Erdos-Simonovits-Stone Theorem

Theorem. (Erdds-Stone, 1946) For arbitrary fixed in-
tegersr >2andt > 1

ca(n, ) = (1= =) (0) + o(n)

Corollary. (Erdds-Simonovits, 1966) For any graph
H,

1 n
ex(n, H) = (1 ~ () = 1) (2> + o(n?).

Corollaries of the Corollary.

2
n
ex(n,octahedron) = 7 + o(n?)
TL2 2
ex(n,dodecahedron) = 7 + o(n*®)
?7,2 2
ex(n,icosahedron) = 5 + o(n*®)

ex(n,cube) = o(n?)



Proof of the Erdds-Simonovits Corollary_

Theorem. (Erdds-Stone, 1946) For arbitrary fixed in-
tegersr > 2andt > 1

cx(n, Trip) = (1= —=) (3) + 0(n?),

Corollary. (Erdds-Simonovits, 1966) For any graph
H,

1 n
ex(n, H) = <1 ~ (i) = 1) (2) + o(n?).

Proof of the Corollary. Letr = x(H).
® X(Tn,’r—l) < x(H), so G(Tn,r—l) ex(n, H).

o Trar 2 H,s0ex(n,Trar) > ex(n, H), where o
is a constant depending on H; say a = a(H).



Proof of the Erdos-Stone Thm

Erdos-Stone Theorem. (Understanding precisely what
it actually says) For any ¢ > 0O and integers r > 2,
t > 1 there exists an integer M = M (r,t,¢), such
that any graph G on n > M vertices with more than
(1 -+ e> (g) edges contains Ty, -.

We derive this through the following statement.

Seemingly Weaker Theorem. For any ¢ > O and in-
tegers » > 2, t > 1 there exists an integer N =
N(r,t,¢), such that any graph G on n > N vertices
and with 6(G) > <1 — ﬁ + e) n contains Ty ;..

Note that w.l.o.g. € <

1
r—1°
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Derivation of the Erdos-Stone Theorem from the See-
mingly Weaker Theorem.

Let G be agraphonn > M(r,t,e)* vertices with mo-
re than (1 = s e) (’g) edges. Recursively delete

vertices which are adjacent to less than (1 -+ g)
fraction of the remaining vertices.
What is the number »n’ of vertices we are left with?
n 1 €
We deleted at most > (1 — + —) ed-
= r—1 2
7=n/+41

ges. So

@< (("FH-("TH) (1= )+,

This implies
1 /
%(Z) s (r— 1 _§> (Z) -

We choose M (r,t,e) suchthatn > M(r,t, ¢) implies
n' > N(r,t,e/2).

*At this point we don’t know M (7, t, €) yet!!! We’'ll define it in the
proof through N (r,t,e/2). (which is known!)
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Proof of the Seemingly Weaker Theorem.

Induction on r. .

For » = 2 the claim is true provided ((tn))n >t —1,
t

which is certainly true from some threshold N (2, ¢, ¢).

Letr > 2and G be agraphonn > N(r+ 1,t,¢)*
vertices with §(G) > (1 — % + e) n.
We would like to find a T, 4 1) 41 IN G-

Let s = H By the induction hypothesis there is a
Al =...=|A] =s.

U=V(G)\ (A1 U...UA;).

W =A{{w € U : IN(w)NA >t,s = 1,...,r}
is the set of vertices eligible to extend some part of
A]_, c ooy Ar |nt0 a T(T—|—1)t,’l“+1'
*Again, we don’t know N(r 4+ 1,t,¢) yet.
THere we assume N(r + 1,t,e¢) > N(r, s, €).
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Double-count the number of edges missing between
Uand A1 U...U A,. They are

e atleast (|U|—|W|)(s—1t) (= (s—t)nif W is small)

e at most rs (l _ e) n (~(s—rt)n, Lit W is small

From this we have

—1
W > (rl )en —7rs

Thus if n is large enough* then

W > (‘z)r(t —1).

So we can select t vertices from W, which are adja-
cent to the same t vertices in each A; .

WNCE+1,t6) > ((5) (= 1) 4+ rs) 75
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