Chapter 1

Introduction

1.1 Prologue

Extremal Graph Theory, on the most general level, investigates the extremal (maximal or
minimal) value of various graph parameters over the family of graphs having a particular
property. It is a lively subject with a rich history, where numerous natural questions have
beautiful answers. It is a field very much driven by problems; many of the interesting
ones are still wide open and stimulate an abundance of research.

Each such problem has two sides: one is the construction of an extremal structure,
the other is the proof of its optimality. In this course we are putting extra emphasis on
explicit constructions of extremal graphs, which do not customarily feature in standard
treatments of the field. These constructions often require useful tools from algebra,
geometry, or discrete Fourier analysis; the other main objective of these notes is to
highlight them.

We will consider two families of problems: Turdn-type problems and Ramsey-type
problems. In the first lecture we discuss the underlying ideas of both areas by looking
more closely at a classical question from each genre.

The study of explicit constructions is intimately connected to the notion of quasi-
random graphs. On the one hand, quasi-random graphs should imitate randomness as
closely as they can in some sense: this is essential when the extremal example is random-
like. On the other hand, one can also exploit the imperfect randomness of quasi-random
graphs to find structures that are not typical at all. The Ramsey- and Turdn-type
questions we study eloquently demonstrate this duality.

In Turdn-type problems the optimal solution is frequently obtained not by random
methods, but rather by bumping into a beautiful and unique structure. More often than
not, these structures are very much quasi-random but seriously deviate from random in
one regard: the one that is the focus of the particular Turdn-type problem. One can
say that solving a Turdn-type problem is like finding a needle in a haystack. The hay
represents the random objects taking up almost all the space, while the needle represents
the optimal solution we search for: rare, unique, and hard to come by.

Ramsey-type problems are the opposite in some sense: an optimal or nearly optimal
solution is obtained by random methods; often most of the solutions are provably nearly
optimal. In this case however finding an ezplicit construction poses a difficult prob-
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lem. The deficient randomness of quasi-randomness makes the parameters of available
explicit constructions lag significantly behind the random ones. Returning to the folk-
lore metaphor about hay and needles, when investigating a Ramsey-type problem, we
can imagine we are a horse standing in front of a huge haystack. We are hungry, we are
trying to eat. We reach into the stack, pull out something: it’s a needle. We reach again,
pull out something: again a needle. Pull again, needle again... Clearly almost anything
is edible, yet we are still unable to eat for some mysterious reason. Constructing good
Ramsey-graphs explicitly: it is really like finding hay in a haystack.

Notation. For a graph G, V(G) denotes the vertex set and E(G) denotes the edge set.
Even though formally E(G) C (V?)), we often write zy instead of {z,y} for the edge
connecting vertices z and y. Sometimes we write G = (V, E) for a graph with vertex set
V and edge set E. The number of vertices of G is denoted by v(G), the number of edges
by e(G). For subsets X,Y C V(G), we denote by Eg(X) the set of edges of G with both
endpoints in X and write eq(X) = |Eg(X)| for its cardinality. eg(X,Y) denotes the
number of ordered pairs (z,y) such that z € X, y € Y and zy € E(G). If X and Y are
disjoint, then eg(X,Y) is just the number of edges between X and Y. The neighborhood
of vertex v is denoted by Ng(v); formally Ng(v) := {u € V(G);uv € E(G)}. The degree
of v is denoted by dg(v) := | Ng(v)|. The set of neighbors of v in the subset X C V(G) is
denoted by Ng(v, X) and dg(v, X) := |Ng(v, X)| denotes the degree of v into X. Often,
when the underlying graph is clear from the context, the subscript G is omitted. For a
subset S C V(G) of the vertices, G[S] denotes the subgraph of G induced by the vertex
set S.

The asymptotic notation. Most of the time we will be interested in asymptotic behavior
of the encountered quantities. Hence, we start by recalling some definitions for abbrevi-
ating asymptotics.

Definition: Let f,g: N — R be functions. Then we write

e f(n)=o(g(n)) if
f(n)
g(n)

Sometimes we also write f < g.

— 0 asn — oo .

o f(n) =0(g(n)) if
INeENVR>N : ‘M <C

for some constant C > 0.

o f(n) =R(g(n)) if g(n) = O(f(n)).
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o f(n)=0(g(n)) if
f(n)=0(g(n))  and  f(n)=Q(g(n)) .
Sometimes we also write f ~ g.

e f(n)=g(n)if

%Hl as n — oo .
e f(n) S g(n)if
limsupmgl asn— o0 .
nooo  g(n)

This being settled, in the following sections we concentrate on describing the type of
questions which are important in this course.

1.2 Turan-type problems

Let us consider five isolated vertices. At most how many edges are we able to cram onto
them if we are not allowed to create a triangle? In a first try one might end up with a
cycle of length five. The graph C; has five edges and one cannot insert another edge in
it without creating a triangle. In other words, Cs is a mazimal triangle-free graph with
respect to addition of edges. More trial reveals that Cy does not represent the mazimum
though: the complete bipartite graph K, ; is triangle-free and has six edges. Shortly we
will see that K3 is optimal: every graph on five vertices and seven edges contains a
triangle.

The general question, about the maximum number of edges in an n-vertex triangle-
free graph, was posed as a problem in a Dutch journal by W. Mantel in 1907. Correct
solutions were submitted by five readers, including of course the poser, hence today
the statement is referred to as Mantel’s Theorem. Mantel showed that the complete
bipartite graph K|z 21 on n vertices has the largest number of edges among all graphs
on n vertices not containing a triangle. Note that

(K313 = 5] 3] = VZJ -

Theorem 1.1 (Mantel, 1907) Any triangle-free graph on m vertices has at most L”{J
edges.

Proof. Let G = (V, E') be a triangle-free graph on n vertices. Observe that the neighbor-
hood N(v) ={u € V : vu € E} of any vertex v must be an independent set. In other
words, every edge of G has at least one of its endpoints in W(v) := V \ N(v). Hence
summing up the degrees of the vertices in W{(v) accounts for each edge at least once,
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twice only those which are entirely contained in W (v). That is, for any vertex v € V we
have that

e(G) = e(W(v)) + e(N(v), W (v)) < 2e(W (v)) +e(N(v), W(v)) = ) d(z

zeW(v)

Estimating each degree further with the maximum degree A of G, we have

< Y d@) < ZA (n —d(v)) - A,

mGW(v) zeW (v

To obtain the strongest estimate, it obviously makes sense to use a vertex v € V of
degree as large as possible. For a vertex v of degree A the above estimate reduces to
e(G) < (n — A)A. This is a quadratic polynomial in A that attains its maximum over
the integers for A = [%]. Substituting we find that

01 (= [3])-[3] =tk
[

Remark: Observe that the proof also establishes the uniqueness of K|z 21 as the unique
extremal construction. Indeed, the first inequality is an equality if and only if W(v) is an
independent set, so the graph is bipartite with N(v) being the other class. The second
inequality is tight if and only if all z € W(v) have maximum degree, so the graph is
complete bipartite, while the third inequality is tight if and only if the parts are as equal
as possible.

Mantel’s Theorem says that in order to “kill” all triangles of the complete graph one
must delete roughly half of its edges (recall that the complete graph on n vertices has
(7) ~ n?/2 edges). What if, instead of forbidding triangles, one forbids the presence of
K,, or more generally the presence of k-cliques? Do we have to delete significantly fewer
edges to achieve that? How many fewer? How does this fraction depend on k7 In the
early 40’s Turdn, unaware of the work of Mantel, arrived at this problem and generalized
Mantel’s Theorem. His motivation was Ramsey theory; this relationship is discussed in
the next section.

Consider the following graph on n vertices. Partition the vertex set into &k — 1 parts
Vi,..., Vi1 of equal size (if £ — 1 does not divide n take lower and upper integer parts,
hence making a partition such that the cardinalities of any two parts differ by at most
1). Leave these k — 1 parts independent in the graph, but introduce an edge between
any two vertices from different parts. This is the complete (k — 1)-partite graph with
parts Vi,...,Vi_1, which is also called the Turdn graph and denoted by T, x_1.

The Turdn graph (or, for that matter, any graph whose vertex set can be covered
by k — 1 independent sets) is Kj-free: it does not contain a subgraph isomorphic to
K. Indeed, by the pigeonhole principle, among any k vertices of a (k — 1)-partite graph
there will be two which are in the same part and hence are not adjacent. Turdn proved
that the Turdn graph is the unique graph containing the most edges among all Kj-free
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graphs. So to get rid of all k-cliques, one must delete roughly a ﬁ—fraction of the edges
of K,,.

Theorem 1.2 (Turan, 1941) Let G be a graph on n wvertices not containing a k-clique

K. Then
e(G) < e(Thp1) ~ (%)2 (k;1> _ (1—ﬁ>

The exact formula for the number of edges of the Turdn graph T, 1 can of course
be easily calculated for every n, but the general formula is not so interesting and the
asymptotic expression above (which is tight when k£ — 1 divides n) says much more.

There are many ways to prove Turdn’s Theorem; later we will look at two different
arguments.

Up to now we have considered graphs that did not contain cliques. One can of course
ask questions of this type for any forbidden subgraph H. This is exactly what Turdn
did in his letters to Erdds and via these questions he practically initiated the field of
Extremal Graph Theory. To introduce the corresponding key definition, we say that G
is H-free and write H ¢ G if G does not have a subgraph isomorphic to H.

Definition: The Turdn number (or extremal number) ex(n, H) of a graph H is defined
as

ex(n,H) := max {e : J an H-free graph G with v(G) = n,e(G) = e} .

As we have seen

2

ez(n, K3) = L%J and ex(n, Ki) = e(Thx—1) -

Turédn asked what if, instead of forbidding K, (which is the graph of the tetrahedron),
we forbid some other platonic polyhedra? How many edges can a graph without an
octahedron, or cube, or dodecahedron or icosahedron, have? These problems could seem
somewhat arbitrary, but as it turns out they do contain some of the most interesting
features of the area and at first sight the results certainly come as a surprise. When one
is told that, after more than sixty years, the asymptotic answer is not known for only one
of the five platonic polyhedra, one tends to guess that the outstanding question might be
about the dodecahedron or the icosahedron, since their graphs are more “complicated”.
It comes then as a minor shock that “complicatedness”, in an everyday-sense, has nothing
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to do with this problem being hard.

2

ez(n,tetrahedron) = % + o(n?)
n2

ex(n,octahedron) = " + o(n?)
n2

ez(n,dodecahedron) = " + o(n?)
n2

ez(n,icosahedron) = T + o(n?)

ex(n,cube) = o(n?).

The only problem still open is the one about cube-free graphs! This is quite astound-
ing considering the fact that we do know quite precisely at most how many edges a
dodecahedron-free graph can contain. The above are all corollaries of the following gen-
eral theorem of Erdds, Stone, and Simonovits.

Theorem 1.3 (Erdés, Stone, Simonovits) For any graph H, we have

ex(n, H) = (1 - W) (Z) +o(n?) .

The special feature of this theorem is that the Turdn number of any non-bipartite graph
H essentially depends only on the chromatic number of H. For bipartite graphs the
leading term disappears and we only know that the Turdn number is of subquadratic
order.

The Turdn number of even the simplest bipartite graphs is often not known and is the
subject of vigorous research. For example the order of magnitude of the Turdn numbers
of the cube ()3, or the eight-cycle Cs or the complete bipartite graph K,, are still a
mystery. Here is a sample of what we do know:

ex(n,C,) = ©(n/?
ex(n,Cs) = ©(n*/3
ex(n,Cy) = O(nb"®
ex(n, Ks3) = ©(n°/3
ex(n, Ky7) = ©(n7/%)
Q(n*?) < ez(n,Qs) < O(n*F)
Q(n¥") < ex(n,Cs) < O(nd*)
Q(n®3) < ex(n, K44) < O(n7/%)

Concluding this section we present some of the classic conjectures about the Turdn
number of simple bipartite graphs. In a significant portion of the course we will discuss
these in depth.

e’ S’ N N
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Conjecture 1
ezx(n,Cy) = ©O(n''h).

This conjecture is verified for £k = 2,3,5. Recall that we do not know the order of
magnitude of ez(n, Cs).

Conjecture 2 Let s >t > 2 be integers.
ex(n,K:;) = © (nz_%> .

This conjecture is known to be true for arbitrary s if £ = 2 or 3, and for s > (¢t — 1)!
when t > 4.

Conjecture 3

ex(n,Qs) = O(n®°)

One general observation about Turdn-type problems is that extremal graphs in all
known cases have a very strong, pronounced structure. Nothing is accidental about them,
but at the same time their existence often feels like coincidence. This seems valid not only
in the simplest case, where the simple-minded Turdn-graph provides the unique optimal
structure for Kj-free graphs, but also for the optimal C,-free or K, -free structures we
will encounter later, which are much more complex. As a prototype of this phenomenon,
let us mention that for £ > 3 a “typical” n-vertex graph is Kj-free only if its number

of its edges is at most o <n2*ﬁ>— much much smaller than the quadratic number of

edges of the Turdn graph.

Anybody who tried it would agree: constructing an extremal object for a Turdn-type
problem, as it is said in the Prologue, is like looking for a needle in a haystack. In the
first part of these notes we will be after those needles.

Exercise 1.1 Determine ex(n, K14) and ex(n, P,) for every n.

Exercise 1.2 Let G be the ”diamond” graph on 4 vertices: V(G) = [4] and E(G) =
{12,13,14,23,24}. Determine ex(n,G) for every n.

Exercise 1.3 Show that for any tree T with t edges, @ —o(n) <ex(n,T) < (t—1)n.

In the special case of the star graph, T = K., show that the lower bound s correct.

Exercise 1.4 Let G be a graph on n vertices with V{J +1 edges. Show that G contains

at least | 2] triangles.
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Exercise 1.5 For the octahedron, K,.,, show that for all n > 3 we have the strict
inequality ex(n, Koo2) > e(Th2). How large an n-vertex octahedron-free graph can
you find?

Exercise 1.6 The TV remote of George requires two working batteries to function.
Opening the drawer in which he keeps the batteries, he finds eight. He remembers
that four of them work and four of them do not, but there 1s no way of telling them
apart without testing them in the remote. How quickly can George guarantee to get
his remote working?

1.3 Ramsey-type problems

A standard combinatorial exercise is the following.

Proposition 1.4 In a party of siz people there always exists three who pairwise know
each other or three who pairwise do not know each other.

Proof. We establish that at least one of the two conclusions necessarily holds. Let Frank
be one of the six in the party. By the pigeonhole principle, either Frank knows at least
three other people in the party, or there are at least three others whom he does not know.
Consider the first case — the second is handled similarly — and let Esther, George, and
Paul be three people who know Frank. If two of them, say Esther and George, also know
each other, then they together with Frank would be three who pairwise know each other.
Otherwise, Esther, George and Paul would pairwise not know each other and we arrive
at the second of the possible conclusions. O

Remark: 1. For the argument to make sense and the statement of the claim to be true we
must assume that there are no movie-stars in the party, that is, the relation of “knowing”
each other must be symmetric.

2. Note that the same claim is not true for five people: just consider the party of five
where each person knows two others in a cyclic fashion.

One can translate the statement of the claim into graph theoretic language. To each
person we assign a vertex and make two vertices adjacent (by an undirected edge) if the
corresponding people know each other. In this context Proposition 1.4 says that in any
graph on 6 vertices there are three vertices that are pairwise adjacent or three vertices
that are pairwise non-adjacent. In other words, for any graph G on six vertices the clique
number or the independence number has to be at least 3. The five-cycle Cs, whose clique
number and independence number are both 2, shows that six vertices are necessary.

The generalization of this problem was introduced by the great British logician /phi-
losopher /economist Frank Plumpton Ramsey! in the 1920’s. The main definition of the

!Besides being a mathematician, Ramsey also published fundamental papers in philosophy and eco-
nomics. He died at the age of 26.
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present section is the one of the Ramsey number: for k,l € N let
R(k,l) := min{n : V graph G with v(G) =n, w(G) > k or a(G) > 1} .

That is, the Ramsey number R(k,![) is the smallest integer n such that any graph on n
vertices contains a clique of size at least k£ or an independent set of size at least .

By the above R(3,3) = 6; nevertheless, even the fact that R(k,!) is finite is not
obvious at first glance. Ramsey showed that the Ramsey numbers R(k,!) indeed exist.
It is known that R(4,4) = 18; however, the calculation of R(5,5) already exceeds the
capacities of not only mathematicians, but even today’s computers!

Paul Erdés and George Szekeres arrived at the Ramsey problem independently, mo-
tivated by a problem in discrete geometry.? They also proved the existence of Ramsey
numbers and gave a quantitative upper bound. Their proof is a generalization of the
pigeonhole principle argument for Proposition Proposition 1.4.

Theorem 1.5 For any k,l € N we have
k+1—-2
R(k,1) < .
ORI
Proof. We give a proof by induction on k + I: first consider the base cases. Trivially

RE2) =k < (k+2—2):k

ko1
2412

R(2,) =1 < (+ ):z.
21

Now consider a graph G on v(G) = R(k —1,1)+ R(k,l — 1) vertices. (Note that both
R(k —1,1) and R(k,l — 1) exist by induction.) We will find in G a clique of size k or an
independent set of size [.

Take any vertex v € V(G), and look at its neighborhood N(v). By the pigeonhole
principle, v either has at least R(k — 1,) neighbors or v has at least R(k,I — 1) non-
neighbors. (The sum of the number of neighbors and the number of non-neighbors is
v(G) —1.)

Let us assume first that |[N(v)| > R(k — 1,1). Then either a(G[N(v)]) > | and we
found an independent set of size [ in G, or w(G[N(v)]) > k — 1 and this (k — 1)-clique of
G[N(v)] together with v forms a k-clique of G.

An analogous argument can be made in the second case, when the set U := V(G) \
(N(v) U {v}) of non-neighbors of v is large, i.e., if |U| > R(k,l — 1). Then either
w(G[U]) > k, in which case we found a k-clique in G, or a(G[U]) > I — 1 and then this
independent set of size [ — 1 together with v forms an independent set of size [ in G.

Hence we showed the following recursion

R(k,1) < R(k —1,1) + R(k,1 — 1).

2The famous Happy Ending Problem
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This of course very much reminds us of the recursion of binomial coefficients and
fortunately the initial conditions are adjusted for the formula to be correct.
We have

k+1-3 k+1-3 k+1—2
< R(k — ~1)< = :
R(k,1) < R(k —1,1) + R(k, 1 1)_( ‘o )+( 1 ) ( 1 )

Corollary 1.6 For any k € N we have

R(k, k) < (2:__12) < j—% .

For some decades a reasonable lower bound eluded even such giants of Hungarian
mathematics, as Erd&s, Szekeres and Turdn. Turdn approached the question of the
lower bound from a different angle and arrived at a family of problems which are now
known as Turdn-type problems. In a Ramsey graph we forb:id the existence of a k-clique,
while at the same time we would like to achieve a “small” independence number. Small
independence number is naturally associated with having a lot of edges. So a plausible
strategy could be to cram as many edges as possible onto the vertices, while still keeping
the graph k-clique free and just hope for the best in terms of the independence number.

This is exactly the question we talked about in the previous section. Turdn’s optimal
construction for the problem, the Turdn-graph, is relevant to our discussion here as
well, because it provides a nonlinear lower bound for R(k, k). Obviously both the clique
number and the independence number of the Turdn graph T(j 1)2x1 on (kK — 1)? vertices
are (k — 1); thus

R(k,k) > (k—1)*.

Turdn himself believed for some time that the Turdn-graph does provide the extremal
construction for the Ramsey problem as well and tried to show that any graph on N
vertices either contains a clique or an independent set of size +/N. He told his conjecture
to Erd6s who disproved it in a very strong sense.

Let us fix an integer N € N. The strategy of Erdds is remarkably simple, yet was quite
unusual at the time: count first the total number of graphs on N vertices, then compare
it to the number of those N-vertex graphs whose largest clique or largest independent
set is of order at least k, and hope that the former is at least one larger than the latter.

Clearly, there are 2(%) (labeled) graphs on N vertices, since for every one of the (1;’ )
pairs of vertices there are two choices: the pair is either an edge or not.

Now we want to upper bound the number of graphs G with v(G) = N such that
w(G) > k or a(G) > k. In order to obtain a graph with a clique of size at least k, one
first has to pick k vertices, this can be done in (%) ways, and introduce all the (%) edges

k
between any pair of them. Then one does not have to care about the status of the edges
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between the remaining (1;' ) — (’2“) pairs, so there are two choices for each of them: edge

or non-edge. Hence we have
o(-(5) . (N)
k

as a crude overcount for the number of N-vertex graphs containing a k-clique.
Similarly, one can obtain the same upper bound for the number of graphs containing
an independent set of size at least k.
Hence, the number of graphs G with v(G) = N such that w(G) > k or a(G) > k is

at most
2.2 (Z’) ,

If this number is less than the total number of graphs, then we will have convinced
ourselves about the existence of a graph G on N vertices with w(G) < k and o(G) < k,
implying a lower bound on R(k, k). Hence we need an integer N, such that

2.2(@—(5).@) < 2
that is,2-<JZ> < 20),

Using the very rough estimate 2- (}) < N(N —1)...(N — k + 1) < N*, we see that an
integer N satisfying

N < 2(z) = "5 N N <2 =

would work. Therefore, we showed that there is at least one graph on N = L\/ik_lj
vertices which contains neither a clique nor an independent set of order k, implying an
exponential lower bound on the Ramsey number. Both of the ancient bounds,

V27 < R(k, k) < 4%,

we derived here are still essentially the best known today! Most recently, Conlon [?]
showed that R(k, k) is smaller than 4* by an arbitrary polynomial factor. Still, nobody

can prove that R(k, k) < 3.99, say. Using the estimate (¥) < (%)k in the lower bound

proof, one obtains <ﬁ§ + o(l)) k2 < R(k, k). There is no substantial improvement
in the last sixty years here either. All what happened is that the constant factor /2 has
moved up to the numerator some forty years ago [?], but it is unclear whether a lower

bound of, say, k11v/2" would hold.
It is one of the most notorious open problem of combinatorics to determine the value
of klim /R(k, k), provided this limit exists. Erdds offered prize money even for a proof
—00

showing the existence of the limit.
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1.4 Basics of the probabilistic method

The above counting argument of Erdds is considered today as the introduction of a
general proof technique in combinatorics, called the probabilistic method. The method
is used to establish the ezistence of a certain type of object without actually constructing
it. This approach could be particularly helpful when other, deterministic attempts to
construct an object with desired properties prove to be unfruitful.

The simple, yet revolutionary idea is that one constructs an appropriate probability
space of objects, rather than a particular instance of the desired object, such that in the
probability space the desired objects occur with nonzero probability. The point in the
choice of the probability space is that the probability of the desired objects should be
provably nonzero. Miraculously, it is often the case that while concentrating on satisfying
the desired property of one particular object proves to be hopelessly hard, proving that
an overwhelming majority of objects have the desired property is relatively easy.

While other instances of this existence proof technique appeared earlier in several
branches of mathematics, no one before used it as systematically as Erdds, who almost
single-handedly developed it into a method.

For the moment we will be content with the simplest of conclusions.

e If the probability of objects having some property P is not 0, then there exists an
object with property P.

Often it is more convenient to talk in terms of expected value.

o If the expected value of a random variable is C' then there ezxists an object for
which the variable’s value is at least C' and there exists an object for which the
variable’s value is at most C.

1.4.1 The union bound

The union bound: Let Aj,..., A;,... be any (finite or infinite) set of events. Then
Pr U Ai S ZPI[Az] .
i=1 i=1

In order to see the union bound at work let us reformulate the above Ramsey argument
in the language of probability. This makes much sense conceptually, because thinking
in terms of probability theory allows one to later apply the full machinery of the field.
Even though every single fact of discrete probability can in principle be expressed just
as counting, with some of the more tricky ones this could be extremely cumbersome, if
not close to impossible to carry out. The more general point of view of probability has
proven to be more and more fruitful ever since the groundbreaking counting result of
Erdés.
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First we define the “appropriate” probability space: the random graph G(n,1/2) with
edge probability 1/2. For each of the ( ) pairs of vertices we flip a fair coin, and we put
the corresponding edge in the graph if the result of the coin flip is “head”. Note that

in this probability space all the 2(%) labeled graphs on vertex set [n] = {1,...,n} occur
with the same probability.

The calculations in the previous subsection can be used to estimate the probability
that G(n,1/2) has clique number at least %.

Fix a subset S C [n] of size k. Let Ags be the event that the vertices of S form a
clique in G(n,1/2). For As to happen, all the (%) coin flips corresponding to the pairs

2
of S must turn out to be heads, while all other coin flips can be arbitrary. Hence

1
2(5)

The probability that the clique number is at least k is the union of Ags over all S C
[n],|S| = k. We can then use the union bound,

Pr [As] =

_ ) (ﬁ)
Priw(G(n,1/2)) > k| =Pr Ag| < Pr[As] = -5 < -
@(G(n,1/2)) > K] L([J) SEZM) xRl b

One can bound Pr{a(G(n,1/2)) > k] similarly. Hence, say for n = \/ﬁk, the union bound
gives

Prw(G(n,1/2)) > k or a(G(n,1/2)) > k] < 2- (#)

For large enough k this probability is strictly less than 1 and thus the existence of a

k-Ramsey graph on +/2° vertices is proved.
But we get more. Let us play with the numbers a bit. By the above calculation,

for every k > 12, at least 99.999 percent of all graphs on \/§k vertices have both their
clique number and their independence number strictly less than k. So we know that
almost every graph is “good” for us in this sense. But should we just aim to hold one
of these good Ramsey-graph in our hands ... we are going to see how elusive they are!
Returning to the haystack parabole of the introduction: in the second part of these notes
we will play the role of the hungry horse and try to finally pull out a hay instead of a
needle. We will fail, but experience a lot of nice mathematics in the process. We will
see that the situation is the exact opposite of the one we encountered with Turdn-type
problems. Optimal structures of Turdn-type problem are very non-random,; to find them
one tries to distance oneself from random. Optimal structures of Ramsey-type problems
are random-like in some sense and our explicit constructions will try to imitate some of
that randomness.
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1.4.2 Linearity of expectation

Linearity of Expectation Let X, ..., X, be random variables. Then
e[3 x| -y
=1 =1

To demonstrate this method we prove the asymptotic version of Theorem 1.2 (Turdn’s
Theorem). That is, for any graph G with clique number w(G) < k, we must estimate
e(G) from above. We turn this around and rather for any given edge number e we
estimate the clique number from below. First we use the linearity of expectation to
derive a lower bound on the clique number of any graph in terms of the degrees of its
vertices. Since the number of edges is linked to the degrees via e(G) = 1 >~ d(v), this
will also imply a lower bound in terms of the number of edges using a standard convexity
argument.

Theorem 1.7 For any graph G, we have

1 n?
w(@) = Z n — d(v) - n? — 2e(G)

veV(G)

Proof. Let V = {vi,...,v,} be the vertex set of G. For each permutation 7 of [n], let
us design a clique C(7 ) of G in the following fashion: a vertex v,y € C() if and only
if Un(i) is adjacent to v,(;) for every j < 1. For example, v,y is always in C(7), but
Ur(2) 18 in there only if it 1s adjacent to v.(1). By definition, C’(7r) is a clique for every
permutation 7.

The idea is to calculate the expected value of the cardinality of C(7) if we select a
permutation 7 uniformly at random among all permutations of [n]. While calculating
the expectation of |C(7)| looks impossibly complicated at first sight, as is often the case,
if we divide the problem into subproblems, then the linearity of expectation can come
to the rescue.

Let X, be the characteristic random variable of the event that v; € C(7). (That is,
Xi =1if v; € C(?T) and }(z =0if U; Q C(ﬂ')) Then ‘C(?T)| = Zi:l AXz

We are interested in the probability that a vertex v; is contained in C(7). This event
occurs if and only if all its non-neighbors come only after v; in the permutation 7. In
other words, if we restrict m to v; and its n — 1 — d(v;) non-neighbors, then v; is the first
element. This has probability — ( 3 hence,

1

E[X;] =Pr[v, € C(m)] = L

By the linearity of expectation

E[|C(r)|] = ZE Zn_;d(m.

1=1
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Since the expected value of this random variable is ) . , , there must exist a

1
n—d(v;
particular permutation o (maybe more than one) for which |C(o)] i 1s at least > "
As C(o) is a clique, the first inequality in the statement is proved.

For the second inequality note that the function z — % is convex on the positive
reals, so the average value of the function over a set of positive real numbers is larger

than the value of the function at the average of that set (by Jensen’s inequality):

1=1 n— dul)

n 2

1 1 n
Z n — d(v;) z e — d(G) " n2—2¢(G)’

=1

where d(G) = 2%/ is the average degree of G. O

Now Turdn’s Theorem follows immediately.
Proof. (of Theorem 1.2) Let G be Kj-free graph, that is, w(G) < k — 1. Hence by the

previous theorem £ — 1 > er()’ which rearranges to give

e(G) < (1 - ﬁ) -

which proves Theorem 1.2. 0

Remark: 1. It is worthwhile to ponder for a moment why this strange proof of Turdn’s
Theorem can work. We bound the clique number as the expected number of the random
variable |C(m)|. Since this estimate is eventually tight, an overwhelming majority of
C(m) have to be maximum cliques. This in fact is true in the extremal extremal case,
i.e., when G is the Turdn graph: every single permutation o gives a maximum clique, as
C(o) contains the first vertex (according to m) from each of the k — 1 vertex classes of
the Turdn graph.

2. The way C(7) is created is in some kind of greedy way, but maybe not the greediest
possible. Let us again imagine a process where the vertices come one by one according
to the random permutation 7 and we decide online whether we put them in the set C()
(and not change our decision later). The greediest of approaches would put a vertex into
C(m) if it is adjacent to every vertex that is already put in C (7). The C(7) produced this
way will be a clique alright, but the problem is with the analysis of its size. This process
creates a complex system of dependencies between the decisions and the probability of
a particular vertex v; being in C(7) might potentially depend on the structure of the
whole graph (and not only the degree of v;). For this reason we chose to strengthen the
requirement for membership in C(7): not only the current elements of C(w), but all
preceding vertices had to be adjacent to v;. Observe that for the Turdn graph the two
algorithms produce the same C().



