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5.1.3 Almost independent sample spaces

In this section we relax the independence requirement of sample spaces that each bit-
vector should appear with the exact same probability, and allow that they appear with
roughly the same probability, up to an error of e.

Definition: A sample space S C FY is called e-close to independent if for any vector
a € {0,1}¥, we have

1
‘P[s:a]—— <.

2N

Note that being 0-close to independent is equivalent to being independent. For our
application we of course need the extension of the definition to almost d-wise indepen-
dence.

Definition: The sample space S C {0,1}" is called e-close to d-wise independent if
for any subset J € ([Z’}) of the coordinates, the sample space S|; C {0, 1} is e-close to
independent, that is, for any vector a € {0, 1}¢, we have

In the main result of this section we show that allowing a bit of imperfectness in d-wise
independence enables one to reduce the size of the sample space from the polynomial of
Theorem 5.1 to a polylogarithmac function of N. More precisely, we will construct sample
spaces that are e-close to d-wise independent, and their size is only polylogarithmic in
N and polynomial in their imperfectness measurements, i.e., in d and %

Theorem 5.4 (Naor and Naor) Let N = 2* witht € N, let d > 1 be an odd integer, and
let € > 0. Then there is a sample space R C {0,1}" of size at most

2t +1)° 2,
e Yaalel

which 1s e-close to d-wise independent.

The main idea of the proof is to take the d-wise independent sample space S(BG,,)
we constructed in the last section and somehow reduce its size. The columns of the
matrix BG,, are the 2™ linear combinations of the columns of B: each column of G,,
is responsible for one. The plan is to take only an appropriately selected few of these,
such that the d-wise independence is not ruined too much. It is tempting to select
a few columns of G,, randomly, but we must remain sober and resist—we want an
explicit construction. We will instead construct an m-dimensional sample space S(Q)
of quadratic size p ~ ’:—22, as opposed to 2™, which is e-close to independent. Then we
will show that taking only this p linear combinations of the columns of B, as opposed to
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all 2™, is enough to maintain the d-wise independence with an error . Namely, we will
show that S(BQ) is e-close to d-wise independent.

In the next two subsections we work out the ingredients of this plan and then the
proof of Theorem 5.4 will follow easily.

Linear tests

The property of being e-close to d-wise independent is quite difficult to work with, let
alone to show directly. Hence we develop a more effective way to establish it, a way
which is much more apt to our plan to create our sample space via linear combinations.

If a sample space S = S(M) C {0,1}" is independent then we have seen in Exer-
cise 5.6 that it is 1-independent, that is, the number of 0 and 1 in every row of M is
the same. In the next exercise we generalize this to give yet another characterization of
independent sample spaces.

Exercise 5.10 A sample space S C {0,1}" is independent if and only if for every
vector a € {0,1}" \ {07},

Here 0V denotes the vector of length N having only 0 coordinates, while s-a = Zf’;l $;Q;
represents the usual dot-product of vectors over F.

The exercise involves 2¥ — 1 “linear test”s one performs on the sample space to
verify its independence, each of which should produce a halving of the sample space.
We will relax on the perfectness of these halvings to approach the concept of almost

independence.

Definition: A sample space S C {0, 1}" is called e-unbiased with respect to linear tests
if for any a € {0, 1}¥ \ {0V},

Pls-a=0]-Pls-a=1]|<e

Note that S is e-unbiased with respect to linear tests if and only if for any a €
{0,1}¥ \ {0"}, the 1-dimensional sample space {s-a : s € S} C {0,1} is €¢/2-close to
independent.

The equivalence of being e-unbiased with respect to linear tests and being e-close to
independent, which was established in Exercise 5.10 for ¢ = 0, does not hold for ¢ > 0.
This is shown in the next exercise.

Exercise 5.11 Show that if a sample space S C {0,1}" is e-close to independent then
it 1s also €2V -unbiased with respect to linear tests. Construct a sample space that

shows the statement being best possible (for all sensible values of the parameters N
and €).
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The following lemma states that one direction of Exercise 5.10 remains valid even if
€ > 0 and thus establishes linear tests as a method to prove e-closeness to independence.

Lemma 5.4.1 (Vazirani) Let S C {0,1}" be a sample space that is e-unbiased with re-
spect to linear tests. Then S 1s e-close to independent.

Proof. We introduce the probability distribution function p on Z¥ by setting p(z) :=
P[s = z] for the probability of a vector z € {0,1}" in the sample space S. We need
to show that this function p : ZY — C does not deviate more than e from its average

ﬁZmezg p(z) = 2LN We make use of the basic properties of the discrete Fourier
2

transform of p on the group (H,+) = (Z¥,+). In particular, applying Proposition A.35
we obtain that

< &(p)|Z7| (5.6)

1
'P(a) T oN
for every a € ZIY, where

&(p) = max{|(x,p)| : x € Z¥, x # xo}

is the largest absolute value among the non-principal Fourier coeffiecients of p.

Recall that the characters of ZY are defined by x;(a) = (—1)%¢, for every b € ZY and
a € ZY. The key observation is that the probability difference between the occurrence
of 0 and 1 upon making a linear test with some test vector b € ZY is precisely the
(non-normalized) Fourier coefficient of p corresponding to character ,. The test vector
b = 0¥ corresponds then to the principal character x, and therefore our assumption on
S implies that all, but the principal, non-normalized Fourier coefficients of p are at most
€. And that, via (5.6), implies that S is e-close to independent.

Indeed, for any b € ZY \ {0"} we have

e>P[s-b=0]-P[s-b=1]=> Pls=a]- ) P[s=ad]

a.EZéV aEZéV
a-b=0 a-b=1
= > (-1)**p(a) = Y _ xs(a)p(a) = |Z| (X, D),
a.eZéV aEZQ’
and the lemma is proved. 0J

Our eventual goal is the construction of a small sample space that is e-close to d-wise
independent. The next lemma describes an easy way to combine the generator matrix L
of a d-wise independent linear sample space S(LG,,) with a sample space S(Q) which is
e-close to independent and obtain a sample space that is e-close to d-wise independent.

We plan to use Lemma 5.4.1 to each d-dimensional restriction of the constructed
sample space, in order to establish that they are all e-close to independent, and then
conclude that the sample space itself is e-close to d-wise independent.
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Lemma 5.4.2 (Naor and Naor) Let B be an (N xm)-matriz over Fy such that any d-rows
are linearly independent and let Q be a (m x p)-matriz over Fy such that the sample
space S(Q) C {0,1}™ of size p is e-unbiased with respect to linear tests. Then the
sample space S(BQ) C {0,1}" of size p is e-close to d-wise independent.

Proof. We have to check that for every subset J C [N] of size d the rows, the restriction
of the sample space S(BQ) to these d rows is e-close to independent. To this end
we would like to use Lemma 5.4.1 and hence verify that the d-dimensional restriction
S(BQ)|; = S(B|;Q) is e-unbiased with respect to linear tests. Let a € {0,1}¢\ {0%}
be a d-dimensional test vector. Since a”(B|;Q) = (a” B|,)Q, the linear test of S(B|;Q)
with test vector a and the linear test of S(Q) with test vector a” B; are the same. Note
that the test vector a7 B|; € {0,1}™ is non-zero, since a # 0% and any d rows of B are
linearly independent. By assumption the sample space S(Q) is e-unbiased with respect
to linear tests, so the probability of 0 and the probability of 1 differ by at most € in the
1-dimensional sample space S((a” B|;)@), and hence also in S(aT(B|;Q)). O

The first ingredient of Lemma 5.4.2, a matrix B with any d of its rows being linearly
independent, was constructed in Theorem 5.1. In the next subsection we construct the
second ingredient: a small sample space S(Q) C {0, 1}™ which is e-unbiased with respect
to linear tests.

Almost independent sample spaces via the quadratic character

A field has two operations: addition and multiplication. There are many examples of
the vague phenomenon that being a regular structure in some additive sense and being
a regular structure in some multiplicative sense are mutually exclusive, or at least very
limited in size. As a simplest example one can think of are arithmetic and geometric
progressions: the largest set that is both is of size two. Recall the Paley graph we
discussed in the first section of this part: for a prime p = 1 (mod 4), the Paley graph
P, was just the Cayley graph defined on the additive group of F, by the generating set
S = @R, of the quadratic residues. That is, the Paley graph is defined on the additive
structure of a field by a generating set that is multiplicative in nature. While we know,
modulo the Generalized Rieman Hypothesis, that the Paley graph is not a perfect source
of randomness, we also know that it might be a pretty good imitation, in fact waay
better than anything we are able to construct today.

We use this intuition, the quadratic residues being a pseudorandom random subset
within the additive structure of the finite field F,. Recall that the value of the quadratic
character g, : Fp — {—1, 1} is 1 for quadratic residues and —1 for quadratic non-residues.
Convert these values to bits: let 7(z) = 0 for quadratic residues and 1 for non-residues.
Expressed with a formula, we have g,(z) = (—1)"®). In other words, 7 = 1ygg, is just
the characteristic function of the quadratic non-residues modulo p. Imagine these values
in the cyclic additive order of the field, that is (1), r(2),(3),...,7(p—1),7(0). For 0 let
us just extend r arbitrarily, say let us have r(0) = 1.
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Our sample space will consits of the p bit-vectors that form an interval of length m
in this cyclic ordering of length p. Since intervals are very regular additive structures,
we hope that the multiplicatively defined values will be quite random. Naturally, we
will have to assume that m is small enough compared to p. Formally, we define a

(7(71) x p)-matrix Q@ = QP,, whose colums ¢(®) € FJ* are labeled by elements z € F, and

g;  =r(z+1) for every 1 = 1,2,...,m.
Proposition 5.5 (Alon, Goldreich, Hastad, and Peralta) For every m < ,/p, the sample space
S(@r)={¢®:ze€F,} s T-unbiased with respect to linear tests.

Note that for this proposition to have any power, we better have m < e,/p with some
€ < 1; the smaller the €, the better.
Proof. Let us fix our “linear tester” a € {0,1}™. As we saw in the proof of Lemma 5.4.1,
the probability difference in the definition of almost independence can be expressed as
follows.

Pecr, [Q(w) ta = 0} — Pzer, [q( "a = 1 Z Pocr, [z = 0] — Z Peer, [z = 0]

beFp beFp
q(b)-a.:o r(b) ra=1
(b).
:_E )q a_ -~ E/H( 1) (b+3)a;
bGFp bEF:,J =1

We want to replace each product [, (—1)"®+9% with [T, (0,(b+1%))% = o,([ 12, (b+
1)*) and then use Weil’s Theorem for the quadratic character g, and the polynomial
f(z) = [[7,(z + %)*. We can certainly do this whenever b € F, is not in the interval
[p — b,p — 1], because then b+ % # 0 and hence (—1)"®+) = p (b + 1) for every 1 =
1,2,...,m, by the definition of r. These are most of the b € F,; only those in the
interval [p — m,p — 1] of length m < ,/p are problematic. Whenever b € [p —m,p — 1]
the corresponding product contains a factor (—1)"*4: with b+ = 0. Considering that
for the sake of Weil’s Theorem p,(0) is defined to be 0, whenever b+ 7 = 0, we have that
|(—1)r+Dei — o (b + ¢)%] is either 0 or 1 (depending on whether a; = 0 or 1).

|P“’EFP [q(a:) a= 0} - P:cEF [q( 2). a4 = 1 Z H 1)"’(b+1 a; S
bEsz 1
L 1 ) )% 1 A r 2)a; - N\a.
< ZH(QP(b+Z)) - Z H(—l) (b+2) ’—H(Qp(b—i—z)) ;
P \ser, im1 P ctpmpt it e
p 2.
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In the last step we used m < ,/p and in the next to last we applied Weil’s theorem for
the quadratic character p, which has order 2 and the polynomial f(z) = [[,(z + ¢)*
which has at most m distinct roots and is certainly not a square. O

Proof. We can now put together the proof of Theorem 5.4 by using Lemma 5.4.2 with
the almost independent independent sample space of Proposition 5.5 and the d-wise
independent linear sample space of Theorem 5.1.

Let m = t%2 + 1. First construct the (N x m)-matrix B with the property that

d—1 2
any d rows are linearly independent. Then, after choosing a prime p between @
and its double, construct the above sample space S(Q%,) C {0,1}* with m = t% + 1.

By Proposition 5.5 S(Q?,) is 7x-unbiased with respect to linear tests. Note that 72 <

€. According to Lemma 5.4.2 the sample space S(BQF,) of size p is e-close to d-wise
independent. This concludes the proof of the theorem. O

Better Ramsey-graphs

Let us now try to use our sample spaces from Theorem 5.4 which are e-close to d-wise
independent in our quest for explicit Ramsey graphs.

We could again take our constructive sample space, like we did earlier, interpret it
as graphs on N = (}) vertices and take the Abbott product of all of them. But in fact,
since our sample space is now so small, we can do even better. We can return to the
original idea of the Abbott construction: checking for the perfect "starter graph” with
brute force in polynomial time, and then taking the Abbott-powers of this single graph
with good Ramsey properties.

Our goal in this section is the construction of a graph G on n vertices in time polyno-

mial in n with w(G), a(G) < 2veenlelen [n the solitude of your home you should check

that it is equivalent to constructing a k-Ramsey graph with km vertices. Recall
that this will be a further improvement in the line of our constructive lower bounds: the
exponent of the order of the construction in Subsection 5.1.2 was twice iterated loga-
rithm and now we have essentially a single log &k in the exponent (disregarding the lower
order (loglogk)? in the denominator.)

This construction was apparently folklore, here we follow the description of Baraz.
Let us fix the number of vertices n and define the integer k = 2ven,

We aim to find our ”good starter” graph H on k vertices. What is special about the
selection of k. We will see that on the one hand we can choose a sample space of size
polynomial in n of graphs on & vertices, which <y-close to d-wise independent, where -y is
small enough and d is large enough. On the other hand it is possible to check for small
enough cliques on k vertices. .

2

We take a sample space S C {0, 1}( ) which is 2 5%°¢**_close to being 4.5 log? k-wise
independent. By Theorem 5.4 there exists such a space of size

~ 20.25 log? £2101°6" ¥ 1og? (];) = OUogk) — 0(1)
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i.e., the size of this space is polynomial in n.
Note that for any graph on k vertices we can check, just by brute force, whether the
clique number and the independence number of it is at most 3logk, in time

k 3logk) _ §Ollogk) — o).
3logk 2

which is polynomial in n.

Hence in polynomial time we can check for each member of this sample space, whether
its clique number and independence number is at most 3log k. What is left to prove is
that in S, there exist such a graph. This follows from the almost d-wise independence
of the space. Fix a subset L of the vertices, |L| = 3log k. Then by the almost 4.51og” k-
independence of the sample space,

1 1 1
P[L is a clique or independent set] =2 - ( TR 2k) L -
2( 2)  2ole (310g k)

That is there exists a member of the sample space S for which no set of size 3logk is
a clique or an independent set. This will be our starter graph H and our brute force
search will certainly find it in polynomial time in n.

Now take the ,/lognth Abbott-power of H. This product graph has kVE™ = n
vertices and can be constructed in time polynomial in n (Exercise 5.5). By (5.1), its
clique number and independence numnber is certainly upper bounded by

(3log k)V8™ = (3\/logn)vioE™ — pvieentoetoen(3iglisz),
The extra factor in the exponent is smaller than 1 for large enough n and hence we are
done.

Note however a crucial difference in the construction of this last example and the
rest of this section. When we took the Abbott-product of all graphs in Subsection 5.1.1
or when we took the Abbott-product of all graphs from the d-wise independent sample
space in Subsection 5.1.2 we were not only constructing the adjacancy matrix of the
graph in time polynomial in n, but were able to answer a query quickly requesting the
adjacency relation of two particular vertices. The query containing the labels of the two
vertices in question has only 2 log n bits, so one would possibly want to have the answer in
time polynomial in logn. This is possible in those constructions as the Abbott-product
is efficient in this sense (see Exercise 5.5).

In our current construction one needs to construct the starter graph first before
being able to answer adjacency queries about its Abbott-power and this alone already
takes time polynomial in 7, and not in logn. This explains the following definition. A
construction of a graph on n vertices is called strongly ezplicit if adjacency queries can
be answered in time polynomial in logn. A construction of a graph on n vertices is
called weakly explicit if the adjacency matrix of the graph can be constructed in time
polynomial in n.
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One could suspect that the ”"definition” or rather "feeling” of explicit construction
a’'la Erd6s would be closer to the definition of the strongly explicit one above. However
there is an important ”philosophical” distinction. At the time Erdds posed his question
about a “constructive” lower bound for the Ramsey function, the computer scientific
notion of “efficient” was just about to be created. Erdés refused to pay his award to
Peter Frankl, who came up to him with the Abbott product construction. His refusal was
not based on a mathematically founded argument, rather by a philosophically motivated
one. “I don’t know what a construction is, but I will know when I see one and this
is not it” he might have said. The motivation behind his original question was rather
the desire to see disorder in an understandable fashion. Erd&s would not care about
polynomial computability of the adjacency relation; a computer can calculate many
things where the human mind is not able to see anything. On the other hand, he would
also not worry about the adjacency relation in the Paley graph being really computable in
polylogarithmic time, before proclaiming the Paley graph a ”construction”. The Paley
graph is not an explicit construction because of efficient computability, it is explicit
because one looks at it and sees mathematically explainable disorder (should number
theorists finally be able to prove that so).

The best strongly explicit construction by the Abbott-product (from Subsection 5.1.2)
has a twice iterated logarithm in the exponent. In the next section we discuss a surpris-
ingly simple strongly explicit construction, which beats slightly even the weakly explicit
Abbott-type construction above.

The following exercise is good preparation for that. It was the first real breakthrough
over the quadratic constructive lower bound of the Turdn graph and it came in the same
year (1972) as the Abbott-product. Nagy defined an infinite sequence of k-Ramsey graphs
on ©(k®) vertices. Let G be the graph with V(G) = (1), and A ~ Bif |[ANB| = 1.
The proof of correctness of the construction, i.e. that they don’t contain large clique and
independent set, is a beautiful application of the Linear Algebra Method.

Exercise 5.12 Prove that the graph of Nagy contains no cliqgue and no independent
set of order k+ 1. (Hint for a proof via linear algebra: Prove that set of charac-
teristic vectors of an independent set (or a clique) is linearly independent over an
appropriately chosen field. Hint for a combinatorial proof: there is one.)

5.2 The construction of Frankl and Wilson

In 1977 Frankl extended the construction of Nagy using the theory of sunflowers to

obtain a constructive superpolynomial lower bound k), with f(k) = Q (%) — 00.

Later Frankl and Wilson (1981) gave a simpler proof through the linear algebra method.
This is what we will discuss here. Let p be a prime and define the graph G by

3
V(G) = (pgp—]l)’ A and B are adjacent if [AN B| = -1 (mod p).
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Observe that for p = 2 we get back Nagy’s construction with £ = 8.

Theorem 5.6 Graph G contains no cligue and no independent set of size
p—1 3
> (%)
: 1
1=0
Provided that the theorem holds, we have a ~ p?’-Ramsey graph on ~ PP’ vertices.
Exercise 5.13 Check (precisely!) that for every k we have a k-Ramsey graph with

logk _ :
kN (estoer) vertices.

The proof of Theorem 5.6 is again a wonderful application of the linear algebra
method, which goes one step further than the proof of the theorem of Nagy. Now
characteristic vectors do not suffice; we need a simple technical lemma about function
spaces. Let F be a field and 2 C F™. Then the set F* = {f : Q — F} of functions is a
vector space over F'.

Lemma 5.6.1 If fi,..., fm € F® and v,...,v,, € Q such that
e fi(v:) #0, and
o fi(v;) =0 for all j <1,

then fi,..., fm are linearly independent in F¢.

Proof. (of Lemma 5.6.1) Suppose A; fi + -+ + A fm = 0, and let 5 be the smallest index
J with A; # 0. Substituting v; into this function equation we have

Arfi(vs) + oo+ A fio1 () + A fi(vs) + A fia(vs) + -+ A fm(v5) = 0,
! { A )

=0, since \; = 0,1 <3 #0 o, since f;(v;) =0,7 <1

a contradiction. O

Proof. (of Theorem 5.6) For a set A € 2/7’! let v, € {0,1}”° be the characteristic vector
of A. The linear algebra method is based on a simple, but crucial identity connecting
the size of the intersection of two sets to the inner product of their characteristic vectors,
namely that |AN B| = (v, UB).

Independent sets. Let A;,..., A, be an independent set in G, so |A; N A4,| Z —1 (mod p)
for every 1 # 7. For each 1 let v; = v4, be the characteristic vector of A;. Our plan is
to define a function f; : {0, 1}1"3 — Fp, for every 1 = 1,...s, prove that they are linearly
independent and bound the dimension of the vector space they span — giving us an
upper bound on s. Let
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for all 4. Obviously we have fi(v;) # 0, since |A;| = —1 (mod p). On the other hand,
we have f;(v;) = 0 for all J # 4, since {Al, ..., A} is an independent set. Our technical
lemma then implies that fi,..., f. are 11near1y independent. The dimension of the space
these functions span could be quite large, since each variable z;, j = 1,...,p* could ap-
pear with powers ranging from 0 to p—1. To reduce the dimension of the space, we apply
a “multilinearization trick” and define f;(z) from fz(:z:) by replacmg each occurrence of
a large power z! (I > 1) with z;. Observe that f; = f; on {0,1}?°. Since all the f; are
multilinear polynomials, the dimension of the space spanned by them is the number of
monomials of degree at most p — 1,

3 3
1+p3+<g>+---+(pp_l).

Cliques. To bound the clique number of G we proceed similarly, but we will work over R
instead of F,. Let By,..., B: be aclique in G, so |B;N B;| = —1 (mod p) for every ¢ # j.
Let L={p—1,2p—1,...,p° —p— 1} be the set of possible intersection sizes. Note that
|L| = p — 1. For each 7 let w; = vp, be the characteristic vector of B; and let

filz) = ][z, wi) = 1)

lel

be functions {0, 1}1" — R for all 7. Since |B;| = p* — 1 ¢ L, we have fl(wl) # 0. On
the other hand, f;(w;) = O for all j # i. Lemma ?? then implies that fi,..., f; are
linearly independent. Again, we multilinearize the functions and define f;(z) from f;(z)
by replacing each occurrence of a large power z! (I > 1) with z;. Since |L| = p— 1, all
the f; are multilinear polynomials of degree at most p — 1. Thus the dimension of the
space spanned by them is at most

3 3
1+p3+<g>+---+(pp_l).

0J

Exercise 5.14 The proof of the following theorem 1s an immediate generalization of
the claim we had about the cliqgue number of the Frankl-Wilson graph. (Think this
over!)

Theorem Let L be a set of integers with |L| = s. Let By,..., B, € 2" be a uniform
L-intersecting family, t.e. all |B;| have the same size and \Bz N Bj| € L for every
i#J. Thent<Y: (7). O
Generalize this statement further to arbitrary L-intersecting famailies, i.e. derive
the same conclusion when the |B;| are not necessarily all equal. (Hint: Select the
functions ﬁ more carefully and use Lemma 5.6.1 n its full power.)



