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e Property Ps(s): For every graph H on s vertices N(H) = n*p*H)(1 + o(1))

e Property Ps: N(Cy) = n*p*(1 + o(1))

Obviously all of these properties are satisfied by the random graph G(n,p). In a
seminal paper, Chung, Graham, and Wilson proved that they are equivalent for every
graph (sequence)!

Theorem A.26 Let G be a (sequence of ) (n,d, A)-graph(s) with d = pn, with p,0 < p <
1, a constant. Then Py, P,, Ps(s) for some s > 4, P,(s) for some s > 4, Ps, Ps.

The most suprising that the weak-looking property Ps about the number of C, implies
the bound on the second eigenvalue and the number of arbitrary fixed subgraph

Observe that the theorem cannot be true in this form for d < n. The C,-free
polarity graph discussed in Subsection 2.1.3 has the best possible quasi-random second
eigenvalue /d and still contains NO C,, while the corresponding random graph with
edge-probability p = n~ 2 contains O(np*) = ©(n?) C,.

A.5 Cayley graphs and Characters

All what was said so far about eigenvalues applies for any d-regular graph. The graphs
we construct are often defined algebraically, in which case they are often possible to cast
as Cayley graphs and their eigenvalues are most conveniently expressed in terms of the
group’s characters.

A.5.1 Cayley graphs

Given a group H and a subset S C H with the properties that 0 ¢ S and S = —S (that
is, for every a,b € H, a — b € S if and only if b — a € S), we define the Cayley graph
G(H,S) = G as follows:

o V(G)=H

e E(G)={ab:a—-be S}.

Ezamples

1. The Cayley graph G((Z,+), {1, —1}) is just the cycle C,.

2. The Cayley graph G(F;, QR(q)) is the Payley graph we defined in ...

It turns out that eigenvalues of Cayley graphs are connected to the more general con-
cept of group characters. Below we define the general notion, but soon will concentrate
on abelian groups, which come up in our applications.
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A.5.2 Basics of characters of Abelian groups

The following are based partly on the notes of Babai ].

Let H be a finite abelian group. For the sake of the this exposition we mostly write
the group operation additively (denoted by +), however later we will also use characters
of multiplicative groups and even mix the two.

The homomorphisms of (H,+) into the multiplicative group (C*,-) of the complex
numbers are called characters of H. Formally, x : H — C* is a character of H if

x(a +b) = x(a)x(b) for every a,b € H.

How many characters are there? Just a few? Or many? Maybe an infinite number?
We show that there are exactly as many characters as group elements and their structure
is really restricted: they themselves form a group isomorphic to H.

Ezamples. 1. One immediate example of a character is the principal character x,,
which is defined by

X,(a) =1, for every a € H,

and exists for an arbitrary group H.
2. Another important example is the quadratic residue character p, of the multi-
plicative group (F;,) of a finite field:

[ 1 ifzeQR(g)
pe(T) = { —1 otherwise.

The map p, is a homomorphism because as we saw earlier in Appendix A.2, a square
times a square or a non-square times a non-square is a square, while a square times a
non-square is a non-square.

3. For the cyclic group (Z,,+) an obvious choice transferring the (mod 7n) addition
to complex multiplication is the character x;. For every z € Z,, we define

xi(z) = W,

where w = e*™in.

The fact that the quadratic residue character has only values 1 and —1 and the values
of x; are also roots of unity is not an accident: all character values must be some root
of unity.

Exercise A.2 Prove that
o x(a) is a |H["" root of unity.
e x(—a) =x(a)™" = x(a)

All the nth roots of unity, i.e., the values of the character x;, sum up to 0. This is
again not a coincidence: the values of any non-principal character sum up to O.
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Proposition A.27 For any character x # X,,
> x(a)=0.
acH

Proof. Let b € H be such that x(b) # 1; such an element b exists since x is not principal.
Then, using that a — a + b is a bijection from H to H, we have that

Y x(a)=) x(a+b)= (Zx )x(b

acH acH acH
Then the claim follows. O

Let H be the set of characters. It will turn out that H has exactly |H| characters.
Even more, there is a natural group structure on H and the two groups are isomorphic.

Proposition A.28 H is an abelian group with the operation -, defined by
(x - ¥)(a) = x(a)¥(a).

Proof. Exercise. 0J

The group H and its group of characters are isomorphic.
Theorem A.29 H = H.

Proof. We establish the proof in two steps. First we explicitely give the characters of the
cyclic group (Z,, +).

Proposition A.30 Let w be an arbitrary primitive n'* root of unity (i.e. w =1 if and
only if n|t) and define the map x, : Z, — C* by x,(a) := w’®. Then

® X, is a character for every j € Zy.

e the mapping sending j € Z, to x; € Z, is an isomorphism between Z, and Z,,.

Proof. The first statement follows easily from the definition: x;(a + b) = w/(@+®) =

ww?” = x;(a)x;(b).
For the second statement let us see first that the mapping is a homomorphism from
(Z,,+) to (Zn,-). Indeed, j + £ € Z, is mapped to Xx;;¢ = X, - X¢- The mapping is
injective, since x;(1) = x¢(1) would mean that w’=¢ = 1 and since w is primitive, we
have n dividing 7 — ¢, so 7 = £. Let us see finally that the mapping is surjective. Let
X be an arbitrary character of (Z,,+). Since x(1) is an nth root of unity by Exercise
. and w is primitive, there is a 7, such that x(1) = w’. Then, since ¥ is a character,
x(a) = x(L+---+ 1) = x(1)* = w’® = x;(a) for every a € Z,, so x is identical to ;.
[

Secondly we show how to obtain the characters of a direct sum from the characters
of its summands.
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Proposition A.31 If H = H, x H,, then H = H, x H,

Proof. Exercise O

To conclude the proof of Theorem A.29 note that any finite abelian group is the direct
product of cyclic groups, hence by the previous two proposition

1%

H=Z, X - XZy 227 x---x2Z, =H.

U
k

—N— ~
Example Let H = Z, x --- x Z,. Then H = {x, : w € {0,1}*}, where x_(a) = (—1)¥*
and w-a = Y.F , w;a; is the usual scalar product of vectors.

Inner product and orthonormal basis

CH .= {f: H — C} is an n-dimensional linear space over C. We define an inner product
on CH:

(£,9)= > Fladga).

a€EH

Corollary A.32 (First orthogonality relation) For any x,% € H,

ot ={ o B

0 otherw:se.

Proof. Exercise. O

Corollary A.33 H forms an orthonormal basis in CH.

Corollary A.34 Every f € CH can be written uniquely as the linear combination of

characters:
F=> cex

xCH

where ¢, = (¥, f) are called the Fourier coefficients of f.

Proof. By the previous Corollary the characters form an orthonormal basis in C¥, so we
can express f uniquely as their linear combination f = ) ¢, x with ¢, € C. Taking the
inner product of both sides with any fixed character 9 from the left, we see by the first
orthogonality relation that all terms cancel except (9, f) and cy. 0
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Bounding the deviation from the average

For us, the main application of the discrete Fourier transform is the estimation of the
deviation of a function from its average, via the non-principal Fourier coefficients.

Proposition A.35 Let f : H — C be an arbitrary function on an abelian group H.
Then for every a € H we have

< ®(f)|H],

'f(a) 2@

zcH

where &(f) = max{|(x, /)| : x € H,X # Xo}-

Proof. Conveniently, the Fourier coefficient of f corresponding to the principal character
is equal to the average value of f. Indeed,

(X0, f) WZXO z)f(z) = ,H,Zf(a:

zcH cCH

Then, writing f in the Fourier basis of characters, we have

' a) |H|Zf(a:) = Z< x(z) — |H|Zf =D & fix(a)

X#X0
<1 O Ix(e)] < 2(f)IH].
xEH
XFEX0

0J

Remark: The Fourier coefficients of a function f : H — C naturally define a function f
on the character group H. For every x € H we set

fOoo = 1HIX, ) =) x(@)f(=).

zcH

The function f : & — C is called the (discrete) Fourier transform of f. The formula
f=3 2FGx
< n
XEH

obtained by writing f in the Fourier basis is usually called the Inverse Fourier Trans-
form. Since our applications of the discrete Fourier transform do not really go beyond
the basics, we prefer avoiding the us of the notation f in our proofs.
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Quasi-randomness of Cayley-graphs

For a subset S C H let us define

®(S) = max{|H|[1s(x) : x € H,x # Xo}-

Just to have an idea about how large &(S) is let us calculate an upper bound (why
is it that??): |H|1s(x0) = |H|ﬁ Y scs Xo(8) = |S]. For a lower bound see the following
small Claim

Claim 6
(S) > V152,

provided |S| < %.

Let now S C H be a subset such that S = —S. The Cayley graph G = G(H, S) is
defined on the vertex set V(G) = H. Two vertices u,v € V are adjacent if v —u € S.
In other words, the neighborhood of each vertex w € H is the set w + S and thus the
Cayley graph is d-regular with d = |S]|.

Exercise A.3 Give a proof of the following on the language of characters:
Let (H,+) be an abelian group and S be a subset, such that S = —S. Let G be the
corresponding Cayley graph. For any subsets B,C C V(G),

e(B,C) - wucw% < &(5)\/|BI[C].

Solution:
The following theorem shows that the closer $(.S) is to the lower bound of the Claim
the stronger pseudorandom properties the corresponding Cayley graph exhibits.

Theorem A.36 For any subsets B,C C V(G(S)),

e(B,C) - wucw% < &(5)/BI[C],

where e(B,C) denotes the number of ordered pairs (u,v) € B x C, such that uv €
E(G(S))-
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Proof.

e(B,C) = ZZZH{O}(u—i— s —v)

u€EB veC sES

= S 3N N Tiglo)x(u+ s —v)

u€EB veC sES XEFAI

S I IO

x€H uEB veC sES

- Z|H|<Zx<u>><zx(s (Y x=)

|B|||§|”S' > (wa))(wms(x) (> x(=))
X0 uEB ze-C

On the one hand |(|H|Ts(x))| < ¥(S).
On the other hand by the Cauchy-Schwartz-inequality

SO x@)(> x(Z))‘ < DD x| x(2)

X#Xo uEB ze-C x#xo0 |uEB ze-C

DD x| x(2)

xcH lueB ze—C

5z (5(2)

\ XE-?I UEB

> (1E1s00) \ > (1HIE-o(0)

\ x€H x€H

‘H‘ \/ﬂBalB ]l C’7 — >

o
HIVIBIVICI

and the theorem follows. O

IN

VAN

VAN

IN - IA

VAN

The following is an easy corollary.
Corollary A.37 Let G = G(H, S) be a Cayley graph. Then

2(5)|H]
sl

a(G) <
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Proof. Let I be an independent set of maximum size, that is |[I| = a(G). By Theorem A.36
we have that

Bl
e(I,1) - Wm < (S)|1].
Since e(I,I) = 0, we have ]I|2% < &(S5)|I|, which implies the statement. O

The following simple proposition shows that in fact we already proved Theorem A.36
and Corollary A.37 in the previous section.

Proposition A.38 The spectrum of the Cayley graph G(H, S) is the n-element multiset

D sesx(8) 1 x € H} = {|H|1s(x) : x € H}. The eigenvectors are the n characters.
In particular, the eigenvectors do not depend on S.

Proof.
0= ¥ )= Yt = (o)) o
weEGw—vES sES s€S
Hence x is indeed an eigenvector with eigenvalue ) ¢ x(s) O

Character sum estimates

The following famous theorem of Weil states that the values of a polynomial substituted
into a non-principal character behave uniformly (in some weak sense) .

Theorem A.39 (Weil) Let g be a prime power and let x be a multiplicative character
of F, of order d, extended to F, by x(0) = 0. Then for any polynomual f(z) € Fy[z]
which has precisely m distinct zeros and is not a dth power (over the algebraic
closure) we have

S x(f(2)] < (m - 1)y

zCFyq

Note that Proposition A.27 is a special case of Weil’s theorem for f(z) = z.

In light of how hard it is to estimate the sum of characters (Weil’s theorems about
various character sums are highly non-trivial), it is refreshing to see the simple proof of
the following precise formula involving the additive and multiplicative charecters of a
finite field together.

Theorem A.40 (Gaussian sums) Let F be a finite field and let x be a character of
the additive group of F, while let 1 be a character of the multiplicative group of F.

Then
“:|_1 if X = Xo and Y = vy
_Jo if X = Xo and 9 # o
CGFZMX(CWC) =91 if X # xo and ¥ =

VIFI i x # xo and ¢ # 4o,
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where xo 1S the pricipal additive character and 1, 1s the prinicipal multiplicatice
character.

Proof. In fact the whole proof is just applying Proposition A.27 over and over again; the

first three cases being quite straightforward. To appply Proposition A.27 for the fourth
case, we need a couple of simple manipulations.

= (ZX(C) ><Zx ¢(C)>
C£0 C£0
= > 2.« XCW(©C) + > X(C(C)X(CIHCT)

S x(CW(©)

C#0

C+40 D#C,0 C+0
C
35> x(C—D)¢(5)+Z!x ) wE)f
C#0 D£C,0 C#0

Each character value is a root of unity, thus its norm is 1 implying that the second term
consits of sum of 1s and thus equal to |F| — 1. To manipulate the first term we change
variables.

> S xc-ow(g) = ¥ T x0w - )

C0 D£C,0 W#0,1 D£0
= Y ()W)
W#0,1
=1

The next to last ineaquality follows from Proposition A.27 since for a fixed W # 1 the
values D(W — 1) run through the nonzero elements of F, while D runs through the
nonzero elements of F. The last inequality also follows from Proposition A.27; this time
employed for the multiplicative character 9.

O



