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1 The 36 officers problem

Theorem 1.0.1. A transversal design T'D(6,4) does not exist (and hence
no pair of orthogonal Latin squares of order 6).

Let X be the set of points, |X| = 24, A the blocks, |A| =36, |B| =4 for
Be A, G ={G,Gy,Gs, Gy} the groups, |G;| = 6.
Set B =.AUG, then the design P = (X, B) satisfies:

| X| = 24, |B| = 40; 4 blocks have size 6; 36 blocks have size 4.
(A) Every element is in precisely 7 blocks.

(B) Any two distinct elements are in exactly one common block.

Let M = (m;;) be the 24 x 40-incidence matrix
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1.1 A

Consider the rows as vectors in F3’, and denote by V' the vector space gen-
erated by the rows r1,--- ,7m4. By (A), (B)

(ri,r;) =1 for any 4,7 (since 7=1 (mod 2)).

Lemma 1.1.1. The vector space V' C F3° has dim(V) < 20.



Proof. Let {ry,...,rq} beabasisof V. Now (r;, rj+ry) = (r;, )+ (ri,7%) =0
for all 7,4, k, hence r; + ro, 71 +173,...,71 +74 € V1, and they are clearly
independent. Hence

dim(V) > dim(V NV+) >d -1,
and therefore
dim(V) = 40 — dim(V*) < 40 — (dim(V) — 1).
This implies 2dim(V') < 41, thus dim(V') < 20. O

Since M has 24 rows and dim (V') < 20, there must be at least 4 linearly
independent relations between the rows. Such a relation corresponds to a
subset Y C X, such that |Y N B;| is even for i = 1,. .., 40.

Examples of such are: ¥ = G; UGy, Y = G UG3, G UGy, whose
characteristic vectors are linearly independent. The other three combinations
G;UGj, 1,7 > 2 are linearly dependent on these.

Hence there must be a set Y # G; U G; which corresponds to a linearly
dependent set of rows. Let us call such a set Y C X an even set:

|Y N B;| even for i =1,...,40.

Note that the complement of an even set is even. The goal is therefore to
show that such an even set cannot exist.

1.2 B

Let Y be an even set, where by taking complements we may assume |Y| < 12
and let @ = (Y, Y N B;) be the sub-design. Suppose |Y| = m < 12, and that
(@ has b; blocks of size i. Then

bo + ba + by + bg = 40, (1)

which is clear since the number of blocks did not change and the size of each
block in P is an even number at most 6. For the next equation, recall that
each element of X is contained in exactly seven blocks in P and this property
is carried over to (). Hence,

D Lees =) lLues,
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which gives
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and therefore

For the next equation, we double count the triples (z,y, B) in () where
{z,y} € B.

Z Z ﬂ{ff:y}gB = Z Z IL{:v,y}gBa

520 e (3) (ere(3) 20
yielding
| B|
()= 2 1
Bee {zyte(?)
and hence .
by -+ 6by + 15bg = % (3)
Subtracting half of (2) from (3) yields
4by + 12bg = w,
that is . )
bty = TS T, (@)

It follows that m > 8 and m = 0 (mod 4), and therefore m = 8 or m = 12.

Now note that if Y7, Y5 are even sets, then so is their symmetric difference
YiIAY, = (Y1UYs) \ (YiNYs) = (Y1 \ Y2) U (Y \ Y1) To see this, recall that
for i € [24], r; is the ith row of the incidence matrix of our original design P.
Then

0= E T + E T = E T + E i+ E T+ E T,
1€Y1 JEY: 1€Y1\Ya €Y1NYs J'eEY1INYs jEY2\Y1

where on the right hand side the two summands in the middle sum up to
zero. Hence we get
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Now suppose |Y| = 12. Then the following distributions of the points
among the 4 groups are the only possibilities (up to permutation of the

groups):
Y: 6420 ; 6222 ; 4440 ; 4422.



Note that 6 6 0 0 is excluded since then Y = G; U G, for some ¢ # j. Take
(G1 U Gy)AY, then we get even sets with distribution

Y': 0220 ; 0422 ; 2240 ; 2222

The first is impossible since we require m > 8 for every even set. Each of
the other cases yields m = 8.

Theorem 1.2.1 (conclusion). If an even set Y exists at all, then there is
one with |Y| = 8.

1.3 C

We will assume in the following that |Y'| = 8. It follows immediately from
equation (4) that in this case by = bg = 0. Inserting into (3) gives by = 28
and so by = 12 by (1). Hence no 3 elements are in a block Y N B, which
means

Y NG| =2 i=1,... 4

Let Q be the complementary design, corresponding to the even X \ Y,

~

Q=(X\Y,(X\Y)nB).

Q has 16 points, 4 blocks of size 4 of the form (X \ Y) N G;, 12 blocks of
size 4 in A (by = 12) and 24 blocks of size 2 in A (by = 28 and we already

counted the 4 groups).
Let Y ={a,b,c,...,h}, X\ Y ={1,2,...,16} and let the groups be

G1=11,2,3,4,a,b}, Gy=1{5,6,7,8,¢,d},

Gs =1{9,10,11,12,¢e, f}, G4 ={13,14,15,16,g,h}.

The main tool in studying Q is the graph G (V, E) with the following prop-
erties:

(i) V={1,2,...,16}.

(ii) ij € E iff {i,5} is a 2-block in Q.
We immediately see that |E| = 24.
Lemma 1.3.1. (a) G is 3-reqular.

(b) Every x € V has exactly one neighbour in each group G; which does not
contain x.



(c) G is triangle-free.

Proof. Choose x € V and suppose x is in a blocks of size 2 in Q and b blocks
of size 4. Then
a+b="1,

since z is contained in 7 blocks. Also for a fixed z we have

Z Z ﬂ{x,y}gB: Z Zﬂ{x,y}gBa

BeQyeX\Y yeX\Y BeQ
z€B  y#x y#r zEB

which gives

d(Bl-1n= > 1

B ex\y
reeg ! y#
and so
a+ 3b=15.

This gives a = 3 and b = 4; hence G is 3-regular.

Look at these 3 blocks B; € Bwithz € B;, |B;NY| =|B;N(X\Y)| = 2.
Suppose w.l.o.g. © € G;. Then the B;’s must contain in Y 2 points from
G, G, 2 points from G5, G4 and 2 from G3,G4. The respective elements
y € (X\Y)NDB;, y # x, must be in G4, G5 and G, respectively, which proves
(b).

To prove (c) let 1,5,9 be a triangle in G. In the original design P we have
a block 1,5, e, g, say, and a block and a block 1,9,¢, h. Then the following
choices for the block containing 5 and 9 are:

57 9’ a?g ; 57 97 a’h ; 57 9’ b?g ; 57 97 b? h'
In each case we obtain a duplication 5, g or 9, h, a contradiction. O

Remark. We did not only prove that G is 3-regular but also that each x €
X\ Y is in exactly four 4-blocks in ), one of which corresponds to the group
x is contained in.

Lemma 1.3.2. The three neighbours of a vertex in G are not in a common
block of Q.

Proof. Suppose the opposite. Let the neighbours of 1 be 5,9, 13 and suppose
{2,5,9,13} is a block of Q. W.lo.g. we have the following 4-blocks which
contain 1:

1,6,10,14 : 1,7,11,15 ; 1,8,12,16



and the following 4-blocks in Q containing 2:
2,5,9,13 ; 2,6,11,16 ; 2,7,12,14.

(Note: Once 2,6, 11 is chosen, the last two blocks are forced.) The neighbours
of 2 in GG are therefore 8,10, 15. Since the three pairs 8,10; 8,15; 10,15 are
not edges in G (G is triangle-free), they must appear in 4-blocks in Q. The
same statement is true for the pairs 5,9; 5,13; 9,13. Apart from the 4-
blocks containing 1 resp. 2 (and the groups), there are 6 more 4-blocks in
Q, of which three contain 3 and three contain 4. Furthermore, no pair out
of 5,9,13 can be in a common 4-block with 3 or 4. Hence, the pairs 8, 10;
8,15; 10,15 must appear in 4-blocks of the following form:

3757'7' ; 37.797' ) 37'7'713

and
4757'7' ; 4?'79a' ; 47'a'713'

By the pigeonhole principle, two of the pairs 8,10; 8,15 and 10,15 must
be in a common 4-block with one of the numbers 3 or 4 which yields a
duplication. O

1.4 D

Suppose we have w.l.o.g. the following setup in G:
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Suppose there are a; 4-blocks containing 1 together with one of the pairs
{6,10},{6,14},...,{12,16} in @, similarly for a;, i = 2,3,4. By Lemma

6



1 can appear with at most one pair out of a triple {6, 10,14} , {7, 11,15} , {8, 12, 16},
hence we have a; < 3; thus

a1+ as + ag + ag < 12.

On the other hand, everyone of the pairs {5,9},...,{12,16} must appear in
a 4-block containing 1, 2, 3 or 4, thus

a1+a2+a3+a424-3:12,

hence a; = a; = a3 = a4 = 3. Suppose w.l.o.g. 1 is contained in the following

4-blocks:

e If1,6,10,15 is chosen, then 1,7,11,16 and 1, 8,12, 14 are forced.

Finally, consider the pair {5,9}. It is contained in a 4-block in Q) and this
block must contain one of {2,3,4}. Suppose it is

2,5,9,z (where x = 15 or x = 16).
e If x =15, then 2,7,11,- is forced (and 7,11 repeated).
o If v =16, then 2, 8,12, - is forced (and 8,12 repeated).

We conclude that the pair {5,9} is in no 4-block of Q. But by Lemmam
there must be a 4-block containing it. This final contradiction completes the
proof. O
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