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CHAPTER 1

Designs

1. Opening remarks

If one does not wish to get too technical,1 one might say that a design is very regular
combinatorial object. While this may be description enough for many of you, perhaps some
others would prefer a more illustrative example to show that designs have been your best
friends throughout your life!2 Indeed, a well-known example of a design is a d-regular graph
G. Here, every edge has precisely two vertices, and every vertex is in exactly d edges, meaning
all vertices are covered the same number of times — highly regular indeed.

For those who are of a more applied persuasion, further motivation can be found in chess
tournaments. Given the popularity of the game,3 it is infeasible that all pairs of contestants
play against one another, so everyone can only play against some subset of the other players.
Clearly it would be unfair for one player to have to play 50 games to reach the final, while
his opponent might only play 12. We would prefer that everyone plays the same number of
games, which naturally leads us to regular graphs.

Why, then, should we study designs, when we have known about regular graphs all our
lives?2 As mathematicians, we appreciate that chess, a zero-sum two-player game of perfect
information, is trivial, and leave it for the easily-amused masses. We must turn to loftier
pursuits to challenge ourselves, and hence play more serious games, like three-player chess.4

Again, in a three-player chess tournament, one would like all players to play the same number
of games. However, this is not sufficient to ensure fairness. For instance, if two players were to
play all of their games together, they could collude to gain an advantage over their opponents.
To prevent this from occurring, we might further require that every pair of players play the
same number of games together as well.5 This requires a stronger design, thus motivating
this field of research.

Now that we are sufficiently motivated, we shall take a more mathematical tone, present-
ing the formal definition of a design and proving some initial results.

1Fear not, we shall get technical soon enough.
2As is customary, your life is deemed to have begun in Discrete Maths I, or in an equivalent course.
3Or sport? That is a debate for another course.
4At this point the lecturer displayed a three-player chessboard to the class, but the scribe did not have a

camera at hand to take a picture. However, the lack of image should not be a great impediment.
5The eagle-eyed reader may observe that this would require all pairs of players to play with each other, the

infeasibility of which served as the starting point for our discussion. However, there is no real contradiction, for
three-player chess is more of a niche game than vanilla chess, attracting much smaller crowds.

3
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2. An introduction to designs

2.1. Definitions and examples. We begin with the definition of a design, which is a collec-
tion of sets with strong regularity properties.

DEFINITION 1 (Design). Let v ≥ k ≥ t ≥ 0, and let λ ≥ 1 be integers. A t-(v, k, λ) design D is
a collection of blocks (k-sets) of elements from a ground set X satisfying

(1) |X| = v;
(2) every B ∈ D is a subset of X of size k (that is, B ∈

(
X
k

)
); and

(3) every t-set in X is contained in exactly λ blocks B ∈ D.

The key property is item (3) above, which shows that the design D covers all t-sets of
the ground set X exactly the same number of times, exhibiting the high-degree of regularity
that makes these constructions so applicable. In some sense, t is the most significant of the
parameters.

REMARK 1. Some further notational remarks.

(i) t is called the strength of the design, and a t-(v, k, λ) design D is sometimes referred
to as a t-design.

(ii) A design may contain multiple copies of a block, and in item (3) above, we count
the blocks containing a t-set with multiplicity. A simple design is a design without
repeated blocks, and can thus be thought of as a subset of the k-sets of X: D ⊆

(
X
k

)
.

Let us now consider some concrete examples.

EXAMPLE 1. Some simple examples of designs:

(1) The edges of a d-regular graph G on n vertices form a 1-(n, 2, d) design (on the set
of vertices, so X = V (G) and D = E(G)).

(2) A 0-(v, k, λ) design is simply any collection of λ k-subsets of a v-set.
(3) Trivial designs: C

(
X
k

)
, where every k-subset of X is taken C times, is, for v = |X|,

trivially a t-(v, k, λ) design, where λ = C
(
v−t
k−t
)
.

We are interested in non-trivial designs and so we will generally assume v > k > t. We
also assume t ≥ 2, since it is easy to see that a 1-(v, k, λ) design exists if and only if k divides
λv. A special class of designs are those with λ = 1.

DEFINITION 2 (Steiner Systems). A Steiner system is a t-(v, k, 1) design.

Steiner systems are, in some sense, the most restrictive of designs, since every t-set must
be covered exactly once. Hence, once we have a block B, no other k-set intersecting B in at
least t elements can be used, leaving very little space to manoeuver. Moreover, one can use
Steiner systems to build t-(v, k, λ) designs by taking λ copies of the Steiner system.

REMARK 2. Some sources use the notation S(t, k, v) for a Steiner system and Sλ(t, k, v) for
general designs.
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We now present some examples of non-trivial designs,6 which should interest you more
than those in Example 1.

EXAMPLE 2. Some less trivial examples of designs:

(1) A famous example of a design comes from projective geometry and is called the
Fano plane, which is a 2-(7, 3, 1) design. As we shall see, this can be generalised to
different designs.

(2) A 3-(8, 4, 1) design can be constructed from a 3-dimensional cube, with X being the
set of vertices and the blocks of D consisting of the vertex sets given by the 6 faces
of the cube, the 6 pairs of antipodal edges and 2 independent sets of size 4.

(3) A 3-(10, 4, 1) design: Let X = E(K5) and D consist of all copies of C4, K1,4, and
K3 +K2 (triangles with a disjoint edge).

This shows us that interesting designs can exist, which leads us to a treasure trove of
questions — how many designs are there? What structure does the typical design have?
What does the set of t-(v, k, λ) designs look like? However, the history of mathematics is
littered with cautionary tales7 of what happens when you leap before you look, and so there
is one fundamental question we must address before we can entertain thoughts of any others.

QUESTION 1. For what sets of parameters does a t-(v, k, λ) design exist? Can it be simple?
What about in the asymptotic setting, where t and k are fixed, λ ≥ λ0(t, k) and v ≥ v0(t, k, λ)?

For this first part of the course, we shall try to give some partial answers to this question.
This will consist both of positive results — where we construct infinite families of non-trivial
designs (as opposed to the seemingly esoteric constructions of Example 2) — and negative
results — where we prove that no such design can exist.

2.2. Arithmetic conditions. Recall that the handshake lemma implies that if G is d-regular
graph on n vertices, then nd must be even. This gives a divisibility condition showing that
even in our simplest setting, we do not always have 1-(n, 2, d) designs. We shall now extend
this result to cover general designs.

LEMMA 1. Let D be a t-(v, k, λ) design, and fix some 0 ≤ i ≤ t. Then every i-set I ∈
(
X
i

)
is

contained in exactly

λi :=
λ
(
v−i
t−i
)(

k−i
t−i
)

blocks. In particular, b := |D| = λ0 =
λ(vt)
(kt)

and r := λ1 =
λ(v−1

t−1)
(k−1
t−1)

.8 Furthermore, a t-(v, k, λ)

design is also an i-(v, k, λi) design for every 0 ≤ i ≤ t.

6Sketch your own illustrations of the examples in the margins to make up for the missing blackboard images.
7One specific example may have been cited in lecture, but any such reference was redacted during the

preparation of these publically-available notes.
8This parameter r, representing the number of blocks containing any fixed element, is called the replication

number.
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PROOF. Fix I ∈
(
X
i

)
. We are going to double-count pairs (T,B), where I ⊆ T ⊆ B, T ∈

(
X
t

)
and B ∈ D.

On the one hand, there are
(
v−i
t−i
)
t-sets T containing I. Since D is a t-(v, k, λ) design,

there are λ blocks containing T . Hence the total number of pairs is λ
(
v−i
t−i
)

On the other hand, for each block B containing I, there are
(
k−i
t−i
)

choices for T such that
I ⊆ T ⊆ B. Hence, if there are λI blocks containing I, the total number of pairs is λI

(
k−i
t−i
)
.

This gives λI =
λ(v−i

t−i)
(k−i
t−i)

, which depends only on |I| = i and is otherwise independent of I. �

Note that the proof is essentially the same argument used to prove the handshake lemma.
Since the values λi must all be integers, this immediately gives the following necessary corol-
lary.

COROLLARY 1 (Arithmetic Conditions). If a t-(v, k, λ) design exists, then for all 0 ≤ i ≤ t,

λ

(
v − i
t− i

)
≡ 0 (mod

(
k − i
t− i

)
)

Corollary 1 gives a set of necessary conditions that can be used to quickly rule out the
existence of t-(v, k, λ) designs for certain values of the parameters.

EXAMPLE 3. Steiner Triple Systems, i.e., 2-(v, 3, 1) designs. Corollary 1 gives

(i = 0)
(
v
2

)
≡ 0 (mod 3), and

(i = 1) v − 1 ≡ 0 (mod 2).

We can combine these two conditions to get v ≡ 1 or 3 (mod 6).

In the case of Steiner Triple Systems, it turns out that the arithmetic conditions of Corol-
lary 1 are not just necessary but sufficient as well; that is, whenever v ≡ 1 or 3 (mod 6), there
is a 2-(v, 3, 1) design. Do these arithmetic conditions continue to prove sufficient for larger
choices of parameters?

2.3. Size conditions on the ground set. The answer to the above question is, perhaps un-
surprisingly9, no. As we shall soon show, if the ground set X is too small, one cannot hope to
have any non-trivial designs.

PROPOSITION 1. Let D be a t-(v, k, λ) design, and suppose 0 ≤ j ≤ t. Then any J ∈
(
X
j

)
is

disjoint from the same number bj of blocks, and bj =
λ(v−j

k )
(v−t
k−t)

.

Note that j ≤ t is important here, as a design of strength t only provides control over
subsets of size up to t. In fact, the conclusion does not hold for larger values of j.

9Having earlier stated that we would devote this first part of the course to the existence of designs with certain
parameters, it is unlikely that we would immediately find some simple necessary and sufficient conditions.
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PROOF. Fix an arbitrary J ∈
(
X
j

)
and count the number of blocks that intersect J . By the

inclusion-exclusion formula, this number is equal to∑
x∈J
|{B ∈ D : x ∈ B}|−

∑
{x,y}⊆J

|{B ∈ D : {x, y} ⊆ B}|+
∑

{x,y,z}⊆J

|{B ∈ D : {x, y, z} ⊆ B}|−. . .

or, more succinctly, ∑
∅6=I⊆J

(−1)|I|−1 |{B ∈ D : I ⊆ B}| =
j∑
i=1

(−1)i−1

(
j

i

)
λi

and is thus independent of J (note that we have used Lemma 1 in above equality). The
number bj is therefore well defined.

To find what bj is, we double count pairs (J,B), where J ∈
(
X
j

)
, B ∈ D and B ∩ J = ∅.

There are
(
v
j

)
choices for J , each of which is disjoint from bj blocks, giving bj

(
v
j

)
such pairs.

On the other hand, there are b blocks, each disjoint from
(
v−k
j

)
j-sets.

Hence bj
(
v
j

)
= b
(
v−k
j

)
and so bj =

b(v−k
j )

(vj)
=

λ(vt)(
v−k
j )

(kt)(
v
j)

=
λ(v−j

k )
(v−t
k−t)

, as claimed. �

COROLLARY 2. A t-(v, k, λ) design D must be trivial if v ≤ k+ t. In particular, D = C
(
X
k

)
, where

C = λ

(v−t
k−t)

.

PROOF. Set j = v−k ≤ t and fix a j-set J ∈
(
X
j

)
. By Proposition 1, there are bj blocks disjoint

from J . However, since |X \ J | = v − j = k, there is a unique possible block B = X \ J that
is disjoint from J , and so it must appear bj times in D. Since this is true for every j-set, all of
the complements, namely

(
X
k

)
, appear bj times as blocks. Set C = bj . �

As mentioned earlier, Steiner systems, where λ = 1, are more restricted designs, and the
following result shows that much larger ground sets are needed to support them.

PROPOSITION 2 (Tits, 1964). In any non-trivial Steiner system (a t-(v, k, 1) design) we must
have v ≥ (t+ 1)(k − t+ 1).

PROOF. Homework. �

EXAMPLE 4. Imagine, if you can, that you have a friend, and that one day your friend bursts
into your room, panting, “[Your name], I need a 10-(72, 16, 1) design.” After catching her or
his breath, your friend needlessly10 adds, “It is a matter of life and death.”

Eager to help, you try to determine if a design with these parameters exists. Eleven quick
calculations11 show that the numbers λi, 0 ≤ i ≤ 10, are all integers, and so Corollary 1 does
not rule anything out.

Checking all possible collections of 16-subsets of a 72-element ground set to see if they give
the required design seems like a lot of work.12 Fortunately, we may also apply Proposition 2,
which shows we need v ≥ (t+ 1)(k − t+ 1) = 77. Hence, there is no 10-(72, 16, 1) design.

10After all, you already know of the many vital applications of designs.
11If we are going to pretend you have a friend, we might as well pretend you can compute speedily.
12More work, perhaps, than your fictional friend deserves.
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We close with another consequence of Proposition 1, showing how we can construct new
designs from old ones.

COROLLARY 3. If D is a t-(v, k, λ) design with v ≥ k + t, then D = {X \ B : B ∈ D} is also a
t-design.

Note that when we take the complements in D, we take them with the same multiplicity
as D. In particular, D is simple if and only if D is.

PROOF. A t-set T is covered by the complementary block X \ B ∈ D if and only if it was
disjoint from the block B ∈ D. By Proposition 1, each t-set is therefore covered by exactly bt
blocks in D, showing that D is indeed a t-design. �

3. Designs of strength two

3.1. A brief origin story. Historically speaking, much of the early interest in designs came
from statistics, with an eye towards creating fair but efficient experiments. Of greatest impor-
tance was, by far, the case t = 2, which we shall now study in greater detail.

REMARK 3. In this setting, non-trivial 2-designs are often called Balanced Incomplete Block
Designs (BIBD). Here the ‘incomplete’ refers to the fact that k < v, so the blocks do not contain
everything, while ‘balanced’ corresponds to λ, the fact that every pair is covered equally.

We of course have the arithmetic conditions from Corollary 1, which in the case t = 2

result in the conditions

(i = 0) b = λ0 = λv(v−1)
k(k−1) and

(i = 1) r = λ1 = λ(v−1)
k−1 ,

which are equivalent to r = λ(v−1)
k−1 and rv = bk. We shall hereafter assume that these

equalities hold, so that the necessary arithmetic conditions are satisfied, and see what other
conditions, if any, might be necessary.

3.2. Fisher’s inequality. The first result in this direction is Fisher’s inequality.13

PROPOSITION 3 (Fisher’s Inequality). In a non-trivial 2-(v, k, λ) design, we must have b ≥ v.

13The simple name of this inequality hides a somewhat complicated provenance — suffice it to say that this
inequality has been generalised and reproved by several very clever mathematicians since it first appeared. We
did not have time to get into this in lecture, so we settled for two observations instead.

(1) Sir Ronald Fisher, a British scientist, is regarded both as the greatest biologist since Darwin and the
father of modern statistics and experimental design, so he was likely a busy man. He was possibly,
though improbably, the person after whom both of Real Madrid’s Ronaldo’s were named.

(2) If you have previously taken our Extremal Combinatorics course, you will recall a Fisher’s Inequality
from there as well, although it seemed to state the opposite inequality. That is, in some sense that will
become clearer later, a dual version of our proposition here, and you should not get confused between
the two.
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Fisher’s Inequality plays an important role in our study for at least a couple of reasons.
The first is that it provides a new necessary condition, showing that the arithmetic conditions
are not sufficient by themselves. Indeed, Lemma 1 merely gives b ≥ λv(v−1)

k(k−1) which could, for
small λ and large k, allow for b < v. Secondly, and perhaps more significantly, the proof of
Fisher’s Inequality introduces the use of linear algebraic arguments. For that, we make the
following definition.

DEFINITION 3 (Incidence matrix). Given a design D, its incidence matrix A is a v × b {0, 1}-
matrix whose rows are indexed by X and columns by blocks in D, with

Ax,B =

{
0 if x /∈ B
1 if x ∈ B

.

We now demonstrate the utility of the incidence matrix by proving Fisher’s Inequality.

PROOF OF PROPOSITION 3. Let D be a 2-(v, k, λ) design, and let A be the corresponding inci-
dence matrix. Observe that rk(AAT ) ≤ rk(A) ≤ b, since A is a v × b matrix. Moreover, if D is
non-trivial, then v > k, which implies r > λ.

Note that AAT is a v × v matrix whose rows and columns are indexed by X. Given
x, y ∈ X, we have (AAT )x,y =

∑
B∈D

Ax,BAy,B = |{B ∈ D : x, y ∈ B}|. This number is equal to

λ if x 6= y and r if x = y. Hence, performing some elementary row and column operations,
we find

det(AAT ) = det


r λ λ . . . λ

λ r λ . . . λ

λ λ r . . . λ
...

...
...

. . .
...

λ λ λ . . . r

 = det


r λ− r λ− r . . . λ− r
λ r − λ 0 . . . 0

λ 0 r − λ . . . 0
...

...
...

. . .
...

λ 0 0 . . . r − λ



= det


r + (v − 1)λ 0 0 . . . 0

λ r − λ 0 . . . 0

λ 0 r − λ . . . 0
...

...
...

. . .
...

λ 0 0 . . . r − λ


= (r + (v − 1)λ)(r − λ)v−1 > 0.

Hence AAT is of full rank, and so v = rk(AAT ) ≤ b. �

Fisher’s Inequality gives a lower bound on the size of a non-trivial 2-design. Since in
applications to experimental design, larger designs are more expensive, special attention was
paid to the smallest possible designs, which are those attaining equality in Fisher’s Inequality.

DEFINITION 4 (Symmetric Designs). A 2-(v, k, λ) design is symmetric if b = v, i.e. we have
equality in Proposition 3.
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REMARK 4. Some initial remarks on symmetric designs:

(1) We have already encountered a symmetric design, namely the Fano plane of Exam-
ple 2. The Fano plane is a 2-(7, 3, 1) design with b = v = 7.

(2) The nomenclature is a little unfortunate; the incidence matrix of a symmetric design
is in general not a symmetric matrix.14

We shall now investigate necessary conditions for the existence of symmetric designs. Our
first, a fact that falls out of the proof of Proposition 3, is a rather curious algebraic/number
theoretic requirement.

COROLLARY 4. If v is even and a symmetric 2-(v, k, λ) design exists, then k−λ must be a square.

PROOF. Let D be such a design, with b = v. Since rv = bk, we also have r = k. Letting
A be the incidence matrix of D, we found in the proof of Proposition 3 that det(AAT ) =

(r + (v − 1)λ)(r − λ)r−1. Since r = λ(v−1)
k−1 , we have λ(v − 1) = r(k − 1), and so

det(AAT ) = (r + r(k − 1))(r − λ)v−1 = rk(r − λ)v−1 = k2(k − λ)v−1.

But, since A is a square matrix (as b = v), det(AAT ) = det(A)2, and so the right-hand side
must be a square. Hence (k − λ)v−1 should be a square, which, by virtue of v − 1 being odd,
implies that k − λ is a square. �

3.3. Dual designs. We shall now justify the name “symmetric designs” by showing these de-
signs have an extra level of regularity: every pair of blocks have the same number of elements
in common. This allows us to exchange the roles of elements and blocks, as we shall shortly
describe in greater detail.

With regards to the notation in what follows: we denote by I the identity matrix (i.e. 1s
on the diagonal, and 0s elsewhere), and by J we denote the all-one matrix (i.e. every entry
is 1). We shall omit the dimensions of these square matrices, which should be clear from
context. With this notation, for instance, our observation in the proof of Proposition 3 about
the entries of AAT can be summarised by AAT = (r − λ)I + λJ .15

PROPOSITION 4. Let D be a symmetric 2-(v, k, λ) design. Then, for B 6= B′ ∈ D,∣∣B ∩B′∣∣ = λ.

PROOF. Let A be the incidence matrix. Since every element is in r blocks, and r = k, we have

AJ = rJ = kJ.

On the other hand, since every block has k elements, we also have

JA = kJ.

14This may seem cruelly and needlessly confusing, but the next subsection will reveal the reasoning behind
this name.

15For symmetric designs, we will often substitute r = k in this equality.
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As we showed when proving Proposition 3, A is invertible, and so J = A−1(kJ), i.e., A−1J =

k−1J , and similarly JA−1 = k−1J . Now observe that ATA is a b× b matrix with

(ATA)B,B′ =
∑
x∈X

Ax,BAx,B′ =
∣∣B ∩B′∣∣

However,

ATA = (A−1A)ATA = A−1(AAT )A = A−1(λJ + (k − λ)I)A

= (λA−1J + (k − λ)A−1I)A = (λk−1J + (k − λ)A−1)A

= λJ + (k − λ)I.

All off-diagonal entries are thus equal to λ, and so |B ∩B′| = λ for every B 6= B′ ∈ D. �

COROLLARY 5 (Dual Designs). If D is a symmetric 2-(v, k, λ) design with incidence matrix A,
then AT is also the incidence matrix of a symmetric 2-(v, k, λ) design, called the dual design DT .

PROOF. The dual design DT will have as its ground set the blocks of the original design; that
is, X(DT ) = D. In particular, v(DT ) = |D| = b(D) = v.

The blocks of DT will thus be sets of blocks from D, which we define as follows. For each
x ∈ X(D), define a block Bx = {B ∈ D : x ∈ B}. Since each point is in r = k blocks, we have
k(DT ) = |Bx| = k for every x ∈ X(D).

For any two distinct blocks B 6= B′ ∈ D from the original design, we have

{B,B′} ⊆ Bx ⇔ x ∈ B ∩B′.

Hence, the pair {B,B′} is covered by |B ∩B′| = λ dual blocks Bx ∈ DT , and so D′ is indeed
a 2-(v, k, λ) design.

Finally, let A′ be the incidence matrix of DT . We have

A′B,Bx
= 1⇔ B ∈ Bx ⇔ x ∈ B ⇔ Ax,B = 1,

and so, identifying the indices x and Bx, we have A′ = AT . �

We finish with an explicit example of a dual design.

EXAMPLE 5. Let X = [4] and D = {A,B,C,D}, where A = {1, 2, 3}, B = {2, 3, 4}, C =

{1, 3, 4} and D = {1, 2, 4}. This is a 2-(4, 3, 2) design.
For the dual DT , we have X = D and DT = {B1, B2, B3, B4}, where B1 = {A,C,D},

B2 = {A,B,D}, B3 = {A,B,C} and B4 = {B,C,D}. This is also a 2-(4, 3, 2) design.

REMARK 5. In this case, D ∼= DT , since both designs are trivial designs
(
X
3

)
. A design that

is isomorphic16 to its dual is called self-dual, but not all symmetric designs are self-dual. For
instance, there are non-self-dual 2-(91, 10, 1) designs. These are the smallest non-self-dual
designs with λ = 1, but there may be smaller such designs for larger values of λ.

16Two designs are isomorphic if there is a bijection between their ground sets that preserves blocks; that is,
one design can be obtained from the other by relabelling the elements appropriately.
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4. Projective Planes

We now continue our search for symmetric 2-(v, k, λ) designs, which have b = v, the
minimum possible number of blocks. In this section we focus on the most restrictive, and
therefore perhaps most interesting case: Steiner systems, where λ = 1. Do symmetric Steiner
systems exist, and if so, how can we construct them?

Observe that in this setting we have v = b = v(v−1)
k(k−1) , which gives

v = k(k − 1) + 1 = (k − 1)2 + (k − 1) + 1 =: n2 + n+ 1,

where we set n := k − 1. As a result, r = k = n+ 1.

4.1. A geometric attempt. What properties does a symmetric 2-(v, k, 1) design have? For
starters, every pair of points must determine a unique block. This may sound terribly familiar
— indeed, replace ‘block’ with ‘line’ and a casual eavesdropper could be forgiven for assum-
ing that we were geometers. Can our geometric colleagues inspire the creation of suitable
designs?

Unfortunately, Euclidean geometry falls short of the task. A natural attempt would be to
take v points in R2, and take the blocks to be all the lines defined by these points. However,
we run into a problem: these lines will not be uniform.

THEOREM 1 (Sylvester–Gallai, 1944). For any set of N points in R2 that are not all collinear,
there is a line containing exactly two of the points.

Those of you well-versed in mathematical history17 may be surprised to see a Sylvester–
Gallai theorem: how could they have been coauthors, when Sylvester passed away fifteen
years prior to Gallai’s birth? Indeed, this was a question posed by Sylvester in 189318 and, in
1944, Tibor Gallai was one of the first19 to prove it.

SKETCH OF KELLY’S PROOF. Supposing the points do not all lie on a common line, choose the
pair (p0, `0) of a point and a line at minimum positive distance from one another. Bisecting
`0 with a perpendicular from p0, and assuming that `0 contains at least three points, we can
choose a half-line of `0 with at least two points. Let p1 and p2 be the closest and second-
closest points to p0 on this half-line. It then follows that the distance from p1 to the line
determined by p0 and p2 is less than the distance between p0 and `0, contradicting our choice
of (p0, `0). �

As a result, the only designs we would get from such a configuration of points and lines
are trivial ones, i.e., k = v or D =

(
[3]
2

)
. Fortunately, there are non-Euclidean geometries, and

rather than abandon such a promising idea, we shall instead seek a geometry better suited to
our purposes.

17Which, I hope, is all of you.
18The question was posed under the title, “Mathematical question 11851”: Sylvester appears to have been a

very curious man. He was also the one to first call graphs “graphs”, and so we owe him a great deal.
19In 1893 Woodall gave a proof later found to be incorrect. Melchior (correctly) proved a stronger result in

1941, which Erdős overlooked when he re-asked Sylvester’s question in 1943, prompting Gallai’s solution.
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4.2. An axiomatic approach. There is no shortage of geometries out there, and one could
go through them one by one to see if any fit the bill, but this would probably take more time
than we have. Instead, we make like pure mathematicians and provide a list of axioms that
will do the job. As combinatorialists, we shall assume that everything below is finite, without
explicitly saying so.

DEFINITION 5 (Projective Plane). A projective plane is a pair (P,L), where P is a set of points
and L is a set of lines, L ⊆ 2P , each line being a set of points, such that

(1) If p 6= q ∈ P , then there is a unique line containing both p and q.
(2) If L 6= L′ ∈ L, there is a unique point p ∈ L ∩ L′, i.e., |L ∩ L′| = 1.
(3) There are four points, no three of which lie on the same line.

REMARK 6. While the points and lines are defined as abstract sets, they bear more than a
striking resemblance to the points and lines we are used to seeing in geometry. In particular:

(i) Condition (2) implies that there are no parallel lines: any two lines intersect.
(ii) Condition (3) prevents degenerate cases, e.g., having all points on the only line, or

all lines through the only point.

Our next result shows that these axioms capture exactly the properties we need, as they
are in one-to-one correspondence with the symmetric 2-(v, k, 1) designs we are seeking.

PROPOSITION 5. Projective planes are precisely the non-trivial symmetric 2-(v, k, 1) designs.

PROOF. We first show that every non-trivial symmetric 2-(v, k, 1) design defines a projective
plane. Let D be such a design, and take P = X and L = D. Then (1) is satisfied by the
definition of a 2-(v, k, 1) design, while (2) follows from Proposition 4. To show that (3) is
satisfied, let B and B′ be two distinct blocks. There is a unique x ∈ B ∩B′; let u, v ∈ B \ {x}
and y, z ∈ B′ \ {x}.20 If there were some B′′ ∈ D such that |B′′ ∩ {u, v, y, z}| ≥ 3, then by the
pigeonhole principle, either |B′′ ∩B| ≥ 2 or |B′′ ∩B′| ≥ 2, contradicting (2). Hence (P,L) is
indeed a projective plane.

The reverse direction, that every projective plane corresponds to a non-trivial symmetric
2-(v, k, 1) design, is left as a homework exercise. �

DEFINITION 6. The parameter n = k − 1 is called the order of the projective plane.21

4.3. Affine planes. It just so happens that there is a “two-for-one” deal with projective
planes: once we have a projective plane, we get a related design called an affine plane for
free. We now briefly explain the connection between the two.

20Note that by non-triviality we have |B| = |B′| = k > t = 2.
21The axioms of Definition 5 make no reference to the parameter k, but Proposition 5 shows that they are

equivalent to 2-(v, k, 1) designs, so the parameter k is well-defined. Indeed, it is part of the aforementioned
homework exercise to prove that all lines in a projective plane have the same cardinality.
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Building affine planes from projective planes. Suppose we have a projective plane (P,L). Fix a
line L0 ∈ L, and delete the line from L and its points from P . This gives a new pair (P ′,L′),
where P ′ = P \ L0 and L′ = (L \ {L0})|P ′ . We then have the following properties:

(1) Every pair in P ′ is still contained in a unique line in L′.
(2) Every line in L′ has size n, since it loses its one point of intersection with L0.

This implies that (P ′,L′) corresponds to a 2-(n2, n, 1) design, and this design is called an affine
plane of order n.

Recovering projective planes from affine planes. The above process is invertible, which allows
us to recover the projective plane. Indeed, L′ can be partitioned into n+ 1 parallel classes: for
every p ∈ L0, take {L ∈ L \ {L0} : p ∈ L}. In the affine plane, lines in the same parallel class
are disjoint, while those in different classes intersect uniquely.

Add a new point for each parallel class and include it in every line of the class. This
ensures that every pair of lines now has a unique point of intersection. Finally, add a new line
at infinity containing the new points. This gives the original projective plane back, with L0

being the line at infinity, and its points being the new points that were added to each parallel
class.

Of course, we assumed above that our affine plane came from a projective plane to begin
with. However, one can define affine planes through an independent set of axioms, or, equiv-
alently,22 as 2-(n2, n, 1) designs. Any such design must admit a partition into parallel classes
as above, which then allows for the introduction of a line at infinity, thereby extending the
design to a projective plane.

4.4. Constructing projective planes. The observant reader will not have been hoodwinked
by the mathemagical sleight of hand we have just performed: we introduced projective
planes, and showed that they were equivalent to non-trivial symmetric 2-(v, k, 1) designs.
This does not solve our existential question, but merely translates it into another language:
do projective planes exist?

As it turns out, linear algebra giveth and linear algebra taketh away! While we have earlier
used it to rule out certain designs, we shall now use linear algebra to construct projective
planes.

CLAIM 1. Let F be a finite field, and let V = F3 be the three-dimensional vector space over F. If
P = {one-dimensional subspaces of V } and L = {two-dimensional subspaces of V }, then (P,L)

is a projective plane.

PROOF. We verify the axioms of Definition 5 one by one. For (1), we observe that two distinct
one-dimensional subspaces of V span a unique two-dimensional subspace. For (2), note that
any two distinct two-dimensional subspaces in a three-dimensional subspace must intersect in
a one-dimensional subspace. Finally, for (3), we may consider the one-dimensional subspaces

22This equivalence is not immediate, but is the analogue of Proposition 5 for affine planes.
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spanned by the vectors 1

0

0

 ,

0

1

0

 ,

0

0

1

 and

1

1

1

 .

Any three of these vectors are linearly independent, and hence there is no two-dimensional
subspace containing three of the one-dimensional subspaces. �

This shows that whenever we have a finite field, we have a corresponding projective plane
and hence, by Proposition 5, a non-trivial symmetric 2-(v, k, 1) design, as we desired.

REMARK 7. Some quick remarks regarding the construction.

(i) It is straightforward to check that the order of the projective plane is equal to the
order of the finite field.

(ii) Should one so wish, these projective planes can be defined using projective coordi-
nates.

(iii) As we have seen, we can derive an affine plane from a projective plane by removing
a line. However, these affine planes can be constructed more directly. Indeed, let
P = F2, and take L to be the set of all affine lines; that is,

L =
{
{~a+ γ~b : γ ∈ F} : ~a ∈ F2,~b ∈ F2 \ {~0}

}
.

In fact, we have known of this construction from the start of the course, even if we didn’t
know we knew it.

EXAMPLE 6. The projective plane over F2 is simply the Fano plane of Example 2, and the
above construction provides the long-awaited generalisation. For another example, the affine
plane over F3 is a 2-(9, 3, 1) design, and it is a colourful exercise to draw it.

We close with some important open problems regarding projective planes.

QUESTION 2 (Existence). Our above construction relied on the existence of a finite field, and
finite fields are known to exist if and only if the order is a prime power. Does this also hold
for projective planes? That is, do projective planes of order n exist if and only if n is a prime
power?

QUESTION 3 (Uniqueness). The above construction is known as the Desarguesian projective
plane. For non-prime prime power orders, other non-Desarguesian constructions are known,
but no such construction is known for prime orders. If p is a prime, must a projective plane
of order p be Desarguesian?

5. The Bruck–Ryser–Chowla Theorem

To answer Question 2, we shall need to develop some stronger necessary conditions for
the existence of designs, as our previous conditions are not sophisticated enough to detect
any differences between prime powers and other numbers. The stage is thus set for the
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Bruck–Ryser–Chowla Theorem,23 which remains to this date one of the most powerful general
non-existence results we have for combinatorial designs.

THEOREM 2 (Bruck–Ryser–Chowla, 1950). Let D be a non-trivial symmetric 2-(v, k, λ) design.

(1) If v is even, then k − λ is a square.
(2) If v is odd, then the equation

z2 = (k − λ)y2 + (−1)
v−1
2 λx2

has a solution (x, y, z) ∈ Z3 \ {(0, 0, 0)}.

5.1. Application to projective planes. Before we proceed with the proof of the Bruck–
Ryser–Chowla Theorem, we shall first see what it implies for projective planes (λ = 1). This
is given in the following corollary.

COROLLARY 6. For n ≡ 1, 2 (mod 4), a projective plane of order n can only exist if n is the sum
of two squares.

This may seem like a mystical condition — what do sums of squares have to do with
designs? — but it is a very useful condition, thanks to the following well-known fact.24

FACT 1. A natural number n is the sum of two squares if and only if every prime factor p of n
with p ≡ 3 (mod 4) appears with even multiplicity.

As a consequence, we can immediately rule out the existence of projective planes of order
n ∈ {6, 14, 21, 22, 30, 33, . . .}. To date, there has only been one order not covered by Corol-
lary 6 that has since been ruled out! In 1989, Lam, Thiel and Swiercz proved the nonexistence
of a projective plane of order 10, making heavy use of computational power in the process.25

The smallest open case is thus n = 12.

PROOF OF COROLLARY 6. For a projective plane of order n we have λ = 1, k − λ = n, and
v = n2 +n+ 1, which is always odd. Hence condition (2) of Theorem 2 applies, requiring the
quadratic equation

z2 = ny2 + (−1)
n(n+1)

2 x2

to have a non-trivial solution.
If n ≡ 0, 3 (mod 4), this becomes

z2 = ny2 + x2,

23This mathematical theorem is a little oddly named, in that its authors are not listed in alphabetical order,
the reason being that the theorem is the combination of results from two different papers. In 1949, Bruck and
Ryser proved the theorem in the case λ = 1, and a year Ryser and Chowla extended this to general designs. For
all his efforts, Ryser’s name unfortunately ended up in the middle, typically the least important position in fields
where the order of the authors’ names carries any significance.

24This fact appears to date back to Girard in 1625 and Fermat in 1640, which is hopefully long enough ago
for it to have established itself as common knowledge.

25Lam, who was Ryser’s doctoral student, notes that Ryser had advised him not to work on this problem, for
fear that it would be too difficult.
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which admits the non-trivial solutions (x, 0,±x). Hence in this case Theorem 2 does not give
us anything interesting.

However, if n ≡ 1, 2 (mod 4), then the equation is

z2 = ny2 − x2,

or, equivalent ny2 = x2 + z2. Thus ny2 is a sum of two squares, which by Fact 1 implies every
prime factor p of ny2 with p ≡ 3 (mod 4) appears with even multiplicity. This in turn implies
that every prime factor p of n with p ≡ 3 (mod 4) appears with even multiplicity, which is
equivalent to n being the sum of two squares. �

5.2. Number-theoretic preparations. Now that we have seen how effective Theorem 2 can
be, we are eager to proceed to its proof. First, though, we shall collect a few number-theoretic
results that shall be of use. The first is a classic theorem of Lagrange concerning the sums of
four squares.26

THEOREM 3 (Lagrange, 1770). Every natural number n ∈ N is expressible as the sum of four
squares.

We sadly lack the time to furnish a proof of this wonderful theorem here, but shall instead
settle for the following “proof by example.”

1 = 02 + 02 + 02 + 12,

2 = 02 + 02 + 12 + 12,

3 = 02 + 12 + 12 + 12, and

4 = 12 + 12 + 12 + 12.

If these examples are too small to convince you, here is a more random choice of n:

310 = 172 + 42 + 22 + 12.

Our next lemma follows trivially from the above result,27 but for our purposes, its proof
is more important than its statement, and so we shall prove it now.

LEMMA 2 (Euler’s Identity, 1748). If two natural numbers are the sums of sets of four squares,
then so is their product.

PROOF. Suppose n = a2
1 + a2

2 + a2
3 + a2

4 and m = s2
1 + s2

2 + s2
3 + s2

4. Define the matrix

H =


a1 a2 a3 a4

a2 −a1 a4 −a3

a3 −a4 −a1 a2

a4 a3 −a2 −a1

 ,

and observe that HHT = nI (in particular, we have detH 6= 0).

26This theorem may have been the inspiration behind the naming of a social network.
27However, Lemma 2 is used in the proof of Theorem 3, and so the lemma should be proven independently

to avoid circularity.



18 1. DESIGNS

Define a row vector ~s = (s1, s2, s3, s4) ∈ Z4. Then

~sHHT~sT = ~s(nI)~sT = n~s~sT = n(s2
1 + s2

2 + s2
3 + s2

4) = nm.

However, letting ~u = ~sH = (u1, u2, u3, u4) ∈ Z4, we have

~sHHT~sT = ~u~uT = u2
1 + u2

2 + u2
3 + u2

4.

Thus nm = u2
1 + u2

2 + u2
3 + u2

4 is the sum of four squares. �

5.3. Proof of the Theorem. Armed with these preliminaries, we now prove Theorem 2.

PROOF OF THEOREM 2. As case (1) is precisely Corollary 4, we need only prove case (2). We
first set up some notation for the proof, starting with n := k − λ. Supposing the existence
of a non-trivial symmetric 2-(v, k, λ) design D, let A be its incidence matrix, and recall that
AAT = (k − λ)I + λJ = nI + λJ . Let ~aj denote the jth column of A, where 1 ≤ j ≤ v.

We next define a set of linear forms. Given an arbitrary row vector ~w ∈ Qv, define

Lj(~w) = ~w~aj =

v∑
i=1

aijwi.

This gives rise to the following identity.

v∑
j=1

Lj(~w)2 = (L1(~w), L2(~w), . . . , Lv(~w))(L1(~w), L2(~w), . . . , Lv(~w))T

= (~wA)(~wA)T = ~wAAT ~wT = ~w(nI + λJ)~wT = n~w~wT + λ~wJ ~wT

Hence

(†)
v∑
j=1

Lj(~w)2 = n

v∑
i=1

w2
i + λω2,

where ω =
∑v

i=1wi. This identity is very close to what we require, as we have squares
with the coefficients n and λ appearing, but there are too many squares. Our goal is thus to
simplify this identity by removing the sums. We shall do so by introducing a clever change of
variables, inspired by Lemma 2, that will allow us to cancel all but one of the summands.28

By Theorem 3, n is the sum of four squares, so we may write n = a2
1 + a2

2 + a2
3 + a2

4. Given
these values, let H be the 4× 4 matrix from the proof of Lemma 2, which we shall use for the
change of variables. We now separate into two cases, based on v (mod 4).

28If you steal a glance at the page of calculations that lies in wait, you might wonder why we bother doing
this. Recall that our goal is to develop a necessary condition that we can use to rule out the existence of certain
designs. Given the large number of degrees of freedom in this identity, it would be very difficult to show the
impossibility of such an identity holding. By instead simplifying the identity to a quadratic Diophantine equation,
whose study dates back to antiquity, we make it much easier to apply the theorem.
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First suppose v ≡ 1 (mod 4). We define new variables ~u ∈ Qv by ~wM = ~u, where M is
the v × v block-diagonal matrix

M =


H

H
. . .

H

1

 .

Note that since H is invertible, M is as well, and so we have an invertible linear map.
This implies that the original variables {wi : 1 ≤ i ≤ v} are linear combinations of the new
variables {ui : 1 ≤ i ≤ v}.

Furthermore, for each `, 0 ≤ ` ≤ v−5
4 , we have

(w4`+1, w4`+2, w4`+3, w4`+4)H = (u4`+1, u4`+2, u4`+3, u4`+4).

Hence, as in the proof of Lemma 2, n(w2
4`+1 + . . .+w2

4`+4) = u2
4`+1 + . . .+ u2

4`+4. For the last
variable we simply have wv = uv.

Substituting these equations into (†), we find

(‡)
v∑
j=1

L2
j =

v−1∑
i=1

u2
i + nu2

v + λω2,

where the linear forms Lj and ω are linear combinations of the variables {wi : 1 ≤ i ≤ v},
and hence also of the variables {ui : 1 ≤ i ≤ v}.

Thus far the variables ui have remained arbitrary. We shall now fix values for ui in such a
way that Lj = ±uj , allowing us to cancel the corresponding summands on both sides of the
equality above.

More precisely, since L1 is a linear combination of the ui, we have L1 =
∑v

i=1 αiui for
some constants αi ∈ Q. If α1 6= 1, we shall set L1 = u1. Solving for u1, we find (1− α1)u1 =∑

i≥2 αiui, or u1 = 1
1−α1

∑
i≥2 αiui. If we have α1 = 1, then we instead set L1 = −u1, which

we can solve to obtain u1 = −1
2

∑
i≥2 αiui.

In either case, L2
1 = u2

1, and so we can cancel both summands in (‡) to obtain

v∑
j=2

L2
j =

v−1∑
i=2

u2
i + nu2

v + λω2,

where we can consider Lj and ω as linear combinations of {ui : 2 ≤ i ≤ v} (since u1 is now
also a linear combination of these variables).

Repeating this process, we can ensure Lj = ±uj for 1 ≤ j ≤ v − 1, in which case our
identity will have been reduced to L2

v = nu2
v+λω2, where Lv and ω are scalar multiples (over

Q) of uv. Multiplying through by a common denominator β, we find integral solutions to the
equation z2 = ny2 + λx2, where z = βLv, y = βuv and x = βω. Since uv can be taken to be
an arbitrary integer, this gives non-trivial integer solutions to the desired quadratic equation.
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The second case, when v ≡ 3 (mod 4), is handled very similarly. In this case, to get our
sets of four variables for the transformation, we instead introduce an artificial variable wv+1

to both sides of (†), thus starting with

(††)
v∑
j=1

L2
j + nw2

v+1 = n

v+1∑
i=1

w2
i + λω2,

where ω =
∑v

i=1wi. We now use the change of variables ~wM = ~u, where

M =


H

H
. . .

H

 .

As before, this transforms (††) into

(‡‡)
v∑
j=1

L2
j + nw2

v+1 =
v+1∑
i=1

u2
i + λω2,

where Lj , wv+1 and ω are all linear combinations of the variables {ui : 1 ≤ i ≤ v + 1}.
Using the same elimination process as in the first case, we can ensure Lj = ±uj for

1 ≤ j ≤ v, and then cancel the corresponding squares from (‡‡). This leaves us with the
equation nw2

v+1 = u2
v+1 + λω2, where wv+1 and ω are scalar multiples of uv+1. Multiplying

through by a common denominator β and rearranging, we obtain a solution to z2 = ny2−λx2

by taking z = βuv+1, y = βwv+1 and x = βω. Since uv+1 can be an arbitrary integer, this
again gives non-trivial integer solutions to the desired quadratic equation, completing the
proof of the theorem. �

6. Designs of strength t ≥ 3

As we have previously stated, much of the early interest in designs focussed on the case
t = 2, which was sufficient for most statistical applications. However, as the area developed,
researchers, and especially combinators, started investigating designs of higher strength.
Once again, the primary question was existential: for which parameters do such designs
exist, and how can we construct them?

In this section, we shall briefly survey a few results in this direction. We will assume
throughout that the arithmetic conditions of Corollary 1 hold, and shall seek additional nec-
essary conditions.

6.1. The Wilson–Petrenjuk Inequality. Recall that for 2-designs, Fisher’s Inequality (Propo-
sition 3) showed that the conditions of Corollary 1 are not sufficient, since a 2-(v, k, λ) design
has to have at least v blocks. For larger values of t, Lemma 1 shows that t-designs are also
2-designs, and so it follows that we still must have at least v blocks.

However, t-designs must satisfy much more stringent regularity conditions — rather than
just having all

(
v
2

)
pairs covered by the same number of blocks, they must have all

(
v
t

)
t-sets
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equally covered. One might expect that a much larger number of blocks should be needed to
guarantee this higher level of regularity, and our next result shows that this is indeed true.

THEOREM 4 (The Wilson–Petrenjuk29 Inequality). If t ≥ 2s and v ≥ k + s, then for any
t-(v, k, λ) design we must have b ≥

(
v
s

)
.

Note that Theorem 4 extends Fisher’s Inequality, which is the case s = 1. Now for a
spot of unsolicited advice, which is valuable both within and without mathematics: when
attempting to prove a generalisation, try generalising the proof. We proved Fisher’s Inequality
by considering the incidence matrix of the design, whose rows were indexed by elements of
the ground set. By taking an appropriate matrix product, we obtained a matrix corresponding
to pairs of elements, which was useful for a 2-design. Thus, in order to study t-designs, we
will need to start with a matrix indexed by larger subsets.

DEFINITION 7 (Higher incidence matrices). LetD be a t-(v, k, λ) design and fix some 0 ≤ i ≤ t.
The higher incidence matrix Ni is a

(
v
i

)
× b {0, 1}-matrix whose rows are indexed by the i-sets

I ∈
(
X
i

)
and columns by blocks B ∈ D, with

(Ni)I,B =

{
1 if I ⊆ B,
0 otherwise.

REMARK 8. Some quick observations:

(i) When i = 1, we recover the incidence matrix; that is, N1 = A.
(ii) Unsurprisingly, the higher incidence matrices are very regular structures. Each row

of Ni has exactly λi ones (by Lemma 1), while each column has exactly
(
k
i

)
ones.

An important class of higher incidence matrices are those for the trivial design D =
(
X
k

)
.

Note that Nt for this design encodes all the information regarding containing of t-sets inside
k-sets, and thus warrants its own piece of notation.

DEFINITION 8. Given t ≤ k, let Wt,k be the higher incidence matrix Nt for D =
(
X
k

)
.

We shall also require the following general result about designs, which is in the spirit of
results we proved in Section 2. Indeed, it can be proven using Proposition 1.

LEMMA 3. Let D be a t-(v, k, λ) design, and fix i, j ≥ 0 with i+j ≤ t. Then, for any i-set I ∈
(
X
i

)
and j-set J ∈

(
X
j

)
with I ∩ J = ∅, the number of blocks B ∈ D with I ⊆ B and B ∩ J = ∅ is

bi,j =
λ
(
v−i−j
k−i

)(
v−t
k−t
) .

29Once again we find some non-standard alphabetisation, which means it is time for another historical aside.
This theorem is again the combination of two separate papers: in 1968, Petrenjuk proved the case s = 2, and then
Ray-Chaudhuri and Wilson proved the general result in 1975. The fact that these papers came some thirty years
after Fisher’s Inequality (which was stated by Fisher in 1940) indicates the extent to which 2-designs dominated
the developmental stages of the field of combinatorial designs.
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Furthermore, for every 0 ≤ a ≤ t, we have the identity

λt−a =
a∑
i=0

(
a

i

)
bt−i,i.

PROOF. The proof is left as an exercise for the reader. �

We are now in position to prove the Wilson–Petrenjuk Inequality.

PROOF OF THEOREM 4. Since our desired lower bound depends only on v and s, and not on
t or λ, we may appeal to Lemma 1 and assume t = 2s. Now consider the higher incidence
matrix Ns, which is a

(
v
s

)
× b matrix and thus has rk(Ns) ≤ b.

Following our proof of Fisher’s Inequality, we define the matrix M = NsN
T
s . This is an(

v
s

)
×
(
v
s

)
matrix with rk(M) ≤ rk(Ns) ≤ b, and hence it suffices to show that M has full rank.

Unlike with Fisher’s Inequality, we will not be able to easily compute the determinant of this
matrix directly.30 Instead, we shall decompose M cleverly.

CLAIM 2. M =
s∑
i=0

bt−i,iW
T
i,sWi,s.

PROOF. Both the left- and right-hand sides of the equation are
(
v
s

)
×
(
v
s

)
matrices, indexed by(

X
s

)
. Given E,F ∈

(
X
s

)
, we have

ME,F = (NsN
T
s )E,F =

∑
B∈D

(Ns)E,B(Ns)F,B

= |{B ∈ D : E,F ⊆ B}| = |{B ∈ D : E ∪ F ⊆ B}|
= λ|E∪F | = λ|E|+|F |−|E∩F | = λt−|E∩F |,

where in the last line we used Lemma 1 together with the fact that |E|+ |F | = 2s = t.
On the other hand, we also have

(W T
i,sWi,s)E,F =

∑
I∈(Xi )

(Wi,s)I,E(Wi,s)I,F =

∣∣∣∣{I ∈ (Xi
)

: I ⊆ E ∩ F
}∣∣∣∣ =

(
|E ∩ F |

i

)
.

Thus the sum on the right-hand side evaluates to

s∑
i=0

bt−i,i(W
T
i,sWi,s)E,F =

s∑
i=0

(
|E ∩ F |

i

)
bt−i,i =

|E∩F |∑
i=0

(
|E ∩ F |

i

)
bt−i,i = λt−|E∩F |

where the last equality follows from Lemma 3. This proves the claim. �

We now use this decomposition of M to show the following.

CLAIM 3. M is positive definite.

30To understand why not, observe that the rows and columns of M are indexed by the s-sets
(
X
s

)
. When

s = 1, two s-sets are either the same or disjoint. For larger values of s, though, these s-sets can intersect in
different ways, which makes the matrix M somewhat more complicated.
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PROOF. We need to show that for every non-zero ~x,

~xTM~x =

s∑
i=0

bt−i,i~x
TW T

i,sWi,s~x > 0.

For all i, we have ~xTW T
i,sWi,s~x = (Wi,s~x)TWi,s~x = ‖Wi,s~x‖22 ≥ 0, and so M is certainly

positive semidefinite. Moreover, for i = s, Ws,s is the identity matrix, so bt−s,sW
T
s,sWs,s is

positive definite if bt−s,s is positive. Since t = 2s, bt−s,s = bs,s counts, for two disjoint s-sets,
the number of blocks that contain the first and are disjoint from the second. Fix the first s-set
and let B be any block containing it. Since we assume v ≥ k + s, there is an s-set disjoint
from B. By taking this to be the second s-set, we see that bs,s is indeed positive, and hence
M is positive definite. �

It follows that M has full rank,31 and hence
(
v
s

)
= rk(M) ≤ b, proving Theorem 4. �

REMARK 9. A t-design is called tight if it satisfies Theorem 4 with equality. When v = k + s,(
v
s

)
=
(
v
k

)
, so the trivial design

(
X
k

)
is tight. However, for s > 1 and v > k + s, there is only

one pair of tight designs known —- a Steiner system and its complement.

6.2. The existence of non-trivial t-designs. Theorem 4 provides an additional necessary
condition for t-designs, using the higher incidence matrices to show there are no small t-
designs. As we have seen previously, though, the same methods used to prove non-existence
results can also be employed in the construction of designs. In this instance, the negative and
positive results do not just share the same ingredients, but also the same author; as we shall
now see, Wilson used the higher incidence matrices to show that the necessary arithmetic
conditions of Corollary 1 are also sufficient for the existence of non-trivial t-designs.32

The key, though straightforward, observation, captured in the claim below, is that the
construction of t-designs is really an exercise in linear algebra.

CLAIM 4. A t-(v, k, λ) design exists if and only if there is some vector ~c ∈ Z(Xk )
≥0 such that

Wt,k~c = λ~1,

where ~1 ∈ Z(Xt )
≥0 is the all-one vector.

PROOF. Such vectors ~c can be thought of as characteristic vectors for collections of k-sets D,
where for every set K ∈

(
X
k

)
, cK denotes the number of times K appears in D. For every t-set

T ∈
(
X
t

)
, (Wt,k~c)T counts (with multiplicity) the number of k-sets in D containing T . Thus D

is a t-(v, k, λ) design if and only if Wt,k~c is the all-λ vector. �

Of course, things are not quite so simple. Vector spaces in linear algebra are defined over
fields, and if we allow vectors with rational coordinates, the matrix equation is easily seen to

31Indeed, were this not the case, there would be some non-zero vector ~x with M~x = ~0, but then ~xTM~x = 0.
32His paper was rather charmingly titled, “The necessary conditions for t-designs are sufficient for

something.”
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be satisfied by taking ~c =
(
v−t
k−t
)−1

λ~1 (where ~1 is now the all-one vector in Q(Xk )). The chal-
lenge, therefore, is to find a solution with non-negative integer coordinates.33 Meeting the
challenge and then some, Wilson showed that the generalisation of the necessary arithmetic
conditions of Corollary 1 is sufficient for integer solutions to matrix equations involving Wt,k.

THEOREM 5 (Wilson, 1973). Let k ≥ t ≥ 0 and v ≥ k + t be integers, and let ~a ∈ Z(Xt ). There
is an integral solution ~c ∈ Z(Xk ) to the equation Wt,k~c = ~a if and only if for every I ⊆ X with
|I| = i ≤ t, we have

(∗)
∑

T∈(Xt ):I⊆T

aT ≡ 0 (mod

(
k − i
t− i

)
).

In fact, Wilson gave necessary and sufficient conditions for all values of v ≥ k, not just
v ≥ k + t. When k ≤ v ≤ k + t, in addition to the arithmetic conditions above, one also
requires that the target vector ~a lies in the column space of Wt,k. The following lemma gives
information concerning Wt,k in this range.

LEMMA 4. If v ≤ k + t, the columns of Wt,k are linearly independent.

PROOF. This is yet another exercise for the reader. �

However, we know from Corollary 2 that any design with v ≤ k + t must be trivial, so
we shall focus on the case v ≥ k + t. We shall prove Theorem 5 in due course, but first
observe that the theorem allows vectors with coordinates in Z, not just Z≥0. These solutions
correspond to signed designs, where we in some sense allow blocks to be taken with negative
multiplicity.

Such flexibility is necessary, for, as shown by Theorem 4, the arithmetic conditions of
Corollary 1 alone are not sufficient for the existence of an actual design. However, as we now
prove, Theorem 5 implies they are sufficient when λ is sufficiently large.

COROLLARY 7. Given integers k ≥ t ≥ 0 and v ≥ k + t, there is some λ0 = λ0(v, k, t) such that
if λ ≥ λ0 satisfies λ

(
v−i
t−i
)
≡ 0 (mod

(
k−i
t−i
)
) for every 0 ≤ i ≤ t, then there is a t-(v, k, λ) design.

PROOF. Define

Λ =

{
λ : −

(
v − t
k − t

)
≤ λ < 0, and, for all 0 ≤ i ≤ t, λ

(
v − i
t− i

)
≡ 0 (mod

(
k − i
t− i

)
)

}
,

and note that Λ is finite, with its size bounded by v, k and t. For ~a = λ~1 and I ⊆ X, |I| = i ≤ t,
we have ∑

T∈(Xt ):I⊆T

aT = λ

∣∣∣∣{T ∈ (Xt
)

: I ⊆ T
}∣∣∣∣ = λ

(
v − i
t− i

)
≡ 0 (mod

(
k − i
t− i

)
),

33While you might think that there should not be such a great difference between rational and integral
solutions, numerous examples throughout mathematics show that this is sadly not so. For instance, Linear Pro-
gramming is solvable in polynomial time, while Integer Linear Programming is NP-complete.
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and hence the conditions of Theorem 5 are satisfied. It follows that there is some ~cλ ∈ Z(Xk )

with Wt,k~cλ = λ~1 for all λ ∈ Λ.
Take −N to be the most negative coordinate in all of these vectors, so that

−N = min
λ∈Λ,K∈(Xk )

(~cλ)K ,

and set λ0 = (N − 1)
(
v−t
k−t
)
.

If λ ≥ λ0 satisfies the arithmetic conditions, we can write λ = m
(
v−t
k−t
)
+λ′, where−

(
v−t
k−t
)
≤

λ′ < 0 (and hence m ≥ N). Since the arithmetic conditions are linear in λ, and are satisfied
by both λ and m

(
v−t
k−t
)
, it follows that λ′ ∈ Λ. Taking ~c = m~1 + ~cλ′ , we have

Wt,k~c = Wt,km~1 +Wt,k~cλ′ = m

(
v − t
k − t

)
~1 + λ′~1 = λ~1.

Moreover, for every K ∈
(
X
k

)
, we have cK = m + (~cλ′)K ≥ m − N ≥ 0, and so ~c ∈ Z(Xk )

≥0

corresponds to an actual t-(v, k, λ) design, as required. �

We conclude this section by proving the theorem of Wilson.

PROOF OF THEOREM 5. We first prove that the conditions in (∗) in the theorem are indeed
necessary for an integral solution to the matrix equation.

Suppose there is a solution ~c ∈ Z(Xk ) to the equation Wt,k~c = ~a, and fix some I ⊆ X with
|I| ≤ t. We shall evaluate the double sum

(†)
∑

T∈(Xt ),K∈(Xk )
I⊆T⊆K

cK .

By summing over T first, we find (†) is equal to∑
T∈(Xt )
I⊆T

∑
K∈(Xk )
T⊆K

cK =
∑
T∈(Xt )
I⊆T

(Wt,k~c)T =
∑
T∈(Xt )
I⊆T

aT ,

giving the left-hand side of (∗).
Summing over K first shows that (†) is also equal to∑

K∈(Xk )
I⊆K

∑
T∈(Xt )
I⊆T⊆K

cK =
∑

K∈(Xk )
I⊆K

cK
∑
T∈(Kt )
I⊆T

1 =

(
k − i
t− i

) ∑
K∈(Xk )
I⊆K

cK .

This gives

(‡)
∑
T∈(Xt )
I⊆T

aT =

(
k − i
t− i

) ∑
K∈(Xk )
I⊆K

cK .

Since ~c ∈ Z(Xk ), the sum in the right-hand side of (‡) must be an integer, and hence the
left-hand side is indeed divisible by

(
k−i
t−i
)
. Thus the equations (∗) in the statement of the

theorem are indeed necessary.
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We now proceed to show the equations (∗) are also sufficient. We use induction on t.

Base case: t = 0. This is trivial since,
(
X
0

)
= {∅}, and W0,k =

(
1 1 . . . 1

)
. So, given any

a∅ ∈ Z, ~c = (a∅, 0, . . . , 0)T is a solution.

Induction step: t ≥ 1. We prove the induction step via a second induction, this time on v.

v-Base case: v = k + t. By Lemma 4, the colums of Wt,k are linearly independent. Here we
have

(
v
k

)
columns in a

(
v
t

)
- dimensional space, but since v = k + t,

(
v
t

)
=
(
v
k

)
, and hence

the columns of Wt,k form a basis for Q(Xt ). Thus Wt,k is invertible, and so there is a unique

~c ∈ Q(Xk ) such that Wt,k~c = ~a.

We will show that in fact ~c ∈ Z(Xk ). First recall from (‡) that for I ⊆ X with |I| ≤ t,∑
T∈(Xt )
I⊆T

aT =

(
k − i
t− i

) ∑
K∈(Xk )
I⊆K

cK .

Since ~a satisfies (∗), the left-hand side is divisible by
(
k−i
t−i
)
, from which it follows that for

every I ⊆ X, |I| ≤ t, we have

(††)
∑

K∈(Xk )
I⊆K

cK ∈ Z.

We now need to show that each individual coordinate of ~c is integral. To that end, fix a
k-set K0 ∈

(
X
k

)
. Since v = k + t, there is a unique t-set T0 = X \ K0 disjoint from K0. We

count (with the rational multiplicities from ~c) the number of blocks disjoint from T0. Since
K0 is the only k-set disjoint from T0, this is simply cK0 . However, by inclusion-exclusion, we
obtain the equation

cK0 =
∑
I⊆T0

(−1)|I|
∑

K∈(Xk )
I⊆K

cK .
34

34To see why this equation holds, we can exchange the order of summation on the right-hand side - first sum
over K ∈

(
X
k

)
, and then over suitable I. The right-hand side is thus equal to

∑
K∈(Xk )

∑
I⊆K∩T0

(−1)|I|cK =
∑

K∈(Xk )

cK

|K∩T0|∑
i=0

(
|K ∩ T0|

i

)
(−1)i =

∑
K∩Xk

cK (1 + (−1))|K∩T0| =
∑

K∈Xk

cK · 0|K∩T0|,

where in the first inequality we group the possible sets I by their size i = |I|, and the second equality we appeal
to the Binomial Theorem. Hence the contribution of K to the right-hand side is zero, unless |K ∩ T0| = 0, in
which case it is cK . However, the only k-set disjoint from T0 is K0, and hence this double sum is equal to cK0 .

To understand why we refer to this as inclusion-exclusion, note that if cK ≡ 1, then on the left-hand side
we are simply counting the number of k-sets that are disjoint from T0. We obtain this by subtracting from the
collection of all k-sets (i.e., those that contain ∅) the number of k-sets that intersect T0. If, for x ∈ X, Dx is
the collection of k-sets that contain x, then what we want to subtract is |∪x∈T0Dx|, which can be found using
inclusion-exclusion. Taking this approach results in the double sum we have above.

Introducing the terms cK adds individual weights to the k-sets, but, as we have proved in this footnote, this
weighted inclusion-exclusion principle remains valid.
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By (††), it follows that each of the inner sums on the right-hand side is an integer, and hence
cK0 ∈ Z. Since K0 was arbitrary, we have ~c ∈ Z(Xk ), as required.

v-Induction step: v ≥ k + t+ 1, k ≥ t ≥ 1. We are given a vector ~a ∈ Z(Xt ) satisfying (∗), and
we wish to find ~c ∈ Z(Xk ) with Wt,k~c = ~a.

Fix an arbitrary x0 ∈ X. Our construction is in two stages. First we use k-sets containing
x0 to cover all t-sets containing x0 the right number of times. In the second stage, we use
k-sets avoiding x0 to ensure we also correctly cover the t-sets not containing x0. Note that this
second stage cannot affect the number of times a t-set containing x0 is covered, and hence
we will have Wt,k~c = ~a.

Stage I. We first solve the matrix equation for the t-sets containing x0, for which we need
only consider t-sets and k-sets containing x0. We may reduce the set-up to one where we can
apply induction by removing x0 from all the sets.

Let X ′ = X \{x0}, let T ′ = T \{x0} for all t-sets containing x0, and similarly for a k-set K
containing x0, let K ′ = K \{x0}. This gives a system with v′ = v−1, t′ = t−1 and k′ = k−1.

Define the target vector ~a′ ∈ Z(X
′

t′ ) by setting a′T ′ = aT ′∪{x0} for all T ′ ∈
(
X′

t′

)
.

We now verify that ~a′ satisfies (∗) in this reduced system. Indeed, for I ′ ⊆ X ′ with |I ′| ≤ t′,
we have ∑

T ′∈(X
′

t′ )
I′⊆T ′

a′T ′ =
∑

T ′∈(X
′

t′ )
I′⊆T ′

aT ′∪{x0} =
∑
T∈(Xt )

I′∪{x0}⊆T ′

aT .

Since |I ′ ∪ {x0}| ≤ t′ + 1 = t, and ~a satisfies (∗) for the original parameters, it follows that
this sum is divisible by

(k−(|I′|+1)
t−(|I′|+1)

)
. However, this is equal to

(k′−|I′|
t′−|I′|

)
, and so it follows that ~a′

satisfies (∗) in this reduced space as well.
By the (t-)induction hypothesis, the necessary conditions (∗) are also sufficient for an

integral solution, and so we find a vector ~c′ ∈ Z(X
′

k′ ) with Wt′,k′
~c′ = ~a′. Now define ~̃c ∈ Z(Xk )

by taking

c̃K =

{
c′K′ if x0 ∈ K,
0 otherwise.

Then, if T ∈
(
X
t

)
is a t-set containing x0, we have (Wt,k

~̃c)T = (Wt′,k′
~c′)T ′ = a′T ′ = aT , and so

~̃c satisfies the matrix equation for all t-sets containing x0.

Stage II. We now complete our solution by handling the t-sets that do not contain x0. We shall
only use k-sets also not containing x0, and hence will not disturb our solution from Stage I
for those t-sets that do contain x0.

Let ~̃a = Wt,k
~̃c, and define ~a′′ = ~a − ~̃a ∈ Z(Xt ). Since ~̃c ∈ Z(Xk ), the necessity of (∗) shows

that ~̃a satisfies those equations. By assumption, ~a does as well. Since the equations of (∗) are
linear in ~a, it follows that ~a′′ must also satisfy (∗).

By our work in Stage I, we have a′′T = 0 for any T ∈
(
X
t

)
with x0 ∈ T . Since we only wish

to use k-sets not containing x0, we may remove the element x0 from our ground set, instead
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working with t- and k-sets over X ′′ = X \ {x0}.35 We now have v′′ = v − 1, with k and t

unchanged.

Hence we can treat ~a′′ as a vector in Z(X
′′
t ). Since (∗) does not involve v, it follows that

~a′′ still satisfies the necessary conditions over this smaller ground set.36 Using the v-induction
hypothesis, we know that the necessary conditions are also sufficient for an integral solution,

and hence there is some ~c′′ ∈ Z(X
′′
k ) with W ′′t,k ~c′′ = ~a′′.

Extending by zeroes for any t- and k-sets containing x0, we can lift this solution back to
the full ground set X, so that ~c′′ ∈ Z(Xk ). Setting ~c = ~̃c+ ~c′′ ∈ Z(Xk ), we find

Wt,k~c = Wt,k
~̃c+Wt,k

~c′′ = ~̃a+ ~a′′ = ~̃a+
(
~a− ~̃a

)
= ~a,

giving the desired integral solution, completing the induction, and thus the proof. �

7. Hadamard Designs

This section was lectured by Ander Lamaison and Patrick Morris.

We now return to our earlier study of 2-designs, and shall in this section introduce an
important class of symmetric 2-designs.

7.1. Possible sizes of the ground set. We begin by observing that the parameter λ cannot
be too large.

LEMMA 5. Let D be a non-trivial symmetric 2-(v, k, λ) design. Then λ ≤ k − 2.

PROOF. For a symmetric design, we have v = b = λv(v−1)
k(k−1) , which can be solved to give

k(k− 1) = λ(v− 1). Since the design is non-trivial, v ≥ k+ t = k+ 2, and so v− 1 > k, which
implies λ < k − 1. �

We define n to be k − λ,37 noting that n ≥ 2. The next result restricts the possible size of
the ground set of a symmetric 2-design.

PROPOSITION 6. If a non-trivial symmetric 2-(v, k, λ) design exists, then

4n− 1 ≤ v ≤ n2 + n+ 1.

PROOF. We have

v − 1 =
k(k − 1)

λ
=

(n+ λ)(n+ λ− 1)

λ
=
n(n− 1)

λ
+ 2n− 1 + λ,

35This is the same ground set as X ′ from Stage I, but we use the different notation to emphasise that we are
now in Stage II.

36In projecting ~a′′ from Z(
X
t ) to Z(

X′′
t ), we do lose some coordinates of ~a′′, but a′′T = 0 for all those t-sets T

(which all contain x0), and hence the equations are unaffected.
37One reason to make this definition is that it will make several later calculations cleaner. Additionally, note

that n = b1,1 (as in Lemma 3), which perhaps gives some combinatorial reason behind the importance of this
parameter.
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and hence

v =
n(n− 1)

λ
+ 2n+ λ =: g(λ).

Taking derivates gives g′(λ) = 1 − n(n−1)
λ2

and g′′(λ) > 0 for λ > 0, and so g is convex on
(0,∞) with a minimum at λ =

√
n(n− 1). This implies that the minimum of g(λ) for λ ∈ N

is attained when λ ∈ {n − 1, n}, so v = g(λ) ≥ g(n) = 4n − 1. This gives the desired lower
bound. For the upper bound, observe that v ∈ N implies λ|n(n − 1). By convexity, g(λ) is
maximised when λ ∈ {1, n(n− 1)}, which shows v = g(λ) ≤ g(1) = n2 + n+ 1. �

The projective planes match the upper bound with equality, which shows that it cannot
be improved. We also give a special name to designs — should they exist — that attain the
lower bound.

DEFINITION 9 (Hadamard design). A Hadamard design is a symmetric 2-(4n− 1, 2n− 1, n− 1)

design.

REMARK 10. Some remarks on Proposition 6.

(i) The symmetric 2-designs come in complementary pairs, D and D (see Corollary 3).
If, from each pair, we choose the design with k ≤ 1

2v, then the projective planes
correspond to the sparsest possible symmetric designs, with their blocks spread out
over the maximum number of elements. On the other hand, Hadamard designs
represent the densest possible designs, with as few elements as can be.

(ii) If D is symmetric 2-(v, k, λ) design with v = 4n − 1, then D must be either a 2-
(4n − 1, 2n − 1, n − 1) design or its complement — no other values for k or λ are
possible. Indeed, the convexity of g(λ) implies that it is minimised over N if and
only if λ ∈ {n− 1, n}.

7.2. Hadamard matrices. As might be indicated by their names, Hadamard designs bear a
close connection to Hadamard matrices, which are useful in several mathematical fields.

DEFINITION 10 (Hadamard matrix). A Hadamard matrix is an m×m {−1, 1}-matrix H such
that HHT = mI.

Note that this is equivalent to requiring that the rows of the matrix be mutually orthogo-
nal. The same is true of its columns.

EXAMPLE 7. Some small examples of Hadamard matrices are

(
1
)
,

(
1 1

1 −1

)
and


1 1 1 1

1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

 .

Note that if H is a Hadamard matrix, then so too is any matrix obtained from H by per-
muting rows and/or columns, and multiplying any of the rows and columns by −1. Applying
these operations, we can transform a Hadamard matrix into one in a standard form.
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DEFINITION 11 (Normalised Hadamard matrix). Let H be a Hadamard matrix. We say H is
normalised if both the first row and column only have positive entries.

Our next result restricts the possible sizes of Hadamard matrices.

LEMMA 6. If an m×m Hadamard matrix exists, then either m ≤ 2 or m = 4n for some n ∈ N.

PROOF. Suppose m ≥ 3. If such a matrix H exists, we may assume that it is normalised,
with the first row only having positive entries. We can separate the columns into four types,
based on the signs of the entries in the second and third rows. By reordering the columns
appropriately, we may assume that columns of the same type

We may further reorder the columns so that they are arranged in four consecutive blocks
based on the entries in the second and third rows. The matrix thus takes the form

H =



+1 . . . +1

+1 . . . +1

+1 . . . +1

∗ . . . ∗
...

. . .
...

∗ . . . ∗︸ ︷︷ ︸
a

+1 . . . +1

+1 . . . +1

−1 . . . −1

∗ . . . ∗
...

. . .
...

∗ . . . ∗︸ ︷︷ ︸
b

+1 . . . +1

−1 . . . −1

+1 . . . +1

∗ . . . ∗
...

. . .
...

∗ . . . ∗︸ ︷︷ ︸
c

+1 . . . +1

−1 . . . −1

−1 . . . −1

∗ . . . ∗
...

. . .
...

∗ . . . ∗︸ ︷︷ ︸
d


,

where a, b, c and d are the number of columns of the four types respectively.
Since there are m columns in total, we must have a + b + c + d = m. The orthogonality

of the first two rows implies a + b − c − d = 0. Similarly, the orthogonality of the first and
third rows requires a− b+ c− d = 0, while the second and third rows give a− b− c+ d = 0.
Summing these four equations, we find 4a = m, and hence m must be divisible by 4. �

REMARK 11. Note that there was nothing special about the second and third rows here; we
could have used any two rows for the argument. Furthermore, one can solve the linear
equations to find a = b = c = d = m

4 .

7.3. Building Hadamard designs. We now demonstrate the connection between Hadamard
designs and Hadamard matrices.

PROPOSITION 7. A Hadamard design of order n (i.e., a 2-(4n− 1, 2n− 1, n− 1) design) exists if
and only if a 4n× 4n Hadamard matrix exists.

PROOF. First suppose we have a normalised 4n × 4n Hadamard matrix H, and let H ′ be
the (4n − 1) × (4n − 1) submatrix obtained after deleting the first row and column. Let
M = 1

2(H ′ + J), so that M is a {0, 1}-matrix: every +1 becomes a 1 and every −1 becomes a
0. We claim that M is the incidence matrix of a Hadamard design.

Indeed, every column of H must have had 2n positive entries to be orthogonal to the
positive first column. Since one of these entries was removed with the first row, it follows
that every column of M has exactly 2n − 1 ones, and hence k = 2n − 1. The proof of
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Lemma 6, together with Remark 11, shows that any two rows of H, apart from the first, must
share exactly n positive entries. Again, one is removed with the first column, and hence any
two rows of M have n − 1 ones in common. This therefore corresponds to a 2-design with
λ = n−1. Since H ′, and therefore M , has 4n−1 rows, we have v = 4n−1, giving the desired
Hadamard design.

For the other direction, we observe that the above argument is reversible. If M is the
incidence matrix of a 2-(4n− 1, 2n− 1, n− 1) design, let H ′ = 2M −J , and let H be obtained
by adding a column and row whose entries are all +1. It can be easily checked that H must
be a 4n× 4n Hadamard matrix. �

As in the case of projective planes, then, we have translated our question about the
existence of Hadamard designs into a question about the existence of Hadamard matrices.
Lemma 6 shows that a Hadamard matrix necessarily has size either 1, 2 or a multiple of 4. It
is conjectured that this is sufficient as well.

CONJECTURE 1. For every n ∈ N, a 4n× 4n Hadamard matrix exists.

This long-standing conjecture has attracted a lot of attention over the years, with numer-
ous constructions having been found, some of which we shall meet in the next subsection.
However, the conjecture itself remains wide open, with the first unknown case being that of
668× 668 Hadamard matrices.

7.4. Constructing Hadamard matrices. We shall now show how one may construct Hadamard
matrices of certain sizes, thereby resolving Conjecture 1 for some values of n, while also, via
Proposition 7, providing Hadamard designs of the appropriate orders. Our first construction
shows how one can build large Hadamard designs from smaller ones.

PROPOSITION 8. If m ×m and n × n Hadamard matrices exist, then an mn ×mn Hadamard
matrix also exists.

PROOF. We construct the larger matrix using the Kronecker product, which we now introduce.
Suppose A and B are m×m and n× n matrices respectively. The Kronecker product A⊗ B
is the mn×mn block matrix given bya1,1B . . . a1,mB

...
. . .

...
am,1B . . . am,mB

 .

The key properties of the Kronecker product are that (A⊗B)T = AT ⊗BT and, for an m×m
matrix C and an n× n matrix D, (A⊗B)(C ⊗D) = AC ⊗BD.

Given this, it follows that if A and B are Hadamard matrices, then so too is A⊗B, since

(A⊗B)(A⊗B)T = (A⊗B)(AT ⊗BT ) = AAT ⊗BBT = mIm ⊗ nIn = mnImn. �

We can already use this simple product to build an infinite sequence of Hadamard matri-
ces, a construction due to Sylvester.
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COROLLARY 8. There exists a 2m × 2m Hadamard matrix for all m ≥ 1.

PROOF. We have already seen a 2 × 2 Hadamard matrix H in Example 7. Starting with H,
repeatedly taking Kronecker products with H gives Hadamard matrices of size 2m for all
m ≥ 2. �

Hence, in order to prove Conjecture 1, it suffices to prove it for odd values of n, since
all other sizes can be obtained by taking a Kronecker product with the appropriate 2m × 2m

Hadamard matrix. This leaves us with the task of finding Hadamard matrices of order 12, 20,
28, 36, and so on. Our next result resolves some of these cases.

THEOREM 6 (Paley, 1933). A 4n×4n Hadamard matrix exists whenever 4n−1 is a prime power.

We first collect some useful information regarding squares in finite fields.

LEMMA 7. Let p be an odd prime, s ∈ N, and Q the set of non-zero squares in Fps . Then

(1) |Q| = 1
2(ps − 1),

(2) if ps ≡ 1 (mod 4), then for all x ∈ Fps \ {0}, x ∈ Q if and only if −x ∈ Q, and
(3) if ps ≡ 3 (mod 4), then for all x ∈ Fps \ {0}, x ∈ Q if and only if −x /∈ Q.

PROOF. We will use the algebraic fact that the multiplicative group of Fps is cyclic. In other
words, there is a generator α ∈ Fps \ {0} such that

{
α, α2, α3, . . . , αp

s−1
}

= Fps \ {0}. In
particular, the map m 7→ αm must be a bijection between [ps − 1] and Fps \ {0}.

By Fermat’s Little Theorem, αp
s−1 = 1. It follows that Q =

{
α2, α4, . . . , αp

s−1
}

, since for
any x ∈ Fps \ {0}, we have x = αm for some m ∈ [ps − 1], and thus x2 = α2m = α2m′ , where
2m′ ≡ 2m (mod ps − 1). Hence |Q| = 1

2(ps − 1).
For (2) and (3), observe that x2 = 1 is a quadratic polynomial, and hence can only have

the two roots 1 and −1 in Fps . Since (α
1
2

(ps−1))2 = αp
s−1 = 1, and α

1
2

(ps−1) 6= αp
s−1 = 1, we

must have α
1
2

(ps−1) = −1. Hence, if x = αm, then −x = αm+ 1
2

(ps−1).
When ps ≡ 1 (mod 4), 1

2(ps − 1) is even. It follows that either m and m + 1
2(ps − 1) are

both even, in which case both x and −x are in Q, or they are both odd, in which case neither
of x nor −x are in Q.

On the other hand, if ps ≡ 3 (mod 4), 1
2(ps − 1) is odd. Thus m and m + 1

2(ps − 1) have
opposite parity, and so exactly one of x and −x is in Q. �

We can now construct 4n× 4n Hadamard matrices whenever 4n− 1 is a prime power.

PROOF OF THEOREM 6. Suppose 4n − 1 = ps for some s ∈ N and p an odd prime. We will
construct a 2-(4n− 1, 2n− 1, n− 1) Hadamard design. By Proposition 7, the existence of the
claimed Hadamard matrix follows.

For the design, we take the ground set to be X = Fps . As in Lemma 7, let Q be the set of
non-zero squares; that is, Q =

{
y2 : y ∈ Fps \ {0}

}
. The blocks of the design will be all the

translates of Q, so D = {a+Q : a ∈ Fps}.
We have v = |X| = ps = 4n− 1, while Lemma 7 gives k = |B| = |Q| = 1

2(ps− 1) = 2n− 1

for every block B ∈ D. To show that this is indeed the desired design, we need to show
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that every pair of elements is contained in exactly n − 1 blocks, which is the content of the
following claim.

CLAIM 5. Every pair {x, x′} of distinct elements of X appears in exactly n− 1 blocks.

PROOF. Observe that x, x′ both appear in the block a + Q if and only if there are non-zero
squares q, q′ ∈ Q such that x− q = x′ − q′ = a. Hence the number of blocks containing both
x and x′ is equal to the number of pairs (q, q′) ∈ Q2 such that x− q = x′ − q′, since there can
be at most one value of q′ for each q, and x and q determine a uniquely.

Given such a pair (q, q′), we must have some u, u′ ∈ Fps \ {0} such that q = u2 and
q′ = (u′)2. In fact, we have four choices for u and u′, since we may replace u with −u, and
similarly for u′. Hence the number of blocks containing the pair {x, x′} is equal to

1

4

{
(u, u′) ∈ (Fps \ {0})2 : x− u2 = x′ − (u′)2

}
.

Rearranging this last equality, we must have x− x′ = (u′)2 − u2 = (u′ + u)(u′ − u). Every
solution gives, for some ` ∈ Fps \ {0}, a solution to the linear system

u′ + u = `, and

u′ − u = `−1(x− x′).

There is a unique solution (u, u′) for every choice of ` ∈ Fps \ {0}. However, we must
discount the solutions for which u = 0 or u′ = 0. If u = 0, then ` = u′ = `−1(x − x′),
and hence `2 = x − x′. On the other hand, if u′ = 0, then ` = u = −`−1(x − x′), and so
`2 = −(x − x′). Since ps = 4n − 1 ≡ 3 (mod 4), Lemma 7 implies that exactly one of these
cases holds. Hence we lose two possible values of `, since if ` is ruled out, then so too is −`.

This means the number of valid choices for `, and hence the number of pairs (u, u′) as
above, is ps − 3 = 4n− 4. Hence the number of blocks containing the pair {x, x′} is a quarter
of this quantity, or n− 1. �

This shows that these blocks give the needed design, finishing the proof of Theorem 6. �

REMARK 12. Some remarks on Theorem 6.

(i) This constructs 4n× 4n Hadamard matrices for n = 3, 7, 11 and 15, amongst others,
but not for, e.g., n = 19.

(ii) In the proof, it was crucial that the prime power ps be congruent to 3 modulo 4,
so that −1 was not a square. This ensured that every pair was covered exactly the
same number of times. This fails if ps ≡ 1 (mod 4), which of course it must, since
otherwise we would have a large Hadamard matrix whose size was not divisible by
four, contradicting Lemma 6.

(iii) However, the set of blocks obtained with ps ≡ 1 (mod 4) is still quite regular, and
very close to a design. Indeed, one can obtain a Paley design by cleverly defining
new blocks over a ground set that is twice as large, as shown in the van Lint–Wilson
textbook. This shows that there is a 4n× 4n Hadamard matrix whenver 2n− 1 is a
prime power. This covers, for instance, the case n = 19.
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8. The quest for simple designs

To close38 our chapter on the theory of combinatorial designs, we return to Question 1,
the fundamental question asking for which parameters we have a t-(n, k, λ) design. So far
we have seen a number of non-existence results, including Fisher’s Inequality (Proposition 3),
the Wilson–Petrenjuk Inequalities (Theorem 4) and the Bruck–Ryser–Chowla Theorem (The-
orem 2). We have also seen some constructions of designs, including the projective and affine
planes (Section 4) and the Hadamard designs (Section 7).

Our most general existence result, though, is Wilson’s theorem on general t-designs
(Corollary 7). Recall that Wilson showed for any v, k and t, and λ sufficiently large, the
necessary arithmetic conditions of Corollary 1 were also sufficient for the existence of a t-
(v, k, λ) design. However, the designs obtained are somewhat unsatisfactory, as they are far
from simple — we added many copies of the trivial design to construct these designs. Much
subsequent focus, therefore, fell on the problem of determining when simple designs could be
constructed, and we shall briefly39 survey some of the highlights of this line of research.

The first result we present is another theorem of Wilson, this time showing the sufficiency
of the arithmetic conditions for 2-designs.

THEOREM 7 (Wilson, 1975). For all integers k and λ, and for every v sufficiently large (v ≥
v0(k, λ)) that satisfies the arithmetic conditions of Corollary 1, a 2-(v, k, λ) design exists.

We will not get into the proof of Theorem 7 at all, save for the following brief remark.
When v is a prime power, the desired design is constructed algebraically, using the finite field
of order v. For the remaining values of v, there is no such finite field, and so a recursive
construction is used instead. This combines smaller designs to build the design on a ground
set of size v.

While this statement does not guarantee that the designs are simple, when we take λ = 1

(i.e., a Steiner system), the design is forced to be simple. This thus shows that the arithmetic
conditions are sufficient for 2-designs when v is large enough.40 We remark that in 1965,
Hanani had shown that apart from 2-(15, 5, 2) designs, which do not exist, the arithmetic
conditions are also sufficient for 2-(v, k, λ) designs with k ≤ 5.

This essentially settles the problem for 2-designs, which, as you will recall, were of pri-
mary importance in the early years of design theory. As interest grew in designs with larger
strengths, only a sporadic sequence of Steiner systems with t ≥ 4 were found. While some
simple designs with t ∈ {5, 6} were found, it was believed that there were no simple non-
trivial designs with t ≥ 7. However, the following remarkable result put paid to that miscon-
ception.

38Modulo next week’s lecture on Kirkman’s Schoolgirl Problem.
39Very, very, very indecently briefly, to be more accurate.
40Recall that Fisher’s Inequality shows that some such condition is necessary.
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THEOREM 8 (Teirlinck, 1987). For t ≥ 0, let

λ =
t∏

j=1

(
lcm(2, 3, . . . , j + 1) lcm

((
j

1

)
,

(
j

2

)
, ...,

(
j

bj/2c

)))
, 41

and suppose v ≥ t+ 1 is such that v ≡ t (mod λ). Then there is a simple t-(v, t+ 1, λ) design.

Teirlinck thus proved the existence of simple designs of any strength. In fact, Teirlinck
proved considerably more — he showed that the collection

(
X
t+1

)
of all (t + 1)-sets could be

partitioned into v−t
λ disjoint t-(v, t+ 1, λ) designs. This forces the designs to be simple and, if

v ≥ 2λ+ t, non-trivial.
This theorem was thus a sensation, but one drawback was that it only gives designs with

k = t+ 1, and also the parameter λ is very large in terms of t. What happens when we have
arbitrary (but fixed) t, k and v?

An important step was to loosen the requirements of a Steiner system. Rather than asking
for every t-set to be covered exactly once by a collection of k-sets, one could instead ask for
every t-set to be covered at least once. The natural extremal question is then how many k-sets
are needed to cover all the t-sets. Clearly a Steiner system, if it exists, would be optimal, and
in 1963, Erdős and Hanani conjectured that there was always a covering system whose size
was asymptotically close to that of a Steiner system.42

This conjecture was proven in 1985 by Rödl, using the famous Rödl Nibble, which is a
semi-random method. Essentially, he showed that one could construct asymptotically-optimal
covering families by choosing the k-sets randomly.43 This use of the probabilistic method in a
construction is in sharp contrast with the very careful and precise algebraic constructions we
have seen so far.

Very recently, Keevash made a hugely significant breakthrough, as shown below.

THEOREM 9 (Keevash, 2014+). Given k ≥ t ≥ 0, and v sufficiently large (v ≥ v0(k, t))
satisfying the arithmetic conditions of Corollary 1, a t-(v, k, 1) design exists.

Here he shows that for any t and k, the necessary arithmetic conditions are again suffi-
cient for the existence of Steiner systems, provided v is sufficiently large. This thus extends
Theorem 7 to designs of arbitrary strength.44 This theorem is a true tour de force, and we
cannot do the proof justice here, but we remark that Keevash combines both the algebraic
and probabilistic approaches to construct these designs. Roughly speaking, the idea is to first
set aside a very precise algebraic construction, which will have a great deal of symmetry and

41Observe that this choice of λ ensures that the arithmetic conditions are satisfied.
42Note that for a covering system, there are no arithmetic conditions, so these will exist even when a Steiner

system could not possibly exist. The conjecture states that there is a covering system that covers almost all t-sets
exactly once (and is thus asymptotically as efficient as possible).

43The name ”Nibble” comes from the fact that one cannot just choose all the sets in one go, but must select
them in small random batches, thus attacking the problem with small “bites” at a time.

44Note that we can obtain simple t-(v, k, λ) designs by combining randomly-permuted copies of the Steiner
system on the same ground set, as you did on Exercise Sheet 1.
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regularity. From the remaining k-sets, one then takes a large random construction, which
will be close to a Steiner system. However, there may be a few t-sets that are uncovered,
and a few that are covered too many times. We then use the algebraic construction to fix the
random sets (developing the methods of Theorem 5), until we obtain a true Steiner system.
Following the appearance of Keevash’s seminal paper, Glock, Kuhn, Lo and Osthus in 2016
published another proof of the same result, using purely combinatorial machinery.

It may seem that Theorem 9 completely settles the existence problem. While this is true
in the asymptotic sense, one should note that the theorem requires v to be “sufficiently large.”
As our non-existence results have shown, it is for small values of the parameters (be it v, b
or λ) that the arithmetic conditions may not be sufficient for the existence simple non-trivial
t-(v, k, λ) designs. Since applications may indeed require the parameters to be too small for
the general existence results to apply, the construction of small designs remains a problem of
interest.

9. Kirkman’s Schoolgirl Problem

This section was lectured by Simona Boyadzhiyska and Giulia Codenotti.

Recall that a Steiner triple system is a 2-(v, 3, 1)-design; that is, a collection of triples that
covers every pair exactly once. The divisibility conditions of Corollary 1 imply that if a Steiner
triple system exists, then v ≡ 1, 3 (mod 6), and we have heard that this necessary condition
is in fact sufficient as well. In this section we will further investigate the case v ≡ 3 (mod 6)

by considering Kirkman’s famous Schoolgirl Problem.45

QUESTION 4 (Kirkman’s Schoolgirl Problem, 1850). Suppose 15 schoolgirls walk to school in
five rows of three, seven days a week. Is it possible that no two girls walk together in the
same row twice?

We are thus interested in arrangements of 15 girls in blocks of three such that every pair
appears at most once. However, over the course of the seven days, each girl walks alongside
14 other girls, and hence we must have every pair of girls appearing exactly once. Thus what
Kirkman really asked for is a 2-(15, 3, 1)-design, with one additional property: the rows the
girls walk in each day must form a perfect matching of the ground set.

DEFINITION 12. A design whose blocks can be partitioned into perfect matchings (so-called
parallel classes) is called resolvable.

45Not only is this a fascinating name for a problem, but it has a fascinating history too! Kirkman — that is,
Reverend (!) Thomas Penyngton Kirkman — posed this question as a problem in “The Lady’s and Gentleman’s
Diary”, a recreational mathematics magazine that ran for some thirty years in the mid 1800’s. (What a time to
be alive! Nowadays people post videos on YouTube of their friends struggling with, “Your sister was half your age
when you were six. How old is she now that you are seventy?”) The problem attracted a fair amount of attention,
being worked on by the likes of Cayley and Sylvester, among others. There was also a priority dispute, with
Sylvester claiming Kirkman his ideas, while Kirkman himself was dismayed that it was this problem for which he
would be remembered, rather than the considerable paper he had written on combinatorics some years earlier.
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EXAMPLE 8. We encountered a resolvable design in the first exercise on the second homework
assignment.

We can now restate Kirkman’s Schoolgirl Problem in our new terminology.

QUESTION 5. Does a resolvable 2-(15, 3, 1) design exist?

As we shall soon see, such designs do indeed exist, and thus one may answer Kirkman’s
question in the affirmative.46 In fact, as it turns out, there are precisely 7 non-isomorphic
solutions. Their discovery led to greater interest in these special classes of designs, upon
which Kirkman’s name was bestowed.

DEFINITION 13. A resolvable 2-(v, 3, 1) design is called a Kirkman triple system and is denoted
by KTS(v)

Ever curious, we are led to the natural existence question.

QUESTION 6. For which v do we have a KTS(v)?

Since a Kirkman triple system is a Steiner triple system, we naturally require v ≡ 1, 3

(mod 6). However, the existence of even a single perfect matching further necessitates v ≡ 3

(mod 6). In fact, this trivially necessary condition turns out to also be sufficient. We will
return to this at the end of this section, but we first provide some constructions.

9.1. Constructions of Kirkman triple systems. We now present two rather different con-
structions of Kirkman triple systems: the first will be geometric in nature, while the second is
algebraic.

9.1.1. A Geometric construction. This construction bears some similarities to the affine spaces
discussed in Section 4, although we shall wok in higher dimensions. Indeed, consider the
n-dimensional space over F3, i.e. Fn3 . Let the set of points P = Fn3 form the ground set for our
design, and the set of lines

L =
{
{~a+ λ~b : λ ∈ F3} : ~a,~b ∈ Fn3 ,~b 6= 0

}
will be the blocks of the triple system.

CLAIM 6. L forms a resolvable 2-(3n, 3, 1) design over the ground set P .

PROOF. Note that P has 3n elements, and every block in L has size 3. Every pair ~x, ~y appears
together in a block: we may take ~a = ~x and ~b = ~y − ~x. Furthermore, this block is unique, as
two pairs (~a1,~b1) and (~a2,~b2) give the same block if and only if ~b2 = c~b1 and ~a2 = ~a1 + d~b1 for
some c, d ∈ F3. It therefore follows that L is a 2-(3n, 3, 1) design.

We will now show that L is resolvable. For each ~b ∈ P \ {~0}, consider the lines of slope ~b,

B~b =
{
{~a+ λ~b : λ ∈ F3} : ~a ∈ Fn3

}
.

46One may also answer it in the negative, but then one would be wrong.
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Note that, by our earlier remark, B~b = B
2~b

.
Fix some~b ∈ P \ {~0}, and let B1 and B2 be two distinct blocks in B~b, with Bi = {~ai +λ~b :

λ ∈ F3}. If there is some ~x ∈ B1 ∩ B2, then ~a1 + λ1
~b = ~x = ~a2 + λ2

~b, which implies
~a2 = ~a1 + (λ1 − λ2)~b, and thus B1 = B2, giving a contradiction. Hence any two blocks in B~b
are disjoint. Finally, for every ~x ∈ P , by taking ~a = ~x we have ~x ∈ {~a + λ~b : λ ∈ F3}. Thus
each B~b is a perfect matching and so L is indeed a Kirkman triple system. �

EXAMPLE 9. Pictured below is the case n = 2, which gives rise to a resolvable 2-(9, 3, 1) design,
or a KTS(9). This corresponds to Kirkman’s Schoolgirl Problem with just nine schoolgirls
walking for four days. The lines below depict the rows in which they should walk, while the
colours represent the different days.

FIGURE 1. A geometric construction of a KTS(9).

9.1.2. An algebraic construction. While the construction on Fn3 is certainly a nice one, it only
provides Kirkman triple systems over ground sets whose sizes are powers of three. In par-
ticular, it does not solve the original problem of Kirkman, which called for a design on 15

elements. Hence we now present an algebraic construction of a KTS(15).

DEFINITION 14. Consider Q and α1, ..., αn ∈ C. Then Q(α1, ..., αn) is the smallest subfield of
C that contains Q and α1, ..., αn.

EXAMPLE 10. Q(
√

2) = {c+ d
√

2 : c, d ∈ Q}, and Q(
√

2, 4,
√

8) = Q(
√

2).

Now consider K = Q(
√

2,
√

3,
√

5,
√

7). Note that, for example Q(
√

2,
√

3,
√

5,
√

7) ⊇
Q(
√

2,
√

3,
√

5) ⊇ Q(
√

2,
√

3) ⊇ Q(
√

2) ⊇ Q. Now let S = {2a13a25a37a4 : ai ∈ {0, 1}} \ {1}.
One can show that

• K contains exactly 15 subfields of the form Q(
√
d), one for each d ∈ S.

• For d1, d2, d3, d4 ∈ S with d1 6= d2, if Q(
√
d1,
√
d2) ⊆ Q(

√
d3,
√
d4), then Q(

√
d1,
√
d2) =

Q(
√
d3,
√
d4).

• Each field of the form Q(
√
d1,
√
d2) contains exactly 3 subfields of the form Q(

√
d),

namely Q(
√
d1),Q(

√
d2) and Q(

√
d1d2).

Now, how many fields Q(
√
d1,
√
d2) does K contain?

Note that if d1, d2 ∈ S, there is a unique d3 ∈ S such that
√
d1d2 = q

√
d3, for some q ∈ Q.

For d1, d2, d3 we have Q(
√
d1,
√
d2) = Q(

√
d1,
√
d3) = Q(

√
d2,
√
d3). So there are

(
15
2

)
/3 = 35
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such fields.
Define (X,D) byX = {Q(

√
d) : d ∈ S} andD =

{
{Q(
√
d1),Q(

√
d2),Q(

√
d1d2)} : d1, d2 ∈ S

}
(without multiplicity). This gives a 2-(15, 3, 1) design. Moreover, as shown by the table below,
this design happens to be resolvable.

Mon Tue Wed Thu Fri Sat Sun
2, 3, 6 2, 5, 10 2, 7, 14 2, 15, 30 2, 21, 42 2, 35, 70 2, 105, 210

5, 21, 105 3, 70, 210 3, 5, 15 3, 14, 42 3, 35, 105 3, 7, 21 3, 10, 30
7, 30, 210 6, 14, 21 6, 35, 210 5, 7, 35 5, 6, 30 5, 42, 210 5, 14, 70
10, 14, 35 7, 15, 105 10, 42, 105 6, 70, 105 7, 10, 70 6, 10, 15 6, 7, 42
15, 42, 70 30, 35, 42 21, 30, 70 10, 21, 210 14, 15, 210 14, 30, 105 15, 21, 35

Hence these sets of subfields {Q(
√
d1),Q(

√
d2),Q(

√
d1d2)} that correspond to the sub-

fields Q(
√
d1,
√
d2) produce a KTS(15), solving Kirkman’s Schoolgirl Problem. We would like

to point out that extending this construction to one using n distinct primes gives an STS(v)

for v = 2n − 1. However, this design is not always resolvable.

9.2. Kirkman triple systems — the necessary condition is sufficient. In the previous sub-
section we gave a couple of constructions of Kirkman triple systems for some specific pa-
rameters. The question of which values of v admitted a resolvable triple system attracted a
fair amount of attention. The aim of this section is to present Ray-Chaudhuri and Wilson’s
solution.47

THEOREM 10 (Ray-Chaudhuri–Wilson, 1971). A Kirkman triple system KTS(v) exists if and
only if v ≡ 3 (mod 6).

We have already observed the necessity of the condition v ≡ 3 (mod 6). It therefore
remains to construct a KTS(v) for every such v. Ray-Chaudhuri and Wilson achieved this
in two stages. The first stage consisted of various explicit constructions, like the previous
subsection. These were often algebraic in nature, using finite fields, and thus required v to be
related to a prime power. For instance, they explicitly constructed a KTS(2q + 1) whenever q
was a prime power, q ≡ 1 (mod 3).

These explicit constructions served as the basic building blocks. To obtain Kirkman triple
systems for all admissable values of v, the second stage of the proof consisted of a recursive
construction, building large Kirkman tirple systems out of smaller ones. This required a slight
generalisation of our notion of designs; given a set K, a t-(v,K, λ) is a collection of blocks
that covers every t-set of the v elements exactly λ times, but instead of being uniform, the
blocks can have any size that appears in K.

THEOREM 11. Suppose there exists a 2-(3n+1,K, 1) design, whereK = {k1, . . . , k`}, and further
that we have a KTS(2ki + 1) for every 1 ≤ i ≤ `. Then there exists a KTS(6n+ 3).

47In lecture, this presentation was accompanied by a number of wonderfully explanatory blackboard images,
which have regrettably not made their way into these notes. As a result of the lack of sketches, this subsection
might appear rather sketchy.
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The next result, which we shall not prove, shows the necessary generalised designs always
exist, while also giving some explicit Kirkman triple systems needed to start the recursion.

THEOREM 12. For every n ≥ 1, there is a 2-(3n+1, {4, 7, 10, 19}, 1) design. Moreover, there exist
a KTS(9), a KTS(15), a KTS(21) and a KTS(39).

Clearly, Theorems 11 and 12 together imply Theorem 10. We conclude this section by
giving the construction behind Theorem 11.

PROOF OF THEOREM 11. Let (X,B) be the 2-(3n + 1,K, 1) design. Recall that B is a collec-
tion of blocks, whose sizes belong to K = {k1, . . . , k`}, such that every pair of elements
in X is covered by a unique block. Our goal is to construct (S, T ), a KTS(6n + 3) on
S = (X × {1, 2}) ∪ {∞}. Note that |S| = 2 |X|+ 1 = 6n+ 3.

Now let B ∈ B be a block from the design, which must have some size ki ∈ K. Note that
S(B) = (B × {1, 2}) ∪ {∞} ⊆ S has size 2ki + 1, and hence we can take a KTS(2ki + 1) over
the elements in S(B), with blocks T (B). By naming elements in (S(B), T (B)) appropriately,
we can ensure that {(x, 1), (x, 2),∞} ∈ T (B) for every x ∈ B.

Finally, take T =
⋃
B∈B T (B). We claim that (S, T ) is a KTS(6n+ 3).

We have already seen that |S| = 6n + 3, and evidently every block in T contains ex-
actly three elements. We now show that (S, T ) is a Steiner triple system. To start, observe
that for every x ∈ X, the pairs {(x, 1), (x, 2)} and {(x, i),∞} are covered by the triples
{(x, 1), (x, 2),∞}. As this triple appears in every T (B) where x ∈ B, it follows that this
is the unique triple covering these pairs.

Now suppose we have the pair {(x, i), (y, j)} for some x 6= y ∈ B and i, j ∈ {1, 2}. By
virtue of the design properties of (X,B), there is a unique block B containing both x and y.
Hence the triples from T (B) are the only triples that could cover this pair. Since (S(B), T (B))

is a Kirkman triple system, there is a unique block T ∈ T (B) ⊆ T with {(x, i), (y, j)} ⊂ T .
Hence we have constructed a Steiner triple system, and it just remains to show that it is

resolvable. To do so, we shall have to partition its blocks into 3n+ 1 parallel classes.
Notice that for each B ∈ B, (S(B), T (B)} is a Kirkman triple system, and hence T (B)

can be partitioned into parallel classes. Each such parallel class can be labelled as Px(B),
where x ∈ B is the unique element such that {(x, 1), (x, 2),∞} ∈ Px(B).48 For x ∈ X, let
Px =

⋃
B3x Px(B).

Px clearly covers the elements ∞, (x, 1) and (x, 2), since {(x, 1), (x, 2),∞} ∈ Px(B) for
every block B containing x. For any other element (y, i), there is a unique block B containing
both x and y, and then (y, i) is covered by a unique block in Px(B).

It follows that each Px is indeed a parallel class, and hence {Px : x ∈ X} shows that our
Steiner triple system is resolvable, and is thus the desired Kirkman triple system. �

48The element ∞ must belong to a unique block in Px(B), and the elements of S(B) were named so that
the blocks containing∞ in T (B) were all of the form {(y, 1), (y, 2),∞} for y ∈ B.
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