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of these primes up to a large integer N is exactly what one expects according to the
1 N

Prime Number Theorem, namely ~ #(k) Tog I? where ¢(k) is Euler’s function, the number
of positive integers up to k that are relatively prime to k. However, for us this is still
not enough: we need that in every small enough interval there is such a prime. Such
type of statements are the topic of intensive research in number theory. In particular by
a result of Huxley and Iwaniec (1975) for every sufficiently large n there exists a prime
p =1 (mod s) such that \/sm — n!/® < p < \/sn.

2. Selecting s—1 = p—1 would give us that any nonzero multiple of (a, b) is equivalent
with it, that is V(G) is the 1-dimensional projective space (line). The defined graph is
the clique, which is then K, ,-free indeed, since the projective line contains only p + 1
points.

3. From the analysis of the two cases in the proof of Theorem 2.3 it could seem at
first sight that, since Case 2 leads to a contradiction, every two vertices have exactly
s — 1 common neighbors. This is false however, and not only because of the presence of
the loops, but also because Case 2 leads to a contradiction only if there was a common
neighbor in the first place. It could happen, though rarely, that two vertices do not have

a common neighbor at all. This occurs only if (a,b) = (Aa, Ab) with some A ¢ H.

2.2 Forbidding K3 ;

The value of ex(n, K; ) for t = 2 is fully settled now up to lower order terms. Before
going further to ¢ > 3 we repeat our randomized approach for obtaining a dense H-free
graph for arbitrary H. In particular, for H = K, ; we will check how the random attempt
relates to the K6vari-Sés-Turdn upper bound.

2.2.1 A quick detour to random graphs

The plan is again to find a probability p as large as possible such that in the random
graph G(n,p) we have

E[e(G(n, p)) — #{copies of H in G(n,p)}| > %(Z) p.

This definitely holds if

1

: (’;L)p > nMH)pe(H) > E[4{copies of H in G(n,p)}],

. _‘n,(H)72
orifp=0 (n e<H>—1>.
_n(H)-2 .
Hence, we know that with some p = cn™ «(®-1 there exists a graph G such that after

n(H)—2
deleting one edge from every copy of H there are still 2 (7)p = © (nZ* E(HH) edges left.
We proved the following.
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Proposition 2.4 For any H,

n(H)—
ex(n,H) =Q (nzfe(g)*g :

Applying this for H = K, we obtained a K, ,-free graph with © (nzfttts:lz) edges.

Observe, however, that =2 is strictly larger than } for any s > t > 2. Hence the
order of the random lower bound on ez(n, K; ;) is always smaller than the order of the
Kovari-Sés-Turdn upper bound. So we are still out there looking for those needles in the

haystacks...

2.2.2 An infinite construction

Similarly to our K »-free construction we start our investigation of dense K3 s-free graphs
by an infinite geometric construction providing a good heuristic.

Motivated by our approach to the unit distance problem in the euclidean 3-space (see
Exercise 2.5) we take the points of R?® as the vertices of our graph, and make two vertices
connected with an edge if their distance is exactly one. That is, with the notation of
the previous section, we consider the unit-distance graph of the 3-dimensional euclidean
space. The set of neighbors of a vertex is the set of all points on the unit sphere centered
in that vertex. If there were a K33 in the graph, then three unit spheres would intersect
in at least three points. The intersection of two unit spheres (unless it is empty) is
a circle with radius strictly less than one (this radius might be 0, in case the spheres
intersect in only one point). A third unit sphere can intersect this circle in at most two
points, proving that G does not contain a Kj 3.

The unit sphere minus a point is homeomorphic to the plane, so the degree of each

vertex is of order |R|?. Since n(G) = |R|?, the number of edges in the graph is roughly
1n5/3,
2

2.2.3 A finite construction

In this section we “finitize” the above heuristic, but the transformation will be more
problematic than it was in the case of the K ,-free construction. There it was clear right
away what caused that the graph is K ,-free: two lines intersect in at most one point or
a linear equation system has at most one solution. These are all properties carrying over
to any field. Here it is not clear at this point what property (or rather imperfectness) of
the field R causes that three unit spheres intersect in at most two points.

Theorem 2.5 (Brown, 1966)

ex(n, Kss) 3 —n®>.
Proof. We set V(G) = IFS. For every a € I we define

Sa(a) ={z € F> : (21— a1)’ + (22 — a2)* + (23 — a3)’ = o},
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where o € [, is a constant to be determined later. We define two vertices a and b to be
adjacent in G if b € S,(a). Obviously the adjacency relation is symmetric.

Is G a Kjs-free graph? Suppose not. Assume for contradiction that there exist
distinct vertices a, b, c € V(G) with |S(a) N S(b) N S(c)| > 3. For z € S(a) N S(b) N S(c)
we have

(21— a1)® + (22 — a2)* + (23 — a3)* = a, (2.1)
(T —b1)? + (T2 — b)* + (23 — B3)* = q, (2.2)
(21 —c1)? + (22 — )’ + (23— c3)* = a. (2.3)

One obtains that for at least three different z,

(2.2) - (2.1): 2z1(a; — by) + 2z2(as — b2) + 2z3(az — bs) +
+b5 —af + b3 — a3+ b3 —a3 =0,

(2.3) - (2.2):  2z1(by — 1) + 2z5(by — C2) + 2z3(bs — c3) +
+ci — b+ —bi+cE— b5 =0,

(2.1) - (2.3):  2z1(c1 — a1) + 2z2(c2 — a2) + 223(cs — as) +
+ai-c4ai-cctai-c2=0

holds.
The matrix of the last system of equations is

al—bl ag—bz a3_b3
A= b]_—C]_ b2-C2 b3—C3
€Ci— QG Cy— QA C3—as

One can easily see that the rank of A is either 1 or 2. If rk(A4) = 2, then all solutions of
the system lie on a line (we already assumed that there exists a solution). On the other
hand, if rk(A) = 1, then a,b,c lie on a line. Therefore, if there is a K33 with partite
classes {a,b,c} and {d,e, f} in G, then either a, b, c lie on a line, or d, e, f lie on a line.

Could it happen that S,(a), for some o and some a, contains three points from a
line? Or maybe even the full line? A sphere??? — By translation, we can assume that
such a special line, containing three points of the sphere S,(a), also passes through the
origin. Let the line consist of the points 7v where v € F3\ {(0,0,0)} is fixed and 7 € F},
is arbitrary. By our assumption

7'22:'0142 - 27'quiai+2af =«
holds for at least three 7. This is only possible when

2 _ _ 2 _
E v; =0, E v;a, = 0, E a; = a.
i i

7
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But then, assuming w.l.o.g. that v; # 0, we get

Vo = v? Zaf = v2a? + v3(aj + a}) = (—v2ay — vza3)® + vi(a2 + a?)

7
_ 2 2 2V(n2 o 2
= (—v2a2 — vs3a3)” + (—v; — v3)(a3 + a3)
2 2 22,22 .29 202 22 2
= V505 + 2U2Q2U303 + U3Q3 — U5a5 — U503 — Usa5 — U3a; = — (V203 — U3as)?,

2
VaG3 — U3z
— = [ ——
U1

Hence if we select o such that —a is not a square, then we arrive at a contradiction and
our graph does mot contain a Ks3. Recall that for an odd prime power p, the number
of (non-zero) quadratic residues is ' which is the same as the number of quadratic
non-residues.

and

Exercise 2.6 Let k be an arbitrary field. Prove that if —a € k is a square, then the
corresponding sphere-graph (defined in the 3-dimensional space over k) not only
contains a Kszs, but also a K, 2. (In case k 1s an infinite field we mean a
Kk x|-) In particular, our heuristics would fail badly in the complex 3-space.

To finish the proof of Theorem 2.5 we still need to see that the Brown-graph contains
enough edges, i.e., the sphere S,(a) (the neighborhood of vertex a) contains enough
vertices — for a well-chosen . For the K, ,-free graphs of Subsection 2.1.3 this was
a piece of cake, since to count edges we just had to solve linear equations. Here we
have some difficulty, since the equations are quadratic. Of course intuitively we feel
that the cardinality of S,(a) is around |F,|? for any «, as S,(a) is a surface in the
three-dimensional space over [F,.

Even more, let us take the average over all possible “radii” a. For any a € IF?, we

have
> [8a(a) = 1°,

aclF,

so by averaging there is at least one “radius” a for which |S,(a)| > p?>. For Brown’s
construction to work we need this for a somewhat special a: for which —a is not a square.
These as are abundant, half of the nonzero elements are such. Still, theoretically, it is
possible that for all “bad radii” the corresponding spheres contain 2p? points, while for
all “good radii” the spheres are empty. In the following we will see that this is not the
case and even under much more general circumstances, the number of points on a surface
does not deviate much from the expected value. We include a probabilistically motivated
proof due to Wolfgang Schmidt. The proof imitates the technique of the second moment
method, used frequently in probabilistic combinatorics.
Let us fix positive integers d,...,d, € N and consider the following equation

d d d
17 + G225 + - - + anT, = ay,

ag, ..., an € .
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Let N(ao,...,a,) denote the number of solutions (z1,...,z,) € Fy of this equation. We
have
Z Z N(ag,...,an) = Z p" = p*".
a1,..,8n aOE]Fp Q1,...y an
Then, the average value of N(ao,...,a,) over (ao,-..,a,) is p"~*. The next theorem

shows that the function N(-) never deviates from its average by much.

Theorem 2.6 Let cp,c1,...,¢n € Fp \ {0}. Then we have

n/2 n
W o) =< |(S25) TTp =)o

p_l =1

Remark: 1. Estimating the number of solutions of higher degree equations over finite
fields is a classic and well-studied area of mathematics full of beautiful ideas and hard
theorems. There is an even more general theorem about the number of solutions to high
degree equations over finite fields (due to Weil), but its proof well exceeds the possibilities
of our course.

2. A more precise and elementary proof of what is needed for the Brown-graph is sought
for in Exercise 2.7.

3. Assuming ¢y, ...,c, # 0 is necessary otherwise the theorem is (easily) not valid. The
assumption ¢y # 0 is not crucial, see Exercise 2.8.

Proof. (W. Schmidt) Before starting, let us note that we can assume w.l.o.g. that d;|p—1
for every ¢+ = 1,...,n, since for every v € I,

#{z €T, : % =y} =#{z € F, : g(dip=1) — 7}.

We will look at the following sum, which is appropriate to measure the average
deviation from the average.

> (N(ag,...,a,) —p" ")
ag,...,an

For a moment, consider N as a random variable determined by ay,...,a,, which are
chosen independently, uniformly at random from F,. Then the above sum (divided by
p™ 1) is its variance var(N), measuring how much the values of the random variable can
deviate from its average; exactly what we are interested in.

Our plan is first to bound the variance from above, i.e., to show that the deviation
of N from p™~! is not too large on the average. This still does not say anything about
the deviation of each individual term of the sum. But then we prove that N takes on
only a few (in fact constantly many) values, moreover any such value occurs on a large
(i.e., constant) fraction of the (n + 1)-tuples (co,...,c,). Hence we will conclude that
N(co,.-.,¢,) cannot deviate from p™! too much, because otherwise N would deviate
from p”~! by much on a large fraction of its domain, which would imply that the variance
would be too large.
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p"var(N) = Z (N%(ag, . ..,an) — 2N(ag, - - .,a,)p" ' +p?" 1)
QaQ,.-,0n
- Z Nz(a’o’ s )a'n) o 2p2n ’ pn—l + pn+1 : p2(n—1)
QaQ,.--,0n
= Z N%(ag,...,a,) —p™ !
Q0,-,0n
We estimate the above sum of squares similarly to calculating >  N(ao,...,a,): by

double-counting.

S Nao,- . an) = Z( ) 1>( > 1>

Q0,..y0n Q0,..y0n TLrn®

d d d d.
a1211+---+anzn""’:a.0 a1y11+---+anyn'”’:u.0
a:’yEIF;L (agy- an)

ala:ll +---+anz%n —ag=0

d d
a.]_yl:l +---+anynn —ap=0

The point of exchanging the summation is obvious: now, instead of having equations of
high degree, we have systems of linear equations (with the z; and y; being fixed and the
a; being the variables). We denote the matrix of this homogeneous system by

If rk(A) = 2, then there are p™! solutions a = (ay, - - ., a,) to Aa” = (0,0)7.

If rk(A) = 1, then there are p™ solutions (ag, ..., an).

Now we only have to count how many times we encounter the second case. How
often do we have rk(A) = 17 In other words, for how many vectors z,y € Fy do we have
:z:f = yf" for all 2 = 1,...,n? For a fixed 1z, with z; # 0 there are exactly d; solutions y;
satisfying :z:f = yf If z; = 0, then of course y; = 0 as well. In any case, for any fixed
(z1,...,2,) we have at most d; - - -d, appropriate (yi,...,¥,) giving us a matrix A of
rank 1.

The sum can then be estimated by

> > 1 < p™p" '+ ptdy- - da(p" —p" )

m,yeﬁ?;’ (ao ..... az)
ay :cll +-+anzy,™" —ag=0

alyf1+---+anyi"*ao=0
— p3n—1 + p2n—1(p - 1)d1 . dn-

Finally, we can upper bound the variance,

" var(N)= > (N(ag,...,a,) —p" ") <p*"(p— 1)ds - d. (2.4)

ag,...,an
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At this point we can conclude that the average deviation of N(aq,...,a,) from p™!
is at most +/d; - - - d,p(™ 1)/2, This is roughly just the square-root of p” !, a promising
sign.

Now consider the (n + 1)-tuple (co,...,c,) from the statement of the theorem. We
claim that the variable N equals N(co,...,¢,) on a constant (roughly ———) fraction of

1 n
its domain F3**. Indeed,

N(co,ci,-..,Cn) = N(tco, teibf, . .. te,bin)
for any ¢t # 0 and bq,...,b, # 0, since the two equations

azh + - 4 cpzdt — g
tCl(bliEl)dl + -+ tcn(bnzz:n)d” — tCo =

have the same number of solutions. More precisely, (yi,...,yn) is a solution of the
first equation if and only if (y;1/b1,...,Yn/bs) is @ solution of the second equation. It
remains to determine the number of different (n+ 1)-tuples (tco, tc,bf, . . ., tc,b3"). Bach
of t,b1,...,b, can be chosen in p — 1 different ways, which gives (p — 1)™™ choices

altogether. However, some of the (n + 1)-tuples they give rise to are identical. Such a
thing happens if and only if bfi = b’fi for every ¢+ = 1,...,n (Here we used that ¢; # 0
for 2 = 0,...,n). For fixed b; there are exactly d; such b, so the number of different
(n + 1)-tuples (tco,tcidy, ..., teab%") is (p — 1)"*1/(dy -+ -dn). The fact that all these
(n + 1)-tuples have the same N-value N(cg,cy,...,c,) combined with inequality (2.4)
gives

(N(co,---en) =" ) < > (N(ag,...,a,) —p* ')
< " Hp—1)dy - dn,

which proves the theorem. O

Corollary 2.7 |S,(a)| > p* — 16p

Proof. Substitute n =3, d; =d, =ds =2, ag = @, a; = a; = a3 = 1 in Theorem 2.6,
and use (;%7)*? < 2. O

To complete the proof of Theorem 2.5 note that indeed the Brown graph has the
claimed number of edges, since by Corollary 2.7 the degree of each vertex is (roughly)
. O

In fact, for the special case of S,(a) the deviation from the average p* can be calculated
exactly. Let QR(p) be the set of quadratic residues of F,.

Exercise 2.7 Give an elementary proof that for any a € Ff, the sphere S,(a) contains
either p?> —p or p? +p points depending on whether o and —1 are quadratic residues
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or not. Note that four cases need to be considered.

For this purpose recall that the equation z2 +y? = B, where B # 0 is fized, has p—1
solutions z,y € Fp, of —1 1s a quadratic residue in [Fp, and p+1 solutions if —1 1s not
a quadratic residue; furthermore, > +y* = 0 has 2p — 1 solutions if —1 € QR(p), or
1 single solution if —1 € QN R(p).

Give a general exact formula for the number of solutions to z2 + --- + 27 = B, for
any fized k € N, B8 € [F,.

Exercise 2.8 Prove that N(co,ci,...,C,) cannot deviate by “much” from the average
even if co = 0. The point is of course how much s “much”? (The assumption that
all other c; # 0 1s still needed, otherwise the problem becomes smaller dimensional
and the error term gets be worse.)

The next exercise exhibits some of the difficulties one faces when stepping from dense
K 3-free graphs to K, 4-free graphs.

Exercise 2.9 A natural thought to extend the idea of the Brown graph to Ks,— or
K4 1000—avoiding dense graphs is the following. Instead of three dimensions let us
take four, 1.e., our vertex set 1s IF;*,. Let the neighborhood of a verter x be determined
by a four-dimensional sphere around it, in particular a vertex y s adjacent to = if
and only if >, (y; —z:)? = 1. According to Theorem 2.6, our graph has roughly cn’/*
edges — the conjectured truth. Prove, however, that this graph contains a K, ,.
Prove that even taking a higher degree surface of the form > .(y; — z;)'°° =1 as the
neighborhood of = instead of the sphere would not help us. (Note that Theorem 2.6
ensures that this graph also has roughly the correct number cn™/* of edges.)

2.2.4 An upper bound

The above construction of Brown could also be called the “unit-distance graph” of IF?,
if we choose oo = 1, which we can do if p = 3 (mod 4) (since then —1 is a quadratic
non-residue). After this, here is where we are standing in terms of the Turdn number of
K3’3:

%nw?’ Sex(n, Ki3) S %21/3715/3.

In 1996, Fiiredi proved that the upper bound can be improved to match the lower bound,
so the construction of Brown (which is from 1966) is asymptotically optimal. This is the
first (and so far lone) improvement on the classical (s — 1)'/*n?~'/t upper bound (which
is from 1954). Remember, this simple bound was asymptotically tight for ¢ = 2 and s
arbitrary.

Before we start proving Furedi’s upper bound we state a technical lemma which will
be convenient later. Behind its artificial appearance it is quite easy: it only formalizes the
same convexity calculation we made when proving the Kévari-Sés-Turdn upper bound.
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Lemma 2.7.1 Let v,k > 1 be integers, and let c,xq,z1,...,Zx > 0 be integers. Then
— (T Zo
<
> (5) <<(3)

in < zocFyt VR 4 (K — 1)w.

i=1

implies

z
k

convex on the full interval [0, 00). Hence we define (§) to be zero if z < k — 1 and to be

Proof. The small technical hurdle in proving this lemma is that the function () is not

equal to () otherwise. With this new definition (}) agrees with (§) on integers, but it
is a convex function not only on {z : £ > k — 1}, but also on {z : z > 0}.
So our assumption can be written as

¢ fgi Zo
<
() =<(%)
=1
Case 1. If > z; < (k — 1)v, then the statement is clear (the “error term” takes care).
Case 2. Otherwise, let S = ZT”" > k — 1. Then by convexity and Jensen’s inequality

Our assumption for Case 2 ensures that (3) = (7), so we have

vS(S—l)---(S—k:—l—l) <c$0(a:0—1)---(a;o—k+1)
k! - k! '

Estimating both sides trivially, we have
v(S — k+ 1)* < czf.
Solving this inequality for S we obtain
S < ey epy 4k —1,

which is exactly what we wanted. O

Let us now turn to the proof of Fiiredi. Once we decide that Brown’s construction
should be asymptotically optimal and we try to prove that, we better first find the
inaccuracy of the K6vari-Sés-Turdn argument. That argument has two estimates: The
one applying Jensen’s inequality is tight for all graphs that are more or less regular, and
the Brown graph is. So the only problem can occur with the crucial combinatorial idea,
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when we say that in a Kj3-free graph each triple of vertices can be the endpoints of
at most two K, 3. This in fact fails badly in Brown’s graph, where roughly half of the
triples is not the endpoint of any K3 at all! Such a phenomenon is not so surprising
once we think back to our motivating infinite Kj 3-free unit-distance graph in R3. There
the number of neighbors of a triple depends on the radius of its circumcircle: if the radius
is less than 1, then there are two common neigbors, if the radius is larger than 1, then
there are no common neighbors, and only those “degenerate” triples have one common
neighbor whose circumcircle has radius exactly one.

Exercise 2.10 Prove that in Brown’s graph roughly half of the triples has two common
neighbors and the other half has none. Even more: describe explicitly those triples
of the Brown graph which do not have a common neighbor!

Keeping this in mind, we will repeat the K&évari-Sés-Turdn-argument only for the
triples, that do have a common neighbor, i.e. have a chance to have two of them. This
turns out to be the key observation we need to improve on the upper bound.

Theorem 2.8 (Fiiredi, 1996)

ex(n, Ks3) S -n°>.

N | =

Proof. Suppose G is a Kjs-free graph. We fix a vertex z € V(G). There are (d(:))

triples of vertices in the neighborhood of z. Since G is Kjs-free, each of these triples
can be fully contained in the neighborhood of at most one other vertex. This implies
the following inequalities,

; (IN(m) f; N(y)l) < (d(;))» vz e V(G).

Applying Lemma 2.7.1 we have

S IN(@) N N(y)| < d(@)(n — 1)*° + 2(n — 1).
y#z

Summing up over all z we get

Yo D IN@NN@EI< Y [dz)(n - 1) +2(n - 1)].

z€V(G) y#z zeV(Q)

The left side counts twice tl_le cherries K, in G by their endpoints. Counting at their
midpoints and introducing d(G) = >_, v () () /n for the average degree, we have

2. ) | (dg")> < nd(G)(n —1)*®*+2(n - )n.

zeV(G
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By Jensen’s inequality we infer

2n( (2G)> < nd(G)(n —1)*® +2(n — n,

implying
2(n—1)
d(G)
If d(G) < (n — 1)%3, then we are done. Otherwise by the above we have

dG)—1<(n—1)*°+

d(G) < (n -1+ % +1< (-1 +2(n—1)"3 41,

Hence, with e(G) = nd(G)/2 we concluded the proof of

1 1
ex(n, Ks3) < §n5/3 +n*3 ¢ e

OJ

Exercise 2.11 Improve the KST-upper-bound a bit. Show that for arbirary s > 3, we
3

have ex(n, K3 ;) S Y52n5/3.

Exercise 2.12 Generalize the proof above and show that ex(n,Kaa) < in”/*. (Hint:

Instead of lower bounding Y (%) in terms of (3 x:)® (which follows from the con-

vexity of (g)) you maght want to bound it from below in terms of the product of

> (%) and Y- z;.)

Open Problem. The asymptotics of K3, is not known for any s > 3. There are infinitely
many values of s for which the upper and lower bounds are within a constant factor of
/2 of each other (we will discuss these results later), but there are also infinitely many
values s where this constant factor separation is /s — 2.

Any improvement would be very interesting. The value of ez(n, K3,4) is the first unknown.

2.3 Forbidding K; ;)

So far in all we've seen on the front of dense K; ,-free constructions, the smaller of the
parameters £ and s was at most 3. So what does become so hard when £ and s are both
at least 4?7 Phrasing it mysteriously, besides us being not creative enough, the problem
is that 4 =2 + 2.

Typical K; ,-free constructions live in the ¢-dimensional space (over a finite field). The
vertex set is usually chosen to be the space itself, and the neighborhood of each vertex



