The Lemma. For each x € C%} : |p(x)| > |p(Re(x))].

The Remark. For eachy € (Cﬁ:rl, ?;11 Re(y;) = 1,t € Ryy : cap(p) < w.

The Theorem. Letp € Ry [z1,...,x,] be H-stable and homogeneous of degree n. Then p' =

or p' is H-stable and homogeneous of degree n — 1. Furthermore,

cap(p’) > cap(p)g(k), where k := deg, (p).

Three things to show
1. p’ is homogeneous of degree n — 1 if p’ # 0V

2. If p’ # 0, then p’ H-stable
3. cap(p’) = cap(p)g(k)

e For H-stability, we need to show that p’ has no roots in C ;.

— Equivalently, as soon as some y € C,  is a root of p/, then p’ = 0.

n

— It suffices to show this for those y with [ | j:_ll Re(y;) = 1 only:

- As p/ is homogeneous, p'(y) = 0 <= p'(\y) = A"/ (y) =0, A\ € R, ;.

e For the capacity, let’s look at the definition again:
— cap(p') == inf{p/(y) : y € RT7", [[Z) Re(y;) = 1}
— If we succeed in showing p/(y) > cap(p)g(k) holds forall y € ]R’f;l, 7;11 Re(y;) =
1, we may deduce the desired statement directly.

Therefore, we will go through all y € C’}rjrl, H;L:1 Re(y;) = 1 and show these two properties:
e (Property A) If y is a root of p/, then p’ =0
e (Property B) If y € R}, then p/(y) > cap(p)g(k), where k = deg,, p().

We can then look at the values of p(y, 0), p(y,t),t > 0

e categorise these y in the following way:

deg, p(y, 1)
<1 | >2
p(y,0) =0 || Case 1&2 | Case 1
p(y,0) #0 Case2 | Case3




1 Case 1: p(y,0) =0

We saw in our Lemma that Vo € C7} : |p(x)| > |p(Re(x))|. This has two applications here:

Lemma Case 1
0 < [p(Re(y),0)] < |p(y,0)] "= 0= p(Re(y),0) =0

Lemma

P(Re(y),t) < [p(Re(y),t)] < [p(y, 1)

We can say the following about p':
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Now we can use what we know and put it all together:
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Remark
cap(p) <

e To prove Property A:

Py)=0=[p'(y)| =0=p'(Re(y)) <0

— As all the coefficients of p are non-negative, so are all the coefficients of p’.

— Butas y € C, this is only possible if p’ = 0.

e To prove Property B: Assume y € Rijrl, then

P'(y) = 1p'(y)] because p only has real positive coefficients
> cap(p) due to our result above
> cap(p)g(k) as0<g(k) <1
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2 Case 2: deg, p(y,t) <1

Although the criterion for this case is very different, it works very similarly.

By our Lemma, p(Re(y),t) < |p(y,t)|.

This implies that p(Re(y), t) has degree at most 1 in ¢ as well.

Recall that p’ retains exactly the terms that are linear in x,,

P(y) = lim 280 )

t—o0 t

p(Re(y), t)

P'(Re(y)) = lim (6)

t—o00

e Now we can put it together in the exact same way:
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This proves property A and B exactly as in Case 1.



3 Case 3: p(y,0) # 0,deg; p(y, t) > 2

e Fixing the y cannot increase the degree of t, so k := deg, p(z) > 2

e We can rewrite our homogeneous polynomial p(y, t) using some ay, ..., a; € C:
k
p(yt) = ply,0) JJ(1 + ait) )
i=1

e We may read off the linear terms of the derivative, determine p’(y) directly:
P'(y) =py,0)>  a ®)

o As we know the degree of ¢ is at least 2, not all a; can be zero.

The Claim. Ifa; # 0, then ai_l is a non-negative linear real combination of y1, . . ., Yn—1-
We will explain this claim later, look at its consequences first:
e yc Ciq,s0Re(y;) >0
e Then the Claim implies: If a; # 0, then Re(a;) > 0.
o We know that not all a; are zero = Zle a; # 0 because its real part is strictly positive.
e p(y,0) is nonzero by the case we are in
e Therefore, p'(y) = p(y,0) Zle a; # 0 and we showed Property A v/
The second thing to show is that if y € ]R’};l, ;l:_ll Re(y;) = 1 then p/(y) > cap(p)g(k).

e By the claim, if all entries of y are positive reals, all nonzero a; are positive reals.

Zk p(y,0) 1
= a; € R++ = /( ) = % € R++
i=1 Py > i1 @i

o This allows us to cleverly set a positive real ¢:

k p(y,0)

= c
k-1 p'(y) o
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We now play around with the arithmetic-geometric mean inequality to get a helpful information:
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This gives us precisely the inequality p’(y) > cap(p)g(k) we were looking for.

We are done with the proof, if our claim about the a; holds. Let’s prove that claim:



The Claim. If a; # 0, then a;l is a non-negative linear real combination of y1, . .., Yn—1-

Proof. We use the Farkas lemma.

e Maybe you remember it from a course on Discrete Geometry or Linear Programming

e Comes in many different shapes and forms to achieve different goals

— determine whether a polyhedron lies in a certain halfspace
— find a hyperplane separating a point from a polyhedron

— less geometrical: determine whether a set of inequalities has a non-negative solution.

Farkas Lemma. Let A € R"*% b € R". Exactly one of the following holds:

1.

2.

Ax = b,z > 0 has a solution.

TA > 0,zb < 0 has a solution.

We fix r = 2,s =n — 1, an arbitrary 1 < 4 < n — 1 such that a; # 0 and:

= Re(y1), ..., Re(yn—1) _ Re(a; ')
Im(y1), ..., Im(yp-1) Im(a; ")
Then the first alternative of the Farkas lemma states that the vector b may be displayed as a

non-negative real linear combination of the columns of the matrix A. This is exactly what

we claim: If a; is nonzero, then its inverse is a non-negative real linear combination of the

Y, - Yn—1.

Therefore, disproving the second alternative proves the claim. We assume the second alter-

native holds for some Z = (¢, d). If we can lead this to a contradiction, we are done.

We may assume that even A > 0 holds strictly, otherwise we could just add a small € to ¢

as all Re(y;) are strictly positive.
We want a contradiction to the H-stability of p: Find z € C'} , that is a root of p.

We introduce \ := ¢ — i - d and look at the vector z := A(y, —a; '). Then z € C"
- Re(\y;) = cRe(y;) + dIm(y;) is the j-th entry of ZA > 0.
- Re(A(—a; 1)) = —Re(\a; ') = —cRe(a; ) — dIm(a; ') = —zb > 0.

On the other hand, as p is homogeneous, p(z) = 0:
k
p(z) = \p(y, —a; t) = H (1+aj(—a; 1) =0 (10)

where in the last step, for j = 7, the product collapses.



