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The affine part. In order to check the existence of these polarities we pass to the so-called
affine part of these geometries. The normalizer B acts on P and £ by left multiplication,
and the orbits of B have length 1,q,...,q" !, respectively. The restriction of I to the
largest orbits P, and L, (of size ¢"~* each) defines the affine subgeometry (P, L., I.)
of (P, L,I). By I', we denote its incidence graph.

It is known that if there is a polarity of the geometry, then there is one that maps
P, U L, into itself. Thus for the above cases, there exists a polarity =, of the affine part
(Ps, Ly, L).

The nice thing about the incidence graphs and polarities of the affine part is that
they admit a simple coordinatized description. In order to check their properties one
does not need to have any idea where they came from. Of course one won’t be able to
come up with one without intuition. In Exercise 3.9 we looked at a coordinatization
of a polarity of the affine part of the generalized quadrangle (of type Bs(g)), which
eventually improved the leading constant of ez(n, Cs) from 1/2+/2 to 1/2. Similar simple
coordinatized description exists for the affine part of the generalized hexagon, but that
would not lead us to a better construction, since for ex(n, Cio) the leading constant was
already proved to be larger than 1/2 in the last subsection.

3.6 Dense regular graphs with large girth

The starting point of our discussion in this chapter was the Moore-bound (see Proposi-
tion 3.1 and Exercise 3.1), providing a lower bound on the minimum number of vertices
in d-regular graphs with girth g. A Moore-graph is a d-regular graph with girth g,
having exactly as many vertices as the corresponding (odd or even) Moore-bound. The
existence of Moore-graphs is decided for many values of the two parameters. For g = 3
and arbitrary d > 3 the complete graph K, ; provides the unique example, while for
g = 4 and arbitrary d > 2 the complete bipartite graph K4 is the unique Moore-graph.
For g = 5, it was proven by Hoffmann and Singleton using spectral methods, that Moore-
graphs can only exist when d = 2,3,7, or 57. In the first three cases, there are unique
examples: Cjy, the Petersen graph, and the Hoffmann-Singleton graph. The existence
of a 57-regular graph of girth 5 on 1 + 57 + 57 - 56 = 3250 vertices is still one of the
tantalizing mysteries of algebraic graph theory. Then of course there is always the cycle
C, of length g, providing the unique example for d = 2 and arbitrary g > 3, but oth-
erwise the existence of Moore-graph for g > 5 is very limited. Bannai and Ito [?] and
Damerell [?] have shown that no Moore graph with odd girth ¢ > 7 and d > 2 can exist.
The even girth case was settled by a theorem of Feit and Higman [?], which implies that
Moore-graphs with even girth g and d > 2 cannot exist unless g = 4,6,8, or 12. In the
latter three cases the Benson-graphs provide Moore-graphs whenever d is of the form
g + 1 with g being a prime power. The question of existence for g = 6, 8, and 12 is open
for other values of d.

The limited range of parameters when the Moore-bound can be tight motivates the
definition of the cage number c(d, g), representing the smallest number n of vertices on
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which there is a d-regular graph with girth g. We will see later that this quantity is
well-defined.

Above we have overviewed the cases when the cage number can be equal to the
Moore-bound and found that it can never happen if the girth g is larger than 12. For our
investigation of the Turdn number ez(n, Cs) these construction were relevant, because
we were interested in Cs,-free constructions for some fized value of k and tried to create
as dense graph as possible, which is equivalent to achieving a given degree d of regularity
with as few vertices as possible.

Now we will concentrate the other end of the spectrum: keep the degree d of regularity
a fixed constant and let g be large/tend to infinity.

In that case the order of magnitude of both the even and the odd Moore bound is

(d—1)le=D21 = Q ((d — 1)%9), that is exponential in g with the base v/d — 1.
In the next exercise we describe an upper bound due to Erdés and Sachs.

Exercise 3.11 Let f(d,g) be the smallest n such that there exists a d-regular graph
with girth at least g on n vertices.

o Let G be a graph on 2m > 437 2(d — 1)* vertices such that (i) G has girth at
least g and (1) every vertez v € V(G) has degree d — 1 or d, and G has the
largest possible number of edges among graphs with these properties. Prove
that G 1s d-regular

e Conclude that f(d,g) <43972(d — 1)°

Remark: The above bound is due to Erdés and Sachs and it is roughly the square of the
Moore bound. They also derive that every d-regular graph with girth at least g does
have a cycle of length g, so the cage number c(d, g) exists and is equal to f(d, g). That
is, we obtain

c(d, g) < (d— 1)H+els,

that is roughly the square of the lower bound.

In the exercise we proved the upper bound using an implicit inductive argument.
This bound turned out be very difficult to topple. Actually the explicit construction of
a fixed d-regular graph with girth at least g on just exponentially many c¢(d)? vertices
turned out to be not an easy task for any constant ¢(d).

In the 1980’s Margulis, and independently Lubotzky, Phillips and Sarnak, obtained
construction using groups and sophisticated algebraic number theory to construct graphs
for every fixed d = ¢ + 1 and arbitrary large g and number of vertices ¢(d,g) < (d —

1)(%+°(1))9 . The main goal of these constructions were to give explicit constant degree
expander graphs, with second eigenvalue as small as possible, the lack of short cycles was
only side product. Later Lazebnik, Ustimenko, and Woldar gave alternative constructions
that give similar, but slightly better bound.

The description and proof of correctness of these constructions are beyond the scope
of our lecture notes. Our goal in this section is to introduce a much simpler construction
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of Margulis, with a somewhat larger, but still exponential, number of vertices. This
construction will provide at least partial glimpse into how the more complicated ones
came around. We largely follow the treatment of [?].

The simple canonical way to construct graphs that are regular is by Cayley graphs.
They are also natural candidates to examine for girth problems as cycles in Cayley graphs
have a simple description based on the generators.

For a group (G, ) and a subset S C G of generators with the property S = S, and
1 ¢ S, we define the Cayley graph C = C(G, S) as follows. The vertex set is the group
G and two group elements g and h € G are adjacent if gh~! € S. Note that gh=! € S if
and only if hg~! = (gh™!) ' € S, because S = S~1. Moreover there are no loops since
1¢8S.

If S = {s1,...84}, then the neighbors of any group element g are gsi,...gsq. In
particular C is |S|-regular. Furthermore, there exists a cycle of length £ in C if and only
if there is a relation s;, - ----s;, = 1 of minimal size that expresses the unit element
as a product of £ elements s,,,...,s;, of S. (That is, there is no proper subsequence
Sisy- -y Siy, 1 < 7 < k < /£ whose product is the identity element.)

To demonstrate the idea of Cayley graphs and establish explicitely that for any
degree d, there exists a d-regular graph with arbitrary large girth, we describe first a
simple construction with much worse parameters. Let r be arbitrary and let T' = Ty,
be the full d-ary tree of depth r, with root vertex w. Our Cayley graph will be over
the symmetric group Sy of permutations of the vertex set V' = V(T). To define the
generators, we fix an arbitrary proper d-coloring x : E(T') — [d]. This is easy to find by
first coloring the d edges incident to the root with distinct colors and then proceeding
down the tree level by level, always coloring properly the d — 1 uncolored edges at each
new vertex with the remaining colors. For each color : = 1, ..., d we define a permutation
7, € Sy as follows. For a vertex u € V(C) which has a neighbor z such that x(uz) = 7, we
set 7;(u) = 2 (since x is proper, there is no more than one such neighbor z). Otherwise,
m;(u) = u. Observe that this happens only for a leaf vertex u, if the color ¢ is not exactly
the one that appears on the sole edge incident to wu.

We claim that the girth of this graph is at least 27 + 1, which shows our promised
statement as r was chosen arbitrarily. If there is a cycle of length g in C, then there
exists a product m;, 7, - - - m;, = 1dy. Let us follow the position of the root vertex in this
product. 7;,(w) is definitely on the first level as w has all colors, hence also ¢;. Then
7, T;, (w) is definitely on the second level of the tree T, since ¢, # %; and the vertex
7, (w) has all colors but ¢; on its incident edges towards the second level. Similarly,
Ty Moy - - Ti,(w) is on the £th level of T for every £ € [r]. Finally, m;,m;, -7, (w) is a
leaf vertex. The next permutation, m;, ,, should leave this leaf fixed, since 1, # 4,1, and
then we need r more step back to the root. So the cycle has length at least 2r + 1.

Exercise 3.12 Show that the girth of the above graph is in fact at least 4r + 2.

The number of vertices in the above example is at least doubly exponential in r and
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hence also in the girth > 2r + 1:

(i(d - 1)")! > (@)W S (@)

In the main construction of this section we will define a 4-regular graph whose order
is single exponential in its girth g. It will not be as good as the above existence proof
which gives O(39) vertices, but the constant in the base will also not be outrageous. This
graph, due to Margulis, could be considered the prequel to the other, more complicated
constructions which have only O(339) vertices.

The idea is to start with the ultimate 4-regular graph of large girth: the infinite 4-
regular tree, and construct it as a Cayley graph. Then we factor this group appropriately
to make it finite. Factoring of the group creates a canonical Cayley graph, which is the
homomorphic image of the original Cayley graph. What happens to the properties of
the original Cayley graph, in particular what are the degrees and how can cycles occur?
It turns out that the new Cayley graph is also 4-regular and cycles can occur only under
very controled conditions and we will be able to track their size. The proof we include
here is due to Gdbor Tardos.

The group will be SLy(Z), i.e. the multiplicative group of (2x2) integer matrices with
determinant 1. Our generator set S will contain four members, the following matrices:

(1 2\ L (1 -2 {10\ _, (1 0
=) =) eea) (5
First we show that C(SLy(Z), S) is the infinite 4-regular tree.

Claim 4 For any vector x € R with z1,25 # 0 and z; # z, ezactly three of ||Az||,
|A'z||, ||Bz||, ||[B 'z|| are larger than ||z||, where the norm ||y|| of vector y € R?
denotes the infinity norm max{|yi|, |y=|}

Proof. Suppose wlog that z; > z,. Then |2z; + 22| and | — 2z; + z,| are both at least
2|z1| — |z3| > |z1], s0 ||Bz|| and ||B~'z|| are larger than ||z|| = z;. Now among |z; + 2|
and |z; — 2z,| exactly one is larger and one is smaller than z; = ||z|| (that which one
is which depends on whether z; and z, have the same sign or not). That means that
exactly one of ||Az|| and ||A 'z|| is larger than ||z|| and the other is smaller. O

Now let us assume that there is a product M, --- M; = I, with factors from S, that
give the identity matrix. We will show that g is large. Let us follow the movement of the
particular vector y = (1,+/2) when we start applying the sequentially the M;s. (But any
vector with algebraically independent coordinates would do.) Let 7 be the index for which
the infinity norm of the image M;M;_, --- Myy =: = is the largest. That means that two
of the neighbors of z, that is M, .z = M, 1 M;--- My and Mj’la: = M, _,--- My have
norm that is not larger than ||z||. This is a contradiction to the previous Claim, since the

vector z satisfies its conditions. Indeed, M; M, ;--- M; = (CCL Z) is an integer matrix
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with determinant one. So applying it to y the resulting vector z = (a + bv/2,c + v/2)
(i) cannot have a 0-coordinate, because that would mean that the matrix must have a
0 row, and (ii) cannot have equal coordinates because then the matrix had two equal
rows. (All this because 1 and /2 are algebraically independent.) So there are no cycles
and hence the Cayley graph C(SLs(Z), S) is indeed the infinite 4-regular tree.

Now let us take the same four matrices as generators, but in the group SL,(Z,). This
is a finite group of size % =p*(p-1) ~p’

Let us take a shortest cycle and let M, ..., M, be the corresponding generators. We
know that modulo p the product M, --- M; = I is the idenity matrix. But we also know
that over Z the matrix is NOT the identity matrix I. So at least one of the entries must
be at least p in absolute value, that is ||Mi,..., M,|| > p. But multiplying an arbitrary
matrix B with any one of the four generator matrices M € S, the infinity norm of the
new matrix M B is at most 3 times the infinity norm of M. The infinity norm of any of
the generators is 2, so 239~! > p. This means that the number of vertices is at most

[V(C(SLa(Z,)))| ~ p° = O(27).

The bound is admittedly weaker than the bound O ((2.28)9) of [?, ?], but the proof is
sweet and self-contained. It is also weaker than the implicit bound O (37) of Erdés and
Sachs, but the construction is explicit. So let’s just not worry (and be happy).



