Designs and Codes Martin Aigner

Exercise Sheet 1

Due date: 12:30, May 3rd, at the beginning of the exercise class. Late submissions will be used to soundproof my office.

You should try to solve all of the exercises below, and submit **three** solutions to be graded — each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each individual solution.

Exercise 1 This exercise provides some further examples of designs.

- (a) Let the ground set be the edges of K_6 . Take the blocks to be all copies of K_3 and all matchings of size three. Show that this gives a 2-design, and determine its parameters v, k and λ .
- (b) Let the ground set be the edges of K_7 . Suppose we take as blocks all copies of $K_{1,5}$, all copies of C_5 , and all copies of some graph F. What does F need to be to give a 3-design, and what are the other parameters?

Exercise 2 For $m \ge 3$, let $X = \mathbb{F}_2^m \setminus \{\vec{0}\}$, and take $\{\vec{x}, \vec{y}, \vec{z}\}$ to be a block if and only if $\vec{x} + \vec{y} + \vec{z} = \vec{0}$.

- (a) Show that this gives a Steiner triple system; that is, a $2 \cdot (2^m 1, 3, 1)$ design.
- (b) If m = 3, show that this design is isomorphic to the Fano plane.

Exercise 3 Prove Proposition 2: if a non-trivial t-(v, k, 1) design exists, then we must have $v \ge (t+1)(k-t+1)$.

[Hint at http://discretemath.imp.fu-berlin.de/DMIII-2017/hints/S1.html.]

Exercise 4 Complete the proof of Proposition 5 by showing that a projective plane (P, \mathcal{L}) of order¹ n gives a symmetric 2- $(n^2 + n + 1, n + 1, 1)$ design with X = P and $\mathcal{D} = \mathcal{L}$.

¹The *order* of a projective plane is defined as the number of points in a line minus one. As you shall have to prove, any two lines in a projective plane contain the same number of points, so it does not matter which line you choose.

Exercise 5 In this exercise we shall consider $2 \cdot \binom{k+1}{2}, k, 2$ designs.

- (a) Find an example with k = 3. It may help to place five of the points on a circle.
- (b) Let B_1, B_2, \ldots, B_b be the blocks of the design, and for $2 \le i \le b$, let $\mu_i = |B_1 \cap B_i|$. Compute

(i)
$$\sum_{i=2}^{b} \mu_i$$
,

(ii)
$$\sum_{i=2}^{b} \mu_i(\mu_i - 1)$$
, and

(iii) $\sum_{i=2}^{b} (\mu_i - 1)(\mu_i - 2)$

in terms of k. What can you say about the μ_i 's?

Exercise 6 In lecture we noted that taking λ copies of a t-(v, k, 1) design gives a $t - (v, k, \lambda)$ design. However, this resulting design contains repeated blocks and is thus not simple. Show that if $2t \leq k < v$, the existence of a t-(v, k, 1) design implies the existence of a simple t-(v, k, 2) design.

[Hint at http://discretemath.imp.fu-berlin.de/DMIII-2017/hints/S1.html.]