The Lemma. For each $x \in \mathbb{C}^n_+$: $|p(x)| \ge |p(\operatorname{Re}(x))|$.

The Remark. For each $y \in \mathbb{C}^{n-1}_{++}, \prod_{i=1}^{n-1} \operatorname{Re}(y_i) = 1, t \in \mathbb{R}_{++} : \operatorname{cap}(p) \leq \frac{p(\operatorname{Re}(y),t)}{t}.$

The Theorem. Let $p \in \mathbb{R}_+[x_1, ..., x_n]$ be H-stable and homogeneous of degree n. Then $p' \equiv 0$ or p' is H-stable and homogeneous of degree n - 1. Furthermore,

 $\operatorname{cap}(p') \ge \operatorname{cap}(p)g(k), \text{ where } k := \operatorname{deg}_{x_n}(p).$

Three things to show

- 1. p' is homogeneous of degree n-1 if $p' \not\equiv 0 \checkmark$
- 2. If $p' \neq 0$, then p' H-stable
- 3. $\operatorname{cap}(p') \ge \operatorname{cap}(p)g(k)$
- For H-stability, we need to show that p' has no roots in \mathbb{C}_{++} .
 - Equivalently, as soon as some $y \in \mathbb{C}_{++}$ is a root of p', then $p' \equiv 0$.
 - It suffices to show this for those y with $\prod_{j=1}^{n-1} \operatorname{Re}(y_j) = 1$ only:
 - As p' is homogeneous, $p'(y) = 0 \iff p'(\lambda y) = \lambda^{n-1}p'(y) = 0, \lambda \in \mathbb{R}_{++}$
- For the capacity, let's look at the definition again:
 - cap $(p') := \inf\{p'(y) : y \in \mathbb{R}^{n-1}_{++}, \prod_{j=1}^{n-1} \operatorname{Re}(y_j) = 1\}$
 - If we succeed in showing $p'(y) \ge \operatorname{cap}(p)g(k)$ holds for all $y \in \mathbb{R}^{n-1}_{++}, \prod_{j=1}^{n-1} \operatorname{Re}(y_j) = 1$, we may deduce the desired statement directly.

Therefore, we will go through all $y \in \mathbb{C}_{++}^{n-1}$, $\prod_{j=1}^{n} \operatorname{Re}(y_j) = 1$ and show these two properties:

- (Property A) If y is a root of p', then $p' \equiv 0$
- (Property B) If $y \in \mathbb{R}^{n-1}_{++}$, then $p'(y) \ge \operatorname{cap}(p)g(k)$, where $k = \deg_{x_n} p(x)$.

We can then look at the values of p(y, 0), p(y, t), t > 0

• categorise these y in the following way:

	$\deg_t p(y,t)$	
	≤ 1	≥ 2
p(y,0) = 0	Case 1&2	Case 1
$p(y,0) \neq 0$	Case 2	Case 3

1 Case 1: p(y, 0) = 0

We saw in our Lemma that $\forall x \in \mathbb{C}^n_+ : |p(x)| \ge |p(\operatorname{Re}(x))|$. This has two applications here:

$$0 \le |p(\operatorname{Re}(y), 0)| \stackrel{\text{Lemma}}{\le} |p(y, 0)| \stackrel{\text{Case 1}}{=} 0 \Rightarrow p(\operatorname{Re}(y), 0) = 0$$
(1)

$$p(\operatorname{Re}(y),t) \le |p(\operatorname{Re}(y),t)| \stackrel{\text{Lemma}}{\le} |p(y,t)|$$
(2)

We can say the following about p':

$$p'(y) \stackrel{\text{Def }p'}{=} \lim_{t \searrow 0} \frac{p(y,t) - p(y,0)}{t} \stackrel{\text{Case } 1}{=} \lim_{t \searrow 0} \frac{p(y,t)}{t}$$
(3)

$$p'(\operatorname{Re}(y)) \stackrel{\operatorname{Def} p'}{=} \lim_{t \searrow 0} \frac{p(\operatorname{Re}(y), t) - p(\operatorname{Re}(y), 0)}{t} \stackrel{(1)}{=} \lim_{t \searrow 0} \frac{p(\operatorname{Re}(y), t)}{t}$$
(4)

Now we can use what we know and put it all together:

$$p'(\operatorname{Re}(y)) \stackrel{(4)}{=} \\ \sup_{t \searrow 0} \underset{\leq}{\operatorname{Remark}} p(\operatorname{Re}(y), t) \stackrel{(2)}{\leq} \lim_{t \searrow 0} \frac{|p(y, t)|}{t} \stackrel{(3)}{=} |p'(y)|$$

• To prove Property A:

$$p'(y) = 0 \Rightarrow |p'(y)| = 0 \Rightarrow p'(\operatorname{Re}(y)) \le 0$$

- As all the coefficients of p are non-negative, so are all the coefficients of p'.
- But as $y \in \mathbb{C}_{++}$, this is only possible if $p' \equiv 0$.
- To prove Property B: Assume $y \in \mathbb{R}^{n-1}_{++}$, then

p'(y) = p'(y)	because p only has real positive coefficients
$\geq \operatorname{cap}(p)$	due to our result above
$\geq \operatorname{cap}(p)g(k)$	as $0 \leq g(k) \leq 1$

2 Case 2: $\deg_t p(y, t) \le 1$

Although the criterion for this case is very different, it works very similarly.

- By our Lemma, $p(\operatorname{Re}(y), t) \leq |p(y, t)|$.
- This implies that $p(\operatorname{Re}(y), t)$ has degree at most 1 in t as well.
- Recall that p' retains exactly the terms that are linear in x_n

$$p'(y) = \lim_{t \to \infty} \frac{p(y,t)}{t}$$
(5)

$$p'(\operatorname{Re}(y)) = \lim_{t \to \infty} \frac{p(\operatorname{Re}(y), t)}{t}$$
(6)

• Now we can put it together in the exact same way:

$$p'(\operatorname{Re}(y)) \stackrel{\text{(6)}}{=} \\ \underset{\operatorname{cap}(p)}{\overset{\operatorname{Remark}}{\leq}} \left\{ \underbrace{\lim_{t \to \infty} \frac{p(\operatorname{Re}(y), t)}{t} \stackrel{\operatorname{Lemma}}{\leq} \underbrace{\lim_{t \to \infty} \frac{|p(y, t)|}{t} \stackrel{\text{(5)}}{=} |p'(y)|}_{t} \right\}$$

• This proves property A and B exactly as in Case 1.

- **3 Case 3:** $p(y, 0) \neq 0, \deg_t p(y, t) \ge 2$
 - Fixing the y cannot increase the degree of t, so $k:=\deg_{x_n}p(x)\geq 2$
 - We can rewrite our homogeneous polynomial p(y,t) using some $a_1, \ldots, a_k \in \mathbb{C}$:

$$p(y,t) = p(y,0) \prod_{i=1}^{k} (1+a_i t)$$
(7)

• We may read off the linear terms of the derivative, determine p'(y) directly:

$$p'(y) = p(y,0) \sum_{i=1}^{k} a_i$$
(8)

• As we know the degree of t is at least 2, not all a_i can be zero.

The Claim. If $a_i \neq 0$, then a_i^{-1} is a non-negative linear real combination of y_1, \ldots, y_{n-1} .

We will explain this claim later, look at its consequences first:

- $y \in \mathbb{C}_{++}$, so $\operatorname{Re}(y_j) > 0$
- Then the Claim implies: If $a_i \neq 0$, then $\operatorname{Re}(a_i) > 0$.
- We know that not all a_i are zero $\Rightarrow \sum_{i=1}^k a_i \neq 0$ because its real part is strictly positive.
- p(y,0) is nonzero by the case we are in
- Therefore, $p'(y) = p(y,0) \sum_{i=1}^k a_i \neq 0$ and we showed Property A \checkmark

The second thing to show is that if $y \in \mathbb{R}^{n-1}_{++}$, $\prod_{j=1}^{n-1} \operatorname{Re}(y_j) = 1$ then $p'(y) \ge \operatorname{cap}(p)g(k)$.

• By the claim, if all entries of y are positive reals, all nonzero a_i are positive reals.

$$\Rightarrow \sum_{i=1}^{k} a_i \in \mathbb{R}_{++} \Rightarrow \frac{p(y,0)}{p'(y)} = \frac{1}{\sum_{i=1}^{k} a_i} \in \mathbb{R}_{++}$$

• This allows us to cleverly set a positive real t:

$$t := \frac{k}{k-1} \frac{p(y,0)}{p'(y)} \in \mathbb{R}_{++}$$
(9)

We now play around with the arithmetic-geometric mean inequality to get a helpful information:

$$\frac{p(y,t)}{p(y,0)} = \prod_{i=1}^{k} (1+a_it)$$
 by (7)

$$\leq \left(\frac{1}{k} \sum_{i=1}^{k} (1+a_it)\right)^k$$
 by GM-AM inequality

$$= \left(\frac{1}{k} (k+t \frac{p'(y)}{p(y,0)})\right)^k$$
 by (8)

$$= \left(1+\frac{t}{k} \frac{p'(y)}{p(y,0)}\right)^k$$
 by Def. t

$$= \left(\frac{k}{k-1}\right)^k$$

We may use this inequality and apply our Remark:

$$\begin{aligned} \operatorname{cap}(p) &\leq \frac{p(\operatorname{Re}(y), t)}{t} & \text{by Remark} \\ &= \frac{p(y, t)}{t} & \text{as } y \in \mathbb{R}^{n-1}_{++} \\ &= p'(y) \frac{k-1}{k} \frac{p(y, t)}{p(y, 0)} & \text{by Definition of t} \\ &\leq p'(y) \frac{k-1}{k} (\frac{k}{k-1})^k & \text{by the above calculation} \\ &= p'(y) (\frac{k}{k-1})^{k-1} \\ &= \frac{p'(y)}{g(k)} & \text{by Definition of } g(k) \end{aligned}$$

This gives us precisely the inequality $p'(y) \ge cap(p)g(k)$ we were looking for. We are done with the proof, if our claim about the a_i holds. Let's prove that claim: **The Claim.** If $a_i \neq 0$, then a_i^{-1} is a non-negative linear real combination of y_1, \ldots, y_{n-1} . *Proof.* We use the Farkas lemma.

- Maybe you remember it from a course on Discrete Geometry or Linear Programming
- Comes in many different shapes and forms to achieve different goals
 - determine whether a polyhedron lies in a certain halfspace
 - find a hyperplane separating a point from a polyhedron
 - less geometrical: determine whether a set of inequalities has a non-negative solution.

Farkas Lemma. Let $A \in \mathbb{R}^{r \times s}$, $b \in \mathbb{R}^r$. Exactly one of the following holds:

- 1. $Ax = b, x \ge 0$ has a solution.
- 2. $\bar{x}A \ge 0, \bar{x}b < 0$ has a solution.
- We fix r = 2, s = n 1, an arbitrary $1 \le i \le n 1$ such that $a_i \ne 0$ and:

$$A = \begin{pmatrix} \operatorname{Re}(y_1), & \dots, & \operatorname{Re}(y_{n-1}) \\ \operatorname{Im}(y_1), & \dots, & \operatorname{Im}(y_{n-1}) \end{pmatrix} \quad b = \begin{pmatrix} \operatorname{Re}(a_i^{-1}) \\ \operatorname{Im}(a_i^{-1}) \end{pmatrix}$$

- Then the first alternative of the Farkas lemma states that the vector b may be displayed as a non-negative real linear combination of the columns of the matrix A. This is exactly what we claim: If a_i is nonzero, then its inverse is a non-negative real linear combination of the y_1, \ldots, y_{n-1} .
- Therefore, disproving the second alternative proves the claim. We assume the second alternative holds for some $\bar{x} = (c, d)$. If we can lead this to a contradiction, we are done.
- We may assume that even x
 A > 0 holds strictly, otherwise we could just add a small ε to c as all Re(y_j) are strictly positive.
- We want a contradiction to the H-stability of p: Find $z \in \mathbb{C}_{++}^n$ that is a root of p.
- We introduce $\lambda := c i \cdot d$ and look at the vector $z := \lambda(y, -a_i^{-1})$. Then $z \in \mathbb{C}_{++}^n$:

-
$$\operatorname{Re}(\lambda y_j) = c \operatorname{Re}(y_j) + d \operatorname{Im}(y_j)$$
 is the j-th entry of $\bar{x}A > 0$.

-
$$\operatorname{Re}(\lambda(-a_i^{-1})) = -\operatorname{Re}(\lambda a_i^{-1}) = -c\operatorname{Re}(a_i^{-1}) - d\operatorname{Im}(a_i^{-1}) = -\bar{x}b > 0.$$

• On the other hand, as p is homogeneous, p(z) = 0:

$$p(z) = \lambda^n p(y, -a_i^{-1}) = \lambda^n p(y, 0) \prod_{j=1}^k (1 + a_j(-a_i^{-1})) = 0$$
(10)

where in the last step, for j = i, the product collapses.