Chapter 5

The symmetric Ramsey-problem

In this chapter we return to the symmetric Ramsey problem we studied in Section 1.3.
We defined the symmetric Ramsey number R(k, k) as the smallest integer n such that
any graph on n vertices contains a clique or an independent set of size k. In order to
deal with lower bounds, it will be convenient to call a graph k-Ramsey if it contains
neither a clique nor an independent set of size k. The symmetric Ramsey number can
be expressed with this notation as a maximum:

R(k,k) = 1+ max{n : there is a k-Ramsey graph on n vertices}.

In particular, the existence of a k-Ramsey graph on n vertices implies the lower bound
n < R(k,k).
Recall the exponential upper and lower bounds

V2" < R(k, k) < 4, (5.1)

that we presented in Section 1.3. Erdés’ proof of the lower bound established the ez-

1stence of a k-Ramsey graph on \/§k vertices, but did not give any pointers as to how
to construct such a graph explicitly, not even on significantly fewer vertices. The best
constructive lower bound for decades was provided by the Turdn graph T{x_1)2x—1 on
(k —1)? < /2" vertices.

Knowing the existence of a special combinatorial structure, like a large Ramsey graph,
is of course great, but in theoretical computer science, in particular in questions related
to various models of complexity, it is desirable having the structure in our hand, con-
structed explicitly. Furthermore, considering that the largest known k-Ramsey graph
is the uniform random graph, one might also hope that explicitly constructed Ramsey
graphs would be relevant to imitating randomness efficiently—another key issue in the-
oretical computer science. It is doubtful that Erdés had any of these motivations in
mind when, in the late 60s, he had the good taste to ask for a “direct construction” of
k-Ramsey graphs on exponentially many vertices. Still, as it is the case with many of his
beautiful questions, this one also hit something important right on the head. Something,
the importance of which turned out only later.

In the next four sections we will see how far we can get by imitating randomness
using deterministic constructions. In fact we will only be able to show the beginnings,
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the tip of the iceberg. The more recent exciting breakthroughs of theoretical computer
science in this direction [?, ?] are unfortunately out of the scope of our lecture notes.

In the last section of the chapter we will discuss a completely different approach to
constructing k-Ramsey graphs, which highlights the influence of this question of Erdés
had on extremal hypergraph theory.

5.1 |Initial Constructions

5.1.1 Paley graphs

In order to constructively imitate the success of the random graph G(n, %) as a Ramsey
graph, one might try to think of graphs in which the neighborhood of each vertex is a
random-like set of roughly n /2 vertices. To this end the realm of Cayley graphs is natural
to explore, since finding just one random-like set S C G of generators in some group G
already guarantees that all neighborhoods in the Cayley graph C(G, S) are random-like.

A notable candidate for such a “quasi-random” set is the set S = QR(p) = {z?:z €
F;} of quadratic residues in the additive group (F,, +) of the p-element field. For p > 2
this is a set of 1‘%1 elements, which is defined via the multiplicative structure of the field
(“multiply each element with itself”). The intuition is that within a finite field F, of
prime order the additive and the multiplicative structures should thoroughly mix each
other up. Indeed, one is a cyclic group of order p, the other is a cyclic group of order p—1.
The latter is relatively prime to the former, which anyway has only trivial subgroups, so
it is hard to imagine a too large subset that is “orderly” for both structures.

For an arbitrary prime power g, the Cayley graph C((F,,+),QR(q)) is called the
Paley graph' P, of order g. By definition, the vertex set V(P,) = F, is the g-element
field, and vertices  and y are adjacent if £ —y is a quadratic residue. In order to have this
adjacency relation symmetric, like in any Cayley graph, we must assume that S = —S.
Here this is equivalent to —1 € QR(g), which happens if and only if ¢ = 1 (mod 4).
Then indeed, z — y is a quadratic residue if and only if y — z is.

On the one hand, we show in the next exercise that Paley graphs are beautifully
symmetric.

Exercise 5.1 (i) Show that P, is tsomorphic to its complement. In particular o(P,) =
w(Py).

(11) Show that P, is edge-transitive; that s, for every pair of edges zy,uv € E(P,),
there 1s an isomorphism of P, mapping = to u and y to v.

(v11) Make a conjecture about the automorphism group of P,.

!These graphs appeared first in a paper by Sachs at beginning of 60s and Erdés and Rényi for prime
powers a couple of years later. The name stuck only later, due to Paley’s use of the quadratic character
for constructing Hadamard matrices in 1933.
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In part (¢i2) of the exercise you have hopefully succeeded to show that P, has many
automorphisms. In comparison, the random graph G(g, %), with probability tending to
1 (as ¢ — ), has not got a single non-trivial automorphism.

On the other hand, the next exercise shows that Paley graphs do possess some
“random-like” properties. Namely in G (g,%) any two vertices have roughly v(P,)/4
common neighbors (with probability tending to 1), which turns out to be the case in P,
as well.

Exercise 5.2 Let z,y € V(F,). Show that

21 _1 4fz and y are adjacent

[N(z) " N(y)l = { % otherwise

It is a common belief that Paley graphs of prime order have much stronger quasi-

random properties than just the pairwise independence highlighted in Exercise 5.2, so far

as that they are conjectured to provide relatively good Ramsey graphs. Unfortunately

to show we are only able that F, is (,/g+ 1)-Ramsey, which is no better than what holds
for Turdn’s construction.

Exercise 5.3 Show that w(F,) < ,/q for any prime power ¢ = 1 (mod 4). Conclude
that P, is (,/q + 1)-Ramsey.

The next exercise shows that this upper bound cannot be improved for general prime
pOwers.

Exercise 5.4 Show that if q is an odd square, then w(F,) = ,/q.

For prime orders however, the situation looks much more encouraging. In Figure 5.1.1
we plotted the results of computer calculations of Shearer and Exoo about the clique
number (and hence independence number) of Paley graphs of prime order, up to 10000.
The figure seems to indicate that for primes p the clique number is much smaller than
the ,/p upper bound we were able to prove in general. In fact the growth rate looks
more like polylogarithmic. For example |4/9533| = 97, while the clique number of Pys33
is only 18. Despite this convincing numerical evidence, proving w(B,) < p*/?~¢ merely
for some tiny constant € > 0 would already be a major number theoretic advance.

Number theorists for long studied the related classical function n, denoting the small-
est quadratic non-residue modulo p. Since the numbers 0,1,2,...,n, — 1 form a clique
in the Paley graph P,, one always has n, < w(P,). The best known upper bound on 7,
is c,p'/4vete, so polynomial in p.

Assuming the generalized Riemann hypothesis (GRH), it was proven by Montgomery
that there is some constant ¢ > 0, such that the first clog ploglog p integers form a clique
in the Paley graph P, for infinitely many primes p. This means that Paley graphs are

not anticipated to provide constructive k-Ramsey graphs on p = 2C et vertices for every
p. So in this regard Paley graphs do differ from the truly random graph G(p, %), which
is k-Ramsey on exponentially many vertices in k.
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Figure 5.1: The quotient 1°gzl(P)”) in the Payley-graph P, for the primes p < 7000

From the other side, it is also true modulo the GRH that the first log® p integers do
not form a clique. This might make it plausible that there is no (log® p)-clique anywhere

in the Paley graph, and hence they are a family of k-Ramsey graphs on p= 2VE vertices.

Bollobds [?] speculates that Paley graphs might be k-Ramsey graph on 2° fog % vertices, and
for special primes p they might even have exponentially many vertices in terms of their
clique number. It is worthwhile to compare here the exponent cL with the best known

probabilistic construction where the main term in the exponent 1s =, and the constructive
lower bound of the Turdn graph where the exponent is only log2(k: —1)?> =~ 2logk.

Paley graphs provide the the tight lower bound for R(3,3) and R(4,4), which repre-
sent all the known exact values of symmetric Ramsey numbers.

Exercise 5.5 Verify that Ps 1s the cycle Cs of length five. Prove that P;; does mot
contain a cligue or independent set of order 4 and conclude that R(4,4) = 18.

The largest Paley graph which is 5-Ramsey is P;;, but there exist larger 5-Ramsey
graphs. The largest known has 42 vertices, proving R(5,5) > 43. An upper bound
R(5,5) < 48 was recently announced. Both bounds invoke significant computer assis-
tance.

For all other small constants, 6 < k < 20, the best known lower bound on R(k, k) is
also provided by a Paley graph or the following doubling trick of Shearer [?] applied to
a Paley graph.
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Exercise 5.6 Given a graph G on n vertices, we define a new graph D = D(G) on 2n+2
vertices as follows. We take two disjoint copies of G on vertezx sets X = {zy,...,Zn}
andY = {y1,...,Yn}, such that ; — y; s an tsomorphism. Between X and Y, we
add all edges z;y; such that z;z; ¢ E(G). In particular z;y; € E(D) for every
1. Finally, we add two new adjacent vertices ux and uy, connecting ux to every
verter in X and connecting uy to every verter in Y.

Prove that a(D(F,)) = a(P,) + 1 and w(D(F,)) = w(F,) + 1.

5.1.2 Beating the Turan Construction

When Erdds [?] was asking to recover his exponential lower bound by a “direct construc-
tion”, he generously also admitted that he cannot even construct (e,/n)-Ramsey graphs
on n vertices. This innocent comment of the great Master provided motivation for many,
and shortly after two entirely different approaches emerged. Both of them superseded
the Turdn graph in that they provided constructions of graphs with no clique and in-
dependent set of size k, but having super-quadratically many, k2" vertices. And later
on both of these approaches lead to even better constructions and towards important
connections to theoretical computer science and extremal set theory, respectively.

The Abbott product

First, Abbott generalized the block-structure idea of the Turdn construction. The Turdn
graph T(x_1)2 %1 can be thought of as a (k — 1)-clique, the vertices of which were blown
up into independent sets of size k — 1. Abbott realized that it is better to do a more
symmetric blow-up, that is, if both what we blow up and what we place on the blown-up
vertices have both small clique number and small independence number. For example,
one can beat the 5-Ramsey graph Ti¢4 on 16 vertices, by blowing up the vertices of a Cs
(instead of a K,) into five vertices and placing a copy of Cs (instead of a K,) onto each.
This is also a 5-Ramsey graph, but has 25 vertices.

Beating just one concrete Turdn graph is of course not what Erdés meant. But we
can carry on by blowing up the above Cs-blow-up with Cs again and again, and thus
obtain an infinite sequence of constructions. To formalize, given two graphs G and H
we define define their Abbott-product G ® H by

V(G® H) = V(G)x V(H), and
E(G®H) = {(91,h1)(g2,h2): 9192 € E(G) or g; = g and h1h, € E(H)}.

Informally speaking, one can imagine taking v(G) disjoint copies of the graph H and
then include all edges between two such copies if the vertices of G corresponding to the
copies are adjacent in G. The Turan graph T(z_1)2%—1 is just Kp_1 ® Ki_;. One can
easily check (please do!) the following properties.

Exercise 5.7 (v) For any two graphs G and H we have v(G ® H) = v(G) - v(H),
a(G® H)=0(G) a(H), and w(G® H) = w(G) - w(H).
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(1) Prove that the Abbott product is associative, that is, (G; ® G2) ® G3 = G ®
(G2 ® Gs).

By the exercise, the repeated blow-up c?k of the 3-Ramsey graph Cy has clique
and independence number 2¢, so it represents a k-Ramsey graph construction on 5¢ =
(k — 1)ke25 > k232 vertices.

Set families with intersection restrictions

The second idea to break through the quadratic constructive lower bound of the Turdn
graph appeared in the same year, 1972, as the Abbott product.? It is due to Zsigmond
Nagy, who defined a graph Giag on the vertex set V(Guagy) = (i) of triples of a z-
element set. Two triples A and B are adjacent in Gnagy if they intersect in exactly one

element.

Exercise 5.8 Prove that a(Gagy) < z and w(Gnagy) < 2. Conclude that Gyagy provides
an infinite sequence of construction of k-Ramsey graphs on Q(k*®) vertices.

5.2 What sort of explicit?

Already Abbott noted that if instead of the 3-Ramsey graph C5, we take the powers of the
Paley graph P;7, which is a 4-Ramsey graph on the largest possible number of vertices,
we improve the construction from the previous section. Indeed, w(P%%) = a(P%) = 3¢,
so P%% is a k-Ramsey graph on 174 = (k — 1)°8:17 > k257 vertices.

Of course if we took the powers of Pys33 instead, about which Exoo’s computer cal-
culated that its clique and independence number is 18, then we obtained a construction
of a k-Ramsey graph on 9533° = (k — 1)'°€189533 5 k317 vertices. This is now already
better than the construction of Nagy from Exercise 5.8.

But the power of computer stops here. How can we construct k-Ramsey graphs
on k* vertices? Or even larger powers of k? From the above, it is clear that we could
immediately improve the construction, were we able to get our hands on just one “starter
graph” G, which is cp-Ramsey on cj* vertices for some m > log,39533. The Abbott
powers G of such a graph have clique and independence number at most (c, — 1)¢, so
they provide us with a construction k-Ramsey graphs on v(Gq)¢ = ¢ > k™ vertices for
arbitrarily large k.

How should we get a hold of a c,-Ramsey graph for some ¢y with, say, c3° vertices?
Well, thanks to Erdés we know that k-Ramsey graphs do ezist if the number of vertices
is not more than \/ik. At one point the function \/ﬁk certainly takes over k9, so let
co be the smallest integer such that /2% > ¢l°. If we check the graphs on ci® vertices,
one of them certainly will be c;-Ramsey. How long would this take? Nothing ... only

2... and American Pie by Don McLean.
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constant time ... Never mind that ¢, = 144, so you might have to calculate the clique
14410

number and independence number of possibly ("2 ) graphs on 144!° vertices.

This is certainly a method that, for any exponent m, constructs an infinite sequence
of k-Ramsey graphs on k™ vertices. But is this now something we want to call ”explicit
construction”? We can definitely agree that C®° and P2 are explicit constructions. Even
P%%, is one, the fact that a computer had to check the clique number and independence
number of a graph on 9533 vertices does not seem relevant to that.

And once we accept the use of a computer to aid our construction, it would be hard to
argue why it should matter what exactly the computer is allowed to calculate during this
constant amount of time and why it should be relevant whether it actually performed
that calculation already. It seems sufficient to just know that after the computer did

check those 2(14310) graphs, it would surely hand us our appropriate starter graph, and
we can proceed with our construction of k-Ramsey graphs on k!° vertices for arbitrary
k. The disturbing fact, that these computer calculations would last longer than the age
of our universe, does not feel like should play a role in whether we want to call this an
“explicit construction”.

It is time to stop procrastinating, face the inconvenient imprecision lurking in the
background, and decide already what exactly we wanna call an explicit construction.
The discussion above made it clear that our definition must deal with the possibility of
computer calculations and it should definitely include an apprpriate limiting of them.
After all, we certainly do NOT want to call explicit construction for example the com-
puter checking of all graphs on n vertices, and then outputting the best Ramsey graph
there is, which we know is (2logn)-Ramsey. This procedure of course might require

checking 2(3), i.e. superexponentially many graphs, just to produce one on n vertices.
It is reasonable to expect that for an explicit construction of a graph on n vertices we
should be able to produce the n? entries of the adjacency matrix much faster, say in time
polynomial in n, the customary computer scientific measure of “fast”.

Definition: A family of graphs G = {G, : n € S}, where S C N is an infinite subset and
v(G,) = n, is called (efficiently) explicit if there is an algorithm that on input n € S
runs in time poly(n) and outputs the adjacency matrix of G,.

This is the definition adopted by the theoretical computer science community, who
went on to great length extending and strengthening the randomness required of k-
Ramsey graphs. They use their constructs for efficient generation of psedorandom bits,
with the eventual main goal of efficiently derandomizing every randomized algorithm in
mind. In the next exercise we show that the definition also caters to our wish to be able
to call all of the above constructions explicit.

Exercise 5.9 (a) Verify that the Turdn graph provides an ezxplicit family of (1 +
o(1))/n-Ramsey graphs on n vertices for every n € N.

(b) Verify that the graphs Gagy provide an ezplicit family of O ({’/ﬁ)-Ramsey
graphs on n vertices for every n € N.
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(c) Verify that for every m € N, the above Abbott procedure can be used to create
an ezxplicit famaily of O ( %) -Ramsey graphs on n vertices for every n € N.

The Abbott product argument, at least in its current form, won’t give us anything
superpolynomial, i.e., no infinite sequence of k-Ramsey graph on k(%) vertices, where
f(k) — oo. Even if we took a starter ro-Ramsey-graph on 7y %' %'%8™ vertices (which
we certainly could), taking its Abbott-powers takes away the superpolynomial relation
between the order n and the clique number w: already for the square of the starter we
would not have n > w'oglogloew,

How could we construct something truly superpolynomial? So far we have not used
the full power of our definition of explicit construction for the finding of the starter graph.
We spent only constant amount of time to find G, when we could have spent poly(n).
Given an integer n, we will fix integers v = v(n) and £ = £(n) such that v* ! < n <%
We plan to find a starter graph on v vertices and raise it to the /th Abbott power to
obtain a graph on n vertices. We know that among the 2(2) graphs on v vertices at least

one of them is (2logv)-Ramsey. We find such a Gy by checking for each of the 2(2)
graphs on v vertices, whether any of the (2 I:g'u) subsets of size 2logv forms a clique or
an independent set. This takes at most

i.e. polynomially many steps, provided v < /2logn and v is large enough. We set v =
[vIogn| = v(Go) and consequently choose £ = [bg"w . Then v* ! < v(G§") = n < v

log v

and

logn

1 O, O og N
a(G®Y),w (GF*) < (2logv)" < (loglogm)Foeier = n2+e) efiss,

This is an explicit construction of a k-Ramsey graph on superpolynomially many,
k (lolgolgolgolgozk), vertices. The exponent is quite small, but does go to infinity with k.

In the age of computer, speed, and efficiency, our definition of explicit construction
sounds completely satisfactory: there is an explicit deterministic algorithm, telling us in
a short time which vertices are adjacent and which vertices are not adjacent. What else
would one want to call explicit?

Erdds did not specify in his question what he wants to mean by explicit construction.
While his subconscious understanding of the concept might have included the limiting
of computation power one way or another, he nevertheless did not accept the superpoly-
nomial Abbott construction as explicit.® Intuitively it is clear what Erdés would not
like: in its first phase the construction uses brute force in finding the object it knows to
exist. It is not using any kind of clever idea or structure to pull out the “hay from the
haystack”, but rather goes in there, picks up every single object from a haystack, studies
it carefully, and finds a hay eventually. This feels like cheating, even though there is a

3He declined to pay the “bounty prize” he set for the problem on the merit of the Abbott construction.
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significant difference between doing this search in the whole haystack (of all graphs on
n vertices) or just in a much smaller haystack and then using the found small hay to
produce the promised “pseudo-hay” (with still more features of a needle) for arbitrary
sized haystacks.

Let us take another crack at a computer scientific definition, more to Erdés’ liking.
An evident drawback of the Abbott construction is that the adjacency status of any
particular pair of vertices cannot be decided before finding the whole starter graph first,
which already takes time poly(n). In our earlier constructions (Turdn, Paley, Nagy)
the adjacency relation was defined directly and could be decided independently for each
pair of vertices. Describing two vertices in an n-vertex graph takes only [2logn] bits,
so ideally one would wish to decide whether they are adjacent within time poly(logn).
This motivates the following definition.

Definition: A family of graphs G = {G, : n € S}, where S C N and v(G,) = n, is
called strongly explicit if there is an algorithm that on inputs u, v € V(G,,) runs in time
poly(logn) and decides whether uv € E(G,).

As expected, all our constructions are strongly explicit.
Exercise 5.10 Prove that the Turdn and Nagy construction is strongly explicit.

Exercise 5.11 Suppose that addition and multiplication in F; can be carried out in
constant time. Show that P, 1s strongly explicit; that is, there is some constant C
such that one can decide if two given vertices u and v are adjacent in O(log®(q))
time.

How long does 1t take to construct the adjacency matriz of the entire graph P,?
Provide an algorithm whose running time s best possible up to a constant factor.

Unfortunately the above superpolynomial Abbott product construction can also easily
be modified to be strongly explicit: simply reduce the time spent on finding the starter
graph from n to logn. Carrying out the calculation like this shows that the constructed
graph becomes a strongly explicit k-Ramsey graph on k™\leelogloglogk) vertices. This is
smaller than the one above, but still superpolynomial, and the fundamental flaw Erdés
saw in the brute force search for the starter remains.

At the time Erd&s posed his question about a “constructive” lower bound for the
Ramsey function, the computer scientific notion of “efficient” was just about to be de-
veloped. So even though one could suspect that his idea of explicit would be closer
to the definition of strongly explicit,he could not honestly care much about efficient
computability. And there is an even more important philosophical distinction. The mo-
tivation behind Erdds’ question must have rather been the desire to encounter disorder
in a concrete large structure and thus have a much better understanding of its nature.
Erdés would not care about polynomial computability of the adjacency relation, because
a computer can calculate many things where the human mind is not able to see anything.
For Erdés the Paley graph was an explicit construction not because one could compute
the adjacency relation in polylogarithmic time, but because the definition of an edge is
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through a concrete, mathematically described structure (a finite field and its operations),
the disorder of which would also be understandable (should number theorists finally be
able to prove it ...).

To draw attention to this underlying issue, we feel obliged to introduce the following
definition, not quite up to the usual stuck-up standards of mathematics, but leaving
open a somewhat subjective interpretation of the concept of explicit

Definition: We call a sequence of graphs morally explicit if Exrdés would have called it
explicit.

In morally explicit constructions the adjacency relation should be given directly,
using only objects/structures/concepts that are precisely known already at the time
of describing the construction (and not only known to ezist, so to be found by some
hypothetical search in some space, however small that space might be.) Even if we
acknowledged the reality of a computer performing the actual construction, in a morally
explicit construction we do care for what the computer’s time is used for, and a search
is disallowed.

The notion of morally explicite does not include any reference to fast computability,
though morally explicit constructions tend to be efficiently explicit and even strongly
explicit. But the Paley graph for example is morally explicit, not because we can decide
the edge relation fast, but because the definition of an edge is direct and involves only
known structures and concepts (operations within finite fields).

Abbott powers of Paley-graphs are also morally explicit, since both the product
operation and the graphs we take the power of are defined directly. In particular we
consider P24, a morally explicit construction, despite the fact that humans are not able
to check its clique and independence number. This just makes the proof of its properties
computer-assisted, but that does not influence the fact the constructed graph is given
completely directly using the well-known adjacecy matrix of Pyss;.

A morally explicit superpolynomial Ramsey graph.

In the following we describe yet another superpolynomial variant using the Abbott prod-
uct due to Naor [?], that we would not be able to call not morally explicit. The con-
struction will be strongly explicit and all part of the definition of an edge is known from
the beginning and no part of the decision is based on search.

So far we have only made use of the existence of an incredidibly good Ramsey graph
and just picked any one to be our starter. Now we will utilize that most of the graphs
on n vertices are so, namely that the random graph G(n,1/2) has clique number and
independence number that are both at most 2log,n with extremely high probability.
Hence it looks to be a good idea to take the Abbott-product of all graphs on n vertices,
since most of them have very small clique- and independence-numbers.

To be more precise, let X C [n] be a subset of k& vertices. One can easily calculate
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the probability that X induces a clique (or an independent set) in G(n,1/2):

P[K is a clique] = (5.2)

1
2(3)
Then by the union bound

. nY\._(* ne k
P[3 clique of order k] < <k>2 () < <W> , (5.3)

2log, n
which is at most ( ffg ) S lg for k = 2log,n. In other words, less than
ogo N o] n

€ =

log = G, of all labeled graphs on n vertices contains a

clique of order 2 log, n

Let G be the Abbott-product of all graphs from G. Then
(G) -,

where |G| = 2(3). By the above one can estimate the clique number of G using (5.7)
as follows:

(G) < (2log, n)*99lnel9l < (210g,n)9nl9 = (410g, n)!9". (5.4)

Remark. Here we estimated the clique number of (1 — €)|G| graphs by 2log,n, but
were seemingly pretty generous when we estimated the clique number of the rest of the
graphs by n. Nevertheless our estimate is precise enough for our purposes, since random
graph theory tells us that almost all graphs do have clique number at least log, n, so

o G) > (togy myt-or

Since the independence number can be estimated analogously by (5.7), G is an
infinite sequence of k-Ramsey graphs with

logloglog k
n = kQ( loglogloglogk

vertices. (Check the calculation!) Moreover G is clearly an explicit construction, which

can be constructed in polynomial time. G is finally a construction of superpolynomial
order: the exponent % does tend to infinity, though pretty slowly, it reaches
the value 3 for example only when k > 2256,

Looking at the formulas for the number nl9 of vertices and the clique number
(41logn)l9! of G, it is apparent what ruins an initially paradisiac clique-number /vertex-

set-size relationship from logarithmic w = 4 log n to barely subpolynomial N A fehehed )

the huge size of the family G. The more times we take the factors n and 4logn in the
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formulas, the more the Abbott-product loses from the excellent Ramsey properties that
most of the members of G have.

Doing a bit of (our customary) wishful thinking: wouldn’t it be wonderful if there was
a much smaller family D instead of G, so that we could still perform the same calculations
as in (5.4)? And hence we obtained a clique number bound of (4logn)?! on a vertex set
of size n/P! with a much smaller exponent |D|? Of course, there is such a family of size
1, we know this by the probabilistic method, even with clique and independence number
bound of 2logn. But the point here now is that we want this family to be explicitely
constructible.

For (5.4) we only needed that less than € :=
contains a clique of order 2log, n. Let us take a closer look at what property was really
necessary in order to be able to infer this for the family G. Well, first we calculated
in (5.2) the probability that a particular set of k& vertices forms a clique in a uniformly
random member of G and then just used the union bound. And why did we know

that the probability that a particular k-set forms a clique is equal to 2_(’5)? Because
when we selected a member of G uniformly at random, the appearance of each edge was
mutually independent from the appearence of all other edges. The crucial observation
now is that in order to guarantee (5.2) for k£ = 2log, n, we do not need the full power
of independence of all the coordinates in the family G. The independence of any set of
2login > (’;) coordinates is enough. It turns out that we will be able to ensure this
constructively with much fewer than 2(3) graphs.
Remark. In fact the independence of all (Ei;) ~ (%
2
nates is not necessary—it would be enough to have it for the (}) ~ (%)k(Ho(l))
corresponding to k-cliques. But we do not know how to pinpoint only those.

)kz(Ho(l)) subsets of (%) coordi-

subsets

5.3 Limiting the randomness

5.3.1 d-wise independent sample spaces

Let us make the previous wishful thinking more precise. Our general plan is to construct
a (hopefully) small multiset S of 0/1-vectors of dimension N, such that any d subset of
the coordinates are mutually independent. Then, choosing N = (’2‘) and d = 2log’n,
and interpreting the constructed 0/1-vectors as graphs on n labeled vertices, we obtain

the desired family D, for which (5.2) is valid when k = 2logn.

Definition: A sample space is a probability space (S, P), where S = S(M) is the multiset
of the column vectors of a 0/1-matrix M, and P is the uniform distribution on S.

Remark: 1. If N is the length of the vectors in a sample space S, then we will often
refer to S as an N-dimensional sample space. This does not in any way refer to the
dimension of the linear space these vectors span over F;. 2. The matrix M can of course
have identical columns and hence the sample space might contain vectors with multi-
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plicity larger than one. For ease of notation, we chose to avoid formally describing S
as a multiset of vectors. For an N-dimensional sample space S C {0,1}" and vector
a € {0,1}", the quantity P[s = a] represents the probability that a uniformly chosen
element s of S is equal to the vector a. In other words it is equal to the number of times
a appears as a column vector of M, divided by the number |S| of columns.

3. The concept of a sample space is a convenient way to approximate an arbitrary
probability space: first one approximates the probabilities of the vectors with rational
numbers having a common denominator D and then takes a sample space of cardinality
D where each vector has multiplicity of the numerator of its probability.

Definition: A sample space S C {0,1}" is called independent if for any vector a €
{0,1}", we have

Remark: Independent sample spaces are in fact pretty boring: all vectors in {0, 1}¥ must
have the same multiplicity. We denote by Gy the (N x 2¥)-matrix whose columns are
the different 0/1-vectors of length N (in some arbitrary fixed order). The sample space
S(Gy) = {0,1}" is the unique independent sample space with vectors of multiplicity
one.

The problem with the full independence of independent sample spaces is their expo-
nential size. The following is the key definition of this section.

Definition: For an (N x m)-matrix M and a subset J C [N] of the rows we denote by
M|; the matrix obtained from M by deleting all rows indexed by elements from [N]\ J.
Let d < N be positive integers. The N-dimensional sample space S = S(M) C {0,1}" is
called d-wise independent if for any subset J C [N], |J| = d, the d-dimensional sample
space S|y := S(M|;) C {0,1}¢, called the projection of S on J, is independent.

Note that being N-wise independent in dimension N is equivalent to being indepen-
dent.
Remark: For a sample space S C {0,1}" and a subset J = {i; < ... < 14} C [N] of the
coordinates, we denote by s|; := (s;,,...,S;,) the element of S|; corresponding to the
element s € S. Spelling out the definition with this notation: the restriction of S on J
is the d-dimensional sample space

S|y ={sls: s € S} € {0,1}*

of size |S|, and the sample space S = S(M) C {0,1}" is d-wise independent if and only
if for every J C [N], |J| = d, and vector a € {0, 1}¢, we have that
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Exercise 5.12 Let S = S(M) C {0,1} be the sample space corresponding to the
columns of a matriz M.

(a) Show that if S is d-wise independent then it s d'-independent for every d' < d.

(b) Show that S is d-wise independent if and only if the row vectors of M, in-
terpreted as 0/1-valued random wvariables on S, are d-wise independent and
uniformly distributed.

In the main theorem of this section we show that if one is content with just d-wise
independence one can have a sample space of size significantly smaller than 2¥. Even
more importantly, the solution is constructive.

Theorem 5.1 (Alon, Babai, Itai) For every integer d and N = 2° with t € N, we can
construct a d-wise independent sample space S C {0,1}" of size |S| = onls]

Proof. We will show the theorem for odd d. For even d, we just take the (d + 1)-
independent sample space of size 2N ¢ and use Exercise 5.12 to conclude its d-wise
independence.

Independence requires that every vector occurs with the same multiplicity. Our main
concern here is to ensure this efficiently. To this end we plan to use a linear map to
generate the elements of the sample space, because in the image of a linear map every
vector occurs as the image of vectors from the domain the same number of times.

Namely, applying a (d x m)-matrix L to the elements of F}* produces a d-dimensional
sample space {Lz : z € FT'} C F¢ of size 2™, which we denoted by S(LG,,). For every
a € Im(L) C F§ the inverse image L !(a) is a coset of the kernel of the linear map L,
and hence has the same size |Fz|™ "*"*(X) as an (m — rank(L))-dimensional linear space.

Consequently the sample space S(LG,,) is independent if and only if L is surjective,
that is if the rows of L are linearly independent. In combination with Exercise 5.12, we
can distill the following connection between probabilistic and linear independence.

Proposition 5.2 Let L be a (d x m)-matriz with 0/1 entries. The sample space S(LG,,)
being independent 1s equivalent to each of the following.

e The rows of L, interpreted as vectors in F', are linearly independent.

e The rows of LG,,, interpreted as 0/1-valued random variables, are uniformly
distributed and independent.

Independence is just d-wise independence in dimension d. We can easily generalize the
above characterization of d-wise independence to arbitrary dimension N > d. Let L be
an (N x m)-matrix. By definition, the N-dimensional sample space S(LG,,) C {0,1}¥ is
d-wise independent if for every d-element subset J C [N] of the rows the d-dimensional
projection S (LG,,)|; = S((LGn)|s) is independent. The matrix (LG,,)|;, obtained
from LG,, by keeping the rows indexed by elements of J, is equal to the matrix L|;G,,.
By Proposition 5.2 the sample space S (L|;G,,) is independent if and only if the (d x m)-
matrix L|; is of rank d. So we have infered the following.
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Corollary 5.3 Let L be an (N x m)-matriz. The sample space S(LG,,) C {0,1}V is
d-wise independent if and only if any d rows of L are linearly independent over F,.

How to obtain the magic matrix from Corollary 5.3 for the construction of our d-wise
independent sample space? When we hear the condition that any d rows of a matrix
should be linearly independent, it immediately rings the bell: ”"moment curve” (recall
Wenger’s construction of Cg- and Cio-free graphs with many edges from Section 3.4).
We saw there that for every field F and every d < |F|, any d distinct vectors from the
set My ={(1,a,a?,...,a% 1) : a € F} C F? are linearly independent. This gives rise to
an (|F| x d)-matrix L with the required property and we could choose F to be a however
large finite field. Hence the sample space S(LG4) would be d-wise independent and of
size 2¢, which is independent of the dimension N. Wow! At the same time this sounds
very suspicious, too good to be true ...

Indeed, first of all we ignored that for a sample space we need 0/1-vectors and not
coordinates from an arbitrary finite field F. Secondly, the linear independence of the
rows should be over F, and not over F. In order to fix this we need an encoding of
the elements of the finite field as bit-vectors, which maintains the linear independence
property. For example when we add the bit-vector of a* and the bit-vector of g* (over
F>) the result should be the bit-vector of their sum (in F).

This is how the field Fy: comes into play. The elements of F,: have a canonical
encoding with elements of F%, which is a linear space over F,, such that addition in the
field Fo: is just usual addition of vectors.*

Set N = 2¢. The dimensions of our matrix A will be N x (¢(d—1)+ 1), whered < N
is an arbitrary integer. Let ay,...,ay be an arbitrary ordering of the elements of Fy:.
We define the ** row vector as the concatenation of an entry 1 and all the powers of
the element a;, up to the (d — 1)th power. In fact the first coordinate 1 just represents
the Oth power, which is the same for every ;. More precisely, labelling the coordinates
from O up to ¢(d — 1), the row vector r; of A between coordinates (5 — 1)t + 1 and jt is

a’ (where the power is computed in Fy: but the result is written as an element of F).

1

Example. To continue our example of t = 3, let N = 2% = 8 and let, say, d = 4. The
matrix we define will have dimension 8 x 10. The rows are labelled by the binary vectors

4The elements of Fy: are polynomials of degree at most ¢ — 1 over F,, factored with a polynomial of
degree t which is irreducible over F5. So once the irreducible polynomial is fixed, such a representation
can be given as the coefficients of the terms of degree at most ¢ — 1.
Example. To give an example for a finite field, let ¢ = 3. We fix the polynomial f(z) = z® + z + 1 of
degree 3; one can check that f is irreducible over F; by checking that neither of the two elements of F;
are roots. The elements of the field Fg are the polynomials 0,1,z,z + 1,z%,z° + 1,2° + z,z% + = + 1.
These elements can of course be denoted by 0/1 vectors of length 3, the coefficient of the monomials z2, z,
and 1 giving the three coordinates. This is completely meaningful when talking about addition in Fg as
that is defined exactly as it would happen in the linear space F3. For multiplaction, however, we need the
fixed polynomial f(z). The product of two field elements is their usual product as polynomials modulo
the equation =2 4+ z 4+ 1 = 0; that is, whenever we see a power larger than 2, we simplify by substituting
23 = —z — 1 =z + 1. To take an example, consider

(Z2+z)(z+1)=z*+22%+z+1l=z z+z+1l=(z+l)z+z+1l=22+2z+1=22+1.
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of length 3. Let us look at what is in the fifth row (labelled by the field element z2 + 1).
The first element is a 1. The next three are 1,0, 1, which are just the coordinates of z2+1
when written in F3. For the next three entry we must calculate that (z2 + 1)2 = z? + z
in the field Fg and for the last three we calculate that (2 + 1)® = z + 1. Hence the fifth
row is 1,1,0,1,1,1,0,0,1, 1.

Let us now take d arbitrary rows of the matrix A, for notational simplicity we denote
them by ri,..., 74, defined by elements o, ..., a4 € Fot. How could a linear combination
Z171 + -+ - + 474 be the zero vector for some z = (z4,...,24) € Fg? For that to happen
first we would need .7 | z; = 0 to hold, because of the first column and then also that
% z;0] =0 holds for every j = 1,...,d — 1, because of the columns from (5§ — 1)t + 1
to 7t. Note that here we started to interpret these equations over F.:, instead of just in
F.

Hence we have the following system of d equations in Fa:.

, 4+ - + x4z =0
T + o0+ zTe0q = 0
T02 4+ - 4+ zg0d = 0 (5.5)
ziait + -+ zgadt =0

The matrix of this system is the Vandermonde matrix, which is non-singular, since
the a; are distinct elements of Fy:. So the unique solution z € th of the system is the
0-vector, and thus the d rows rq,...,r; of A are linearly independent over F,.

Concluding, we constructed a N x (¢(d — 1) + 1)-matrix A with 0/1 entries such that
every d of its rows are linearly independent over F,. Corollary 5.3 then implies that the
N-dimensional linear sample space S(AG(4 1):41) C {0, 1}¥of sige 20011 = 2Nd-1 ig
d-wise independent.

This is roughly the square of the size we promised in the theorem. In order to improve,
we must pinpoint what was wasted in the previous argument. The clear candidate is
that even though we do not care whether there are coefficients z4, . . ., z4 satisfying (5.5)
that are not all Os or 1s, our argument still did show that there are none such. How can
we make use of that the coefficients z; of the linear combination of the rows are not just
arbitrary elements from F:, but either 0 or 17

What special about 0 and 1 is that squaring does not change them, so there is no
point in raising them to higher powers. We can use this to show that the equation for the
squares of the a; in (5.5) is a consequence of the equation for the first powers. Indeed,
simply squaring the first powers, we obtain

2 2.2 2.2 2 2
0= (21004 + -+ T404)° = zia] + - - + 505 = T10] + -+ - + T405.

In breaking up the parathesis of the square of the sum we used that in characteristic 2
the mixed terms fall out since they contain a factor 2. In the last equality we did use
that z; = 0 or 1.
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The same squaring trick applies to the equation for the bth powers for arbitrary b.
The mixed terms fall out as they have coefficient 2, and z? can be replaced with z;
because z; € F, and thus we obtain the equation for the (2b)th powers:

_ b B2 _ 2% 2 2% bbb %
0= (2100 + -+ z40))° = zia] + -+ z505 + g 2T,z 000 = 10y + - oy

1<J

Hence the equation 0 = z;0a5 + -+ + o for any even power s = b-2" < 2¢ — 1, where
r > 1 and b is odd, can be obtained from the equation 0 = z;a% + - - - + o}, by squaring
it r times.

Motivated by this we construct a shorter matrix B using only the odd powers as
follows. Let N = 2. The dimensions of our matrix B will be N x (t£+1), where £ = 231
Recall that ay,...,ay is an arbitrary ordering of the nonzero elements of Fy:. The 7t
row vector is the concatanation of a 1 and all the odd powers of the element «a; up to
aflil. More precisely, labeling the coordinates from 0 up to ¢4, for y = 0,...,£ — 1 the
vector 7; between coordinates jt+ 1 and (j + 1)t is o>’ *! (where the power is computed
in Fy: but the result is written as an element of F%).

Let us take d = 2£ + 1 rows 74, ...,y of the matrix, defined by elements ay,...,aq.
How could a linear combination z,7; + --- + z474 be the zero vector for some z € Fg?
For that we would need Y7 | z; = 0, because of the first column and "2 | ;07! = 0,
because of the rows from jt + 1 to (5 + 1)t. These are £ + 1 equations and 2¢ + 1
variables. We obtain however the remaining £ equations for the even powers by squaring,
as described above, and end up with the the same equation system (5.5) and the same
conclusion as above: there is only the trivial £ = 0 solution. Consequently the d rows of
the matrix B are linearly independet over F,.

Corollary 5.3 now implies that the N-dimensional linear sample space S(BGy 1)

C
{0, 1}V of size 2% = 2N Tt is d-wise independent. This concludes the proof. O

Remark: The matrix B constructed above is well-known in classical coding theory: it
is essentially the parity check matrix of the famous binary BCH-codes discovered by
Hocquenghem (1959) and independently by Bose and Ray-Chaudhuri (1960). BCH-
codes and their extensions are widely used in satellite communications and computer
drives to correct errors in messages. The idea of error correction is the following. If a
(say binary) message is sent through a “noisy channel”, then it could arrive distorted,
as the noise might flip some of the bits. To circumvent this, the message is encoded
somehow into a longer message, with the intention that even if some bits are flipped by
the noise, the message could be reconstructed. The plan is to encode the message before
transmission into a sequence of code words, that are elements of a carefully selected set
C C 0,1} of vectors. The set C is refered to as a binary code. To measure how good
a code C C {0,1}" is in terms of fixing the errors caused by the noise, we say that C
corrects up to d errors, if for any vector a € {0,1}", there is at most one code word
which differs from a in at most d bits. This is a sensible definition, because then no
matter what vector a is received at the end of a transmission through a noisy channel
which does not introduce more than d errors to a code word, we can determine uniquely
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which message (i.e. code word) was originally sent.

Obviously the more error a code can correct, the better. But one also feels that
the more error one would like to be able to correct, the longer the code words will
have to be, and consequently the longer it will take to communicate the same message.
The latter property is measured by the rate of the code, i.e. the amount of useful
information divided by the actual information sent. In our system we choose to send
one of |C| different code words of length N, that is log|C| bits of information, using
N bits. So we can define the rate of the code to be the quantity %. One compares
this number to the largest number d, such that the code corrects up to d errors. There
will be no big surprises: the larger the error correction, the smaller the rate has to
be. The exact dependence of these quantities on each other (together with the speed
of encoding/decoding) is crucial in practical applications. In fact for BCH-codes one
ignores the row of B corresponding to 0, because the cyclic nature of the multiplicative
group of F5: makes it possible to devise very fast encoding and decoding algorithms.

A set C C {0, 1}" of vectors is called a binary code and its elements are called code
words. To measure how good a code C C {0,1}" is in terms of fixing the errors caused
by the noise, we say that C corrects up to d errors, if for any vector a € {0, 1}V, there
is at most one code word which differs from a in at most d bits.

Exercise 5.13 Let M be a matriz whose columns are the elements of a d-wise inde-
pendent N-dimensional linear sample space S of size |S| =m, and let

C={zcFY:2"M =0}

be the subset defined by the vectors orthogonal to all members of S. Show that C
corrects up to d/2 errors.

Exercise 5.14 A random variable 1s called almost constant if there exists a single value
that it takes with probability 1.

(a) Show that if the N random wvariables r1,...7y : @ — R are mutually inde-
pendent and not almost constant, then the 2V functions of the form f; =
[Lcs (r; = E[r;]), J C [N], are linearly independent in the vector space R%.

(b) In Theorem 5.1 we have constructed oN 2] dowise independent 0/1-valued
random variables having the uniform distribution. Here we show that this 1s
best possible up to a constant factor depending only on d.

Let m(N,d) be the sum of the following binomzial coefficients:

> (J;’) if d is even
m(N,d) = { ’
() + (l7)2) 4 d is odd.
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Show that if the (not necessarily 0/1-valued) random variables ry,...,ry over
the sample space Q) are d-wise independent and not almost constant, then the

size |Q2| of the sample space is at least m(N,d) (which is of the order nL%J)
Let us now return to our original problem of constructing Ramsey graphs. We define
N = (), d = 2logj n, and take our d-wise independent sample space of size 2(N+1)(¢-1)/2
we have just constructed. We interpret the members of this sample space as graphs on
n vertices and denote their family by D. If we take the Abbott product of all graphs in
D, we have a graph G with nl/P! vertices and clique- and independence number at most

(41log, n)/Pl. After doing the math we obtain that we constructed a k-Ramsey graph of
Ordel’ k logloglogk .

Exercise 5.15 Establish that the construction we gave using the Abbott-product of
graphs from the d-wise independent sample space we described is indeed strongly
explicit. That 1s, for any n define a graph G, that s 9 fetog -Ramsey, and describe
an algorithm that outputs in poly(logn)-time whether two input vertices u and

v € [n] are adjacent in G, or not. Argue that G, is also morally explicit.

This is alright: we improved from three times iterated logarithm in the exponent to
two-times iterated logarithm.

Can we carry the idea of sample spaces even further? Not, if we insist on d-wise inde-
pendence: Exercise 5.14 above combined with Exercise 5.12 shows that, up to constant
factor, the size of our d-wise independent sample space is as small as it could be.

In order to proceed, we simply have to give up on perfect 2 log, n-wise independence.
In fact, not insisting anymore that in calculation (5.2) the probability P[K is a clique] of

a k-set K hosting a clique is ezactly L), but being content with it being at most, say,

k

2 2
twice as large, would not have any serious effect on the rest of the proof. It turns that
this idea of being “lenient” with independence is a good one—it will allow us to further
significantly reduce the size of our sample space, leading us to the construction of even

larger k-Ramsey graphs.

5.4 Approximating randomness

5.4.1 Almost independent sample spaces

In this section we relax the independence requirement of sample spaces that each bit-
vector should appear with the exact same probability, and allow that they appear with
roughly the same probability, up to an error of e.

Definition: A sample space S C FY is called e-close to independent if for any vector
a € {0,1}", we have

<e.

- oN
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Note that being 0-close to independent is equivalent to being independent. For our
application we of course need the extension of the definition to almost d-wise indepen-
dence.

Definition: The sample space S C {0,1}" is called e-close to d-wise independent if
for any subset J € ([Z”) of the coordinates, the sample space S|; C {0, 1}¢ is e-close to
independent, that is, for any vector a € {0, 1}¢, we have

In the main result of this section we show that allowing a bit of imperfectness in d-wise
independence enables one to reduce the size of the sample space from the polynomial of
Theorem 5.1 to a polylogarithmac function of N. More precisely, we will construct sample
spaces that are e-close to d-wise independent, and their size is only polylogarithmic in
N and polynomial in their imperfectness measurements, i.e., in d and %

Theorem 5.4 (Naor and Naor) Let N = 2* with t € N, let d > 1 be an odd integer, and
let € > 0. Then there is a sample space R C {0,1}V of size at most
_ 2
25 +1)" &

2
2 N@].Og N,

which 1s e-close to d-wise independent.

The main idea of the proof is to take the d-wise independent sample space S(BG,,)
we constructed in the last section and somehow reduce its size. The columns of the
matrix BG,, are the 2™ linear combinations of the columns of B: each column of G,,
is responsible for one. The plan is to take only an appropriately selected few of these,
such that the d-wise independence is not ruined too much. It is tempting to select
a few columns of GG,, randomly, but we must remain sober and resist—we want an
explicit construction. We will instead construct an m-dimensional sample space S(Q)
of quadratic size p ~ T—;, as opposed to 2™, which is e-close to independent. Then we
will show that taking only this p linear combinations of the columns of B, as opposed to
all 2™, is enough to maintain the d-wise independence with an error e. Namely, we will
show that S(BQ) is e-close to d-wise independent.

In the next two subsections we work out the ingredients of this plan and then the
proof of Theorem 5.4 will follow easily.

Linear tests

The property of being e-close to d-wise independent is quite difficult to work with, let
alone to show directly. Hence we develop a more effective way to establish it, a way
which is much more apt to our plan to create our sample space via linear combinations.
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If a sample space S = S(M) C {0,1}¥ is independent then we have seen in Exer-
cise 5.12 that it is 1-independent, that is, the number of 0 and 1 in every row of M is
the same. In the next exercise we generalize this to give yet another characterization of
independent sample spaces.

Exercise 5.16 A sample space S C {0,1}" is independent if and only if for every
vector a € {0,1}" \ {07},

Here 0V denotes the vector of length N having only 0 coordinates, while s-a = vazl $;Q;
represents the usual dot-product of vectors over F».

The exercise involves 2¥ — 1 “linear test”s one performs on the sample space to
verify its independence, each of which should produce a halving of the sample space.
We will relax on the perfectness of these halvings to approach the concept of almost
independence.

Definition: A sample space S C {0, 1} is called e-unbiased with respect to linear tests
if for any a € {0,1}" \ {0"},

IP[s-a=0]—-P[s-a=1]| <e

Note that S is e-unbiased with respect to linear tests if and only if for any a €
{0,1}" \ {0"}, the 1-dimensional sample space {s-a : s € S} C {0,1} is €/2-close to
independent.

The equivalence of being e-unbiased with respect to linear tests and being e-close to
independent, which was established in Exercise 5.16 for ¢ = 0, does not hold for ¢ > 0.
This is shown in the next exercise.

Exercise 5.17 Show that if a sample space S C {0,1}" is e-close to independent then
it 15 also €2V -unbiased with respect to linear tests. Construct a sample space that

shows the statement being best possible (for all sensible values of the parameters N
and €).

The following lemma states that one direction of Exercise 5.16 remains valid even if
€ > 0 and thus establishes linear tests as a method to prove e-closeness to independence.

Lemma 5.4.1 (Vazirani) Let S C {0,1}" be a sample space that is e-unbiased with re-
spect to linear tests. Then S 1s e-close to independent.

Proof. We introduce the probability distribution function p on ZY by setting p(z) :=
P[s = z] for the probability of a vector z € {0,1}" in the sample space S. We need
to show that this function p : Z¥ — C does not deviate more than € from its average

\z_lN\Za:eZQ’ p(z) = 2%\, We make use of the basic properties of the discrete Fourier
2
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transform of p on the group (H, +) = (Z¥,+). In particular, applying Proposition A.35
we obtain that

< &(p)|ZY| (5.6)

1
'P(a) T oN
for every a € ZY, where

&(p) = max{|(x,p)| : x € Z¥',x # X0}

is the largest absolute value among the non-principal Fourier coeffiecients of p.

Recall that the characters of Z) are defined by x;(a) = (—1)%¢, for every b € ZY and
a € ZY. The key observation is that the probability difference between the occurrence
of 0 and 1 upon making a linear test with some test vector b € ZY is precisely the
(non-normalized) Fourier coefficient of p corresponding to character ,. The test vector
b = 0V corresponds then to the principal character x, and therefore our assumption on
S implies that all, but the principal, non-normalized Fourier coefficients of p are at most
€. And that, via (5.6), implies that S is e-close to independent.

Indeed, for any b € Z¥ \ {0"} we have

€e>P[s-b=0-P[s-b=1]=> Pls=a]—- Y P[s=ad]

aEZQI GGZQI
a-b=0 a-b=1
= (-1)*p(a) = ) _ xs(a)p(a) = |Z3] (X, D),
aczy aczl
and the lemma is proved. 0J

Our eventual goal is the construction of a small sample space that is e-close to d-wise
independent. The next lemma describes an easy way to combine the generator matrix L
of a d-wise independent linear sample space S(LG,,) with a sample space S(Q) which is
e-close to independent and obtain a sample space that is e-close to d-wise independent.

We plan to use Lemma 5.4.1 to each d-dimensional restriction of the constructed
sample space, in order to establish that they are all e-close to independent, and then
conclude that the sample space itself is e-close to d-wise independent.

Lemma 5.4.2 (Naor and Naor) Let B be an (N xm)-matriz over Fy such that any d-rows
are linearly independent and let Q be a (m x p)-matriz over Fy such that the sample
space S(Q) C {0,1}™ of size p is e-unbiased with respect to linear tests. Then the
sample space S(BQ) C {0,1}" of size p is e-close to d-wise independent.

Proof. We have to check that for every subset J C [N] of size d the rows, the restriction
of the sample space S(BQ) to these d rows is e-close to independent. To this end
we would like to use Lemma 5.4.1 and hence verify that the d-dimensional restriction
S(BQ)|; = S(B|;Q) is e-unbiased with respect to linear tests. Let a € {0,1}¢\ {0%}
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be a d-dimensional test vector. Since a”(B|;Q) = (aTB|;)Q, the linear test of S(B|;Q)
with test vector a and the linear test of S(Q) with test vector a” B; are the same. Note
that the test vector a” B|; € {0,1}™ is non-zero, since a # 0% and any d rows of B are
linearly independent. By assumption the sample space S(Q) is e-unbiased with respect
to linear tests, so the probability of 0 and the probability of 1 differ by at most € in the
1-dimensional sample space S((a”B|;)@), and hence also in S(a”(B|;Q)). O

The first ingredient of Lemma 5.4.2, a matrix B with any d of its rows being linearly
independent, was constructed in Theorem 5.1. In the next subsection we construct the
second ingredient: a small sample space S(Q) C {0, 1}™ which is e-unbiased with respect
to linear tests.

Almost independent sample spaces via the quadratic character

A field has two operations: addition and multiplication. There are many examples of
the vague phenomenon that being a regular structure in some additive sense and being
a regular structure in some multiplicative sense are mutually exclusive, or at least very
limited in size. As a simplest example one can think of are arithmetic and geometric
progressions: the largest set that is both is of size two. Recall the Paley graph we
discussed in the first section of this part: for a prime p = 1 (mod 4), the Paley graph
P, was just the Cayley graph defined on the additive group of F, by the generating set
S = @R, of the quadratic residues. That is, the Paley graph is defined on the additive
structure of a field by a generating set that is multiplicative in nature. While we know,
modulo the Generalized Rieman Hypothesis, that the Paley graph is not a perfect source
of randomness, we also know that it might be a pretty good imitation, in fact waay
better than anything we are able to construct today.

We use this intuition, the quadratic residues being a pseudorandom random subset
within the additive structure of the finite field F,. Recall that the value of the quadratic
character g, : F; — {—1,1} is 1 for quadratic residues and —1 for quadratic non-residues.
Convert these values to bits: let 7(z) = 0 for quadratic residues and 1 for non-residues.
Expressed with a formula, we have g,(z) = (—1)"®). In other words, 7 = 1ygg, is just
the characteristic function of the quadratic non-residues modulo p. Imagine these values
in the cyclic additive order of the field, that is r(1),r(2),(3),...,r(p—1),7(0). For 0 let
us just extend r arbitrarily, say let us have r(0) = 1.

Our sample space will consits of the p bit-vectors that form an interval of length m
in this cyclic ordering of length p. Since intervals are very regular additive structures,
we hope that the multiplicatively defined values will be quite random. Naturally, we
will have to assume that m is small enough compared to p. Formally, we define a
(m x p)-matrix Q@ = QP,, whose colums ¢(®) € FJ* are labeled by elements z € F, and

(=) ™

g, =r(z+1)foreveryi=12,...,m.

Proposition 5.5 (Alon, Goldreich, Hastad, and Peralta) For every m < ./p, the sample space
S(@Qr) ={q¢® :z€F,} is T -unbiased with respect to linear tests.
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Note that for this proposition to have any power, we better have m < €,/p with some
€ < 1; the smaller the €, the better.
Proof. Let us fix our “linear tester” a € {0,1}™. As we saw in the proof of Lemma 5.4.1,
the probability difference in the definition of almost independence can be expressed as
follows.

PccGFp [q(z) ta = O] - Pzer [q( ca = 1 Z Pa:er T =0 — Z Pzer T = b

beFp beFp
q(b)-azo r(0).q=1

_* Z 1)q(b)a _ ZH( 1y (b+4)as

ber ber i=1

We want to replace each product [, (—1)"®+9% with [T, (0,(b+1%))% = 0,([ 1=, (b+
1)*) and then use Weil’s Theorem for the quadratic character g, and the polynomial
f(z) = [, (z + %)*. We can certainly do this whenever b € F, is not in the interval
[p — b,p — 1], because then b+ % # 0 and hence (—1)"®+) = p (b + 1) for every 1 =
1,2,...,m, by the definition of r. These are most of the b € F,; only those in the
interval [p — m,p — 1] of length m < ,/p are problematic. Whenever b € [p —m,p — 1]
the corresponding product contains a factor (—1)"(®*%)% with b+1 = 0. Considering that
for the sake of Weil’s Theorem p,(0) is defined to be 0, whenever b+ 7 = 0, we have that
|(—1)r+ei — o (b + 2)] is either O or 1 (depending on whether a; = 0 or 1).

|P26Fp [q(m) a= 0} — Pecr, [q( 2).a= 1 Z H 1)r(b+z ai| <
bEsz 1
L 1 a - r 2)a; - N\a.
<5 S TT e+ += > (T2 — T](ep(b + 3)
beFp 1=1 be[p—m,p—1] |i=1 i1
1 m
2 (o) 2
p beF, i=1
< m_1 + m < m

In the last step we used m < ,/p and in the next to last we applied Weil’s theorem for
the quadratic character g, which has order 2 and the polynomial f(z) = [[i-,(z + ©)
which has at most m distinct roots and is certainly not a square. 0

Proof. We can now put together the proof of Theorem 5.4 by using Lemma 5.4.2 with
the almost independent independent sample space of Proposition 5.5 and the d-wise
independent linear sample space of Theorem 5.1.

Let m = t L + 1. First construct the (N x m)-matrix B with the property that

( d21+1)

any d rows are 11near1y independent. Then, after choosing a prime p between =
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and its double, construct the above sample space S(Q?,) C {0,1}* with m = t% + 1.

By Proposition 5.5 S(Q?)) is \/—ﬁ—unblased with respect to linear tests. Note that 7 <

€. According to Lemma 5.4.2 the sample space S(BQZ,) of size p is e-close to d-wise
independent. This concludes the proof of the theorem. O

Better Ramsey-graphs

Let us now try to use our sample spaces from Theorem 5.4 which are e-close to d-wise
independent in our quest for explicit Ramsey graphs.

We could again take our constructive sample space, like we did earlier, interpret it
as graphs on N = () vertices and take the Abbott product of all of them. But in fact,
since our sample space is now so small, we can do even better. We can return to the
original idea of the Abbott construction: checking for the perfect ”starter graph” with
brute force in polynomial time, and then taking the Abbott-powers of this single graph
with good Ramsey properties.

Our goal in this section is the construction of a graph G on n vertices in time polyno-

mial in n with w(G), a(G) < 2veenlelen [n the solitude of your home you should check

that it is equivalent to constructing a k-Ramsey graph with km vertices. Recall
that this will be a further improvement in the line of our constructive lower bounds: the
exponent of the order of the construction in Subsection 5.3.1 was twice iterated loga-
rithm and now we have essentially a single log k in the exponent (disregarding the lower
order (loglogk)? in the denominator.)

This construction was apparently folklore, here we follow the description of Baraz.
Let us fix the number of vertices n and define the integer k = 2ven,

We aim to find our "good starter” graph H on k vertices. What is special about the
selection of k. We will see that on the one hand we can choose a sample space of size
polynomial in n of graphs on &k vertices, which <y-close to d-wise independent, where -y is
small enough and d is large enough. On the other hand it is possible to check for small
enough cliques on k vertices.

We take a sample space S C {0, 1}(’5) which is 27518 *_close to being 4.5 log? k-wise
independent. By Theorem 5.4 there exists such a space of size

~ 20.25 log* k2101°8" ¥ 1og? (Z) — [Ollog®) — no(1)

i.e., the size of this space is polynomial in n.
Note that for any graph on k vertices we can check, just by brute force, whether the
cligue number and the independence number of it is at most 3logk, in time

k 3logk _ Ollogk) _ nO(l),
3logk 2

which is polynomial in n.
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Hence in polynomial time we can check for each member of this sample space, whether
its clique number and independence number is at most 3log k. What is left to prove is
that in S, there exist such a graph. This follows from the almost d-wise independence
of the space. Fix a subset L of the vertices, |L| = 3log k. Then by the almost 4.51og” k-
independence of the sample space,

1 1 1
P[L is a clique or independent set] = 2 - ( oy T oo 2k> L -
o('5) ~ 2oke (310g k)

That is there exists a member of the sample space S for which no set of size 3logk is
a clique or an independent set. This will be our starter graph H and our brute force
search will certainly find it in polynomial time in n.

Now take the ,/lognth Abbott-power of H. This product graph has kVE™ = n
vertices and can be constructed in time polynomial in n (Exercise ??). By (5.7), its
clique number and independence numnber is certainly upper bounded by

(3log k)VPE™ = (3,/log n)v1oe" = gveerlogloen (i i),
The extra factor in the exponent is smaller than 1 for large enough n and hence we are
done.

Note however a crucial difference in the construction of this last example and the rest
of this section. When we took the Abbott-product of all graphs in Subsection 5.2 or when
we took the Abbott-product of all graphs from the d-wise independent sample space in
Subsection 5.3.1, these were strongly explicit, even morally explicit constructions. In
our current construction one needs to construct the starter graph first before being able
to answer adjacency queries about its Abbott-power and this alone already takes time
polynomial in n, and not in log n. So we have “only” an efficiently explicit construction.

The best strongly explicit construction by the Abbott-product (from Subsection 5.3.1)
has a twice iterated logarithm in the exponent. In the next section we discuss a surpris-
ingly simple strongly and morally explicit construction, which beats slightly even the
efficiently explicit Abbott-type construction above.

5.5 Ramsey graphs via intersection theorems

In 1977 Frankl extended the construction of Nagy using the theory of sunflowers to

log k > — 00.

log log k&

obtain a constructive superpolynomial lower bound k/(*), with f(k) = Q (

Later Frankl and Wilson (1981) gave a simpler proof through the linear algebra method.
This is what we will discuss here. Let p be a prime and define the graph G by

V(G) = ( [p°]

0 1), A and B are adjacent if |[ANB| = -1 (mod p).

Observe that for p = 2 we get back Nagy’s construction with £ = 8.
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Theorem 5.6 Graph G contains no clique and no independent set of size
p—1 3
> (%)
: 1
1=0
Provided that the theorem holds, we have a ~ p**-Ramsey graph on ~ pP” vertices.

Exercise 5.18 Check (precisely!) that for every k we have a k-Ramsey graph with

log k

k (1°g1°gk) vertices.

The proof of Theorem 5.6 is again a wonderful application of the linear algebra
method, which goes one step further than the proof of the theorem of Nagy. Now
characteristic vectors do not suffice; we need a simple technical lemma about function
spaces. Let F be a field and Q2 C F™. Then the set F® = {f : Q — F} of functions is a
vector space over F'.

Lemma 5.6.1 If fi,..., fm € F® and vq,..., v, € S such that
e fi(vi) #0, and
e fi(v;) =0 for all 7 <1,

then fi,..., fm are linearly independent in F.

Proof. (of Lemma 5.6.1) Suppose A1 fi + -+ Anfm = 0, and let j be the smallest index
J with A; # 0. Substituting v; into this function equation we have

Afi(vs) + o+ A fi1(g) + A fi(vs) + A fia(vs) + o+ A fm(vs) =0,
h . NV . . W v
—0, since A\; = 0,1 < #0 -0, since f;(v;) =0, 7 <1

a contradiction. O

Proof. (of Theorem 5.6) For a set A € 2[*"l let v, € {0,1}”° be the characteristic vector
of A. The linear algebra method is based on a simple, but crucial identity connecting
the size of the intersection of two sets to the inner product of their characteristic vectors,
namely that |AN B| = (v, vp).

Independent sets. Let A,..., A, be an independent set in G, so |4A; N A;| # —1 (mod p)
for every 7 # j. For each ¢ let v; = v4, be the characteristic vector of A;. Our plan is
to define a function f; : {0, 1}”3 — F, for every 1 = 1,...s, prove that they are linearly
independent and bound the dimension of the vector space they span — giving us an
upper bound on s. Let

Fi@) = (v — 1),
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for all 4. Obviously we have f;(v;) # 0, since |A;] = —1 (mod p). On the other hand,
we have f;(v;) = 0 for all j # 1, since {4i,..., A,} is an independent set. Our technical
lemma then implies that fi,..., f, are linearly independent. The dimension of the space
these functions span could be quite large, since each variable z;, 7 = 1,...,p* could ap-
pear with powers ranging from 0 to p— 1. To reduce the dimension of the space, we apply
a “multilinearization trick” and define f;(z) from f;(z) by replacing each occurrence of
a large power ! (I > 1) with z;. Observe that f; = f; on {0,1}#°. Since all the f; are
multilinear polynomials, the dimension of the space spanned by them is the number of
monomials of degree at most p — 1,

3 3
1+p3+(p2)+---+(pp_1>.

Cliques. To bound the clique number of G we proceed similarly, but we will work over R
instead of F,. Let By,..., B: be a clique in G, so |B,NB;| = —1 (mod p) for every ¢ # 7.
Let L={p—1,2p—1,...,p° —p— 1} be the set of possible intersection sizes. Note that
|L| = p — 1. For each 7 let w; = vp, be the characteristic vector of B; and let

filz) = [ [ (@, wi) = 1)

lel

be functions {0,1}** — R for all 4. Since |B;| = p* — 1 ¢ L, we have f;(w;) # 0. On
the other hand, f;(w;) = O for all j # i. Lemma ?? then implies that f;,..., f; are
linearly independent. Again, we multilinearize the functions and define f;(z) from f;(z)
by replacing each occurrence of a large power z! (I > 1) with z;. Since |[L| = p—1, all
the f; are multilinear polynomials of degree at most p — 1. Thus the dimension of the
space spanned by them is at most

3 3
1+p3+(p2)+---+(pp_1>.

U

Exercise 5.19 The proof of the following theorem s an immediate generalization of
the claim we had about the clique number of the Frankl-Wilson graph. (Think this
over!)

Theorem Let L be a set of integers with |L| = s. Let By,...,B; € 2" be a uniform
L-intersecting famaly, t.e. all |B;| have the same size and |B; N B;j| € L for every
i#7. Thent <7 (7). O
Generalize this statement further to arbitrary L-intersecting famailies, i.e. derive
the same conclusion when the |B;| are not necessarily all equal. (Hint: Select the
functions ﬁ more carefully and use Lemma 5.6.1 in its full power.)
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Bipartite Ramsey problem The bipartite Ramsey number BR(k,k) denotes the small-
est integer N such that every two-coloring of Ky n contains a monochromatic Ky .
The story of bipartite Ramsey numbers is very similar to that of the ordinary Ramsey
numbers in the sense that we know that BR(k, k) is exponential: the uniform random

two-coloring shows that BR(k, k) > \/ﬁk The parallels stop right there though, as com-
parable constructive lower bounds are much harder to obtain. Abbott’s product, Nagy’s
set intersection construction, and even the simple Turdn’s construction has no obvious
analogue. Even for a construction of quadratic order, we have to work! There are a
couple of different constructios yielding a quadratic lower bound; we treat these in the
exercises.

Exercise 5.20 A square matriz H with entries +1 and —1 1s called an Hadamard matrix
if the rows are pairwise orthogonal.

(a) Show that that the colums of an Hadamard matriz are pairwise orthogonal.
(b) Show that the order of an Hadamard matriz is 1 or 2 or divisible by 4.5
(c) Construct 2™ x 2™ Hadamard matrices for every integer n > 1.

(d) Given an Hadamard matrizc H = (h;;), define a two-coloring of Ky n by col-
oring the edge zy red if the entry h,, s +1 and blue otherwise. Prove that
for arbitrary integers s,t, 1 < s,t < N, we have

DD hig

=1 j5=1

< VrsN.

Conclude that this coloring is v/ N-Ramsey.

Exercise 5.21 Let ¢ = 3 (mod 4) be a prime power and let p, : F; — {1,—1} denote
the quadratic chracter, extended to 0 by p,(0) = 1. The rows and columns of the
matriz Q = (r.p) are labeled by the elements of F, and its entries are defined by
Tap = Pg(@a —b). Let H be the (¢+ 1) x (¢ + 1)-matriz we obtain by adding to Q first
a column of —1 (of length q) and then a row of 1s (of length ¢ + 1. Prove that H
1s an Hadamard matriz.

Using the projective norm graphs on n = ¢° — ¢'~! vertices we know even more

in some sense. These graphs do not contain K., and one can also prove that their
bipartite complement does not contain Kn1/2+1/t,n1/2+1/t. Selecting ¢t = clnn/Ilnlnn we
have that there is N0 Kpi/210n,cni/2 1np @0d 00 K inn/ininnne, Where €(c) — 0. Despite
having such asymmetric construction, with much better parameters in the forbidden red
bi-clique, it was a long-standing open problem to go below +/n by any infinite factor for
both the red and the blue bi-clique.

5Tt is a notorious conjecture of design theory that Hadamard matrices exist for all N divisible by 4.
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The quadratic constructive lower bound for the bipartite Ramsey number was bro-
ken through by a factor tending to infinity only in 2004. The first superpolynomial
construction was given in 2010. In 2012 the Frankl-Wilson barrier was surpassed for bi-
partite graphs. The problem was the subject of vigorous research and further milestones
were achieved in the past few years. The current record is due to Gil Cohen, which is

a family of strongly explicit O ((log n)(legloglogn)®

)-Ramsey graphs. Recall that in the
random graph the largest clique and independent set is logarithmic and in this construc-
tion it is already “almost” polylogarithmic ...° Unfortunately all these constructions are
complicated and lengthy to be presented here, but it is good to know: we are almost

there.

5We discussed earlier the rate of speed by which the function logloglogn tends to infinity...



