3.1. (a) G is 3-regular.

(b) Every x ∈ V has exactly one neighbour in each group Gi which does not
contain x.
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(c) G is triangle-free.

Proof. Choose x ∈ V and suppose x is in a blocks of size 2 in Q̂ and b blocks
of size 4. Then

a + b = 7,

since x is contained in 7 blocks. Also for a fixed x we have∑
B∈Q̂
x∈B

∑
y∈X\Y
y 6=x

1{x,y}⊆B =
∑

y∈X\Y
y 6=x

∑
B∈Q̂
x∈B

1{x,y}⊆B,

which gives ∑
B∈Q̂
x∈B

(|B| − 1) =
∑

y∈X\Y
y 6=x

1,

and so
a + 3b = 15.

This gives a = 3 and b = 4; hence G is 3-regular.
Look at these 3 blocks Bi ∈ B with x ∈ Bi, |Bi∩Y | = |Bi∩ (X \Y )| = 2.

Suppose w.l.o.g. x ∈ G1. Then the Bi’s must contain in Y 2 points from
G2, G3, 2 points from G2, G4 and 2 from G3, G4. The respective elements
y ∈ (X \Y )∩Bi, y 6= x, must be in G4, G3 and G2 respectively, which proves
(b).

To prove (c) let 1, 5, 9 be a triangle in G. In the original design P we have
a block 1, 5, e, g, say, and a block and a block 1, 9, c, h. Then the following
choices for the block containing 5 and 9 are:

5, 9, a, g ; 5, 9, a, h ; 5, 9, b, g ; 5, 9, b, h.

In each case we obtain a duplication 5, g or 9, h, a contradiction.

Remark. We did not only prove that G is 3-regular but also that each x ∈
X \Y is in exactly four 4-blocks in Q̂, one of which corresponds to the group
x is contained in.

Lemma 1.3.2. The three neighbours of a vertex in G are not in a common
block of Q̂.

Proof. Suppose the opposite. Let the neighbours of 1 be 5, 9, 13 and suppose
{2, 5, 9, 13} is a block of Q̂. W.l.o.g. we have the following 4-blocks which
contain 1:

1, 6, 10, 14 ; 1, 7, 11, 15 ; 1, 8, 12, 16
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and the following 4-blocks in Q̂ containing 2:

2, 5, 9, 13 ; 2, 6, 11, 16 ; 2, 7, 12, 14.

(Note: Once 2, 6, 11 is chosen, the last two blocks are forced.) The neighbours
of 2 in G are therefore 8, 10, 15. Since the three pairs 8, 10; 8, 15; 10, 15 are
not edges in G (G is triangle-free), they must appear in 4-blocks in Q̂. The
same statement is true for the pairs 5, 9; 5, 13; 9, 13. Apart from the 4-
blocks containing 1 resp. 2 (and the groups), there are 6 more 4-blocks in
Q̂, of which three contain 3 and three contain 4. Furthermore, no pair out
of 5, 9, 13 can be in a common 4-block with 3 or 4. Hence, the pairs 8, 10;
8, 15; 10, 15 must appear in 4-blocks of the following form:

3, 5, ·, · ; 3, ·, 9, · ; 3, ·, ·, 13

and
4, 5, ·, · ; 4, ·, 9, · ; 4, ·, ·, 13.

By the pigeonhole principle, two of the pairs 8, 10; 8, 15 and 10, 15 must
be in a common 4-block with one of the numbers 3 or 4 which yields a
duplication.

1.4 D

Suppose we have w.l.o.g. the following setup in G:

1

95 13 6 10

2

14

3

117 15 8 12

4

16

Suppose there are a1 4-blocks containing 1 together with one of the pairs
{6, 10} , {6, 14} , . . . , {12, 16} in Q̂, similarly for ai, i = 2, 3, 4. By Lemma
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1.3.2, 1 can appear with at most one pair out of a triple {6, 10, 14} , {7, 11, 15} , {8, 12, 16},
hence we have ai ≤ 3; thus

a1 + a2 + a3 + a4 ≤ 12.

On the other hand, everyone of the pairs {5, 9} , . . . , {12, 16} must appear in
a 4-block containing 1, 2, 3 or 4, thus

a1 + a2 + a3 + a4 ≥ 4 · 3 = 12,

hence a1 = a2 = a3 = a4 = 3. Suppose w.l.o.g. 1 is contained in the following
4-blocks:

• If 1, 6, 10, 15 is chosen, then 1, 7, 11, 16 and 1, 8, 12, 14 are forced.

Finally, consider the pair {5, 9}. It is contained in a 4-block in Q̂ and this
block must contain one of {2, 3, 4}. Suppose it is

2, 5, 9, x (where x = 15 or x = 16).

• If x = 15, then 2, 7, 11, · is forced (and 7, 11 repeated).

• If x = 16, then 2, 8, 12, · is forced (and 8, 12 repeated).

We conclude that the pair {5, 9} is in no 4-block of Q̂. But by Lemma 1.3.1,
there must be a 4-block containing it. This final contradiction completes the
proof.
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