Chapter 6

The asymmetric Ramsey-problem

6.1 Constructive R(K3, Ky)

We continue our study of explicit constructions for the Ramsey problem with the asym-
metric case. We want lower bound R(3, k) constructively. The general bound of Erdés

and Szekeres gives
1
R(3,k) < (k; ) — o).

This was improved by Ajtai, Komlés and Szemerédi (1981) to k?/log k. Their argument
is considered the first application of the “nibble-method”, which then went on to become
one of the more succesful technique of probabilistic combinatorics.

From the other side, an ugly, but routine application of the Local Lemma gives

a lower bound of (@)2. In 1995 Kim, in remarkable tour de force of probabilistic
combinatorics, managed to remove one log-factor and established the correct order of
magnitude % He received the Fulkerson prize for his paper. Curiously, Kim is using
the very same nibble method that was invented while proving the matching upper bound.

The first explicit construction of triangle-free graph where the vertex set is of super-

linear size in terms of the independence number is due to Erd6s who showed
R(3, k) -0 (k210g2/3(10g3—10g2)) -0 (k1.13)
constructively. Later this has been improved by Chung, Cleve and Dagum to

Q (klogﬁ/log‘l) -0 (k1.29) ’

and even further improved by Alon to €2 (k4/ 3). Later Alon polished his approach,
giving a construction with Q(k/2) vertices. His proof bounds the independence number
through the second eigenvalue of the adjacency matrix of the graph. The second part of
this section is devoted to this construction, but first we look at a more recent, simpler
one, found by Codenotti, Pudlak and Resta [?].

6.1.1 A simple one

We start by describing a weaker construction that demonstrates the basic trick of [?];
this will later be generalized in Section 6.2. The final twist to this idea will be added in
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a subsequent exercise. Let B be either the Benson-graph or the Wenger-graph of girth 8
described in Section 3.4. From B we construct a new graph G defined on the edges of B.
Let V(G) := E(B) and two vertices 1y, Zoy> of G with z; # z», Y1 # y» are adjacent
if 1y, or z,y; is an edge of B.

First, we check that there is no triangle in G. Suppose to the contrary that there are
vertices z1y, Z2Y2, Z3y3 € V(G) which form a K3. Then the six vertices z1, z2, 3, Y1, Y2, U3
of B span three other edges, six altogether. Consider the subgraph of B induced by these
six vertices. Were two of the neighborhoods of z;, z, and z; intersecting Y = {y1¥», ¥3} in
more than one vertex, we would immediately arrive at a contradiction to the C,-freeness
of B. Hence the neighborhood of any z; in ¥ must contain exactly two vertices, and any
pair of them should intersect in exactly one vertex. That is, the six edges must form a
six-cycle in B, yet another contradiction. So G is indeed triangle-free.

Let £ = |V(B)|. Then |V(G)| = |E(B)| = © (k*?®). We set to prove that every
independent set of G is of size O(k) giving an explicit lower bound of order k*3 to
R(3,k). Let I C V(G) be an independent set of G. The members of I are edges in B
and we claim they form a star-forest in B. Indeed, should there be a path e;ese; of three
edges in I, the two terminal edges e; and e; would be adjacent in G, contradicting the
independence of I. Hence |I| < k — 1 and we are done.

Exercise 6.1 Improve further the above construction by using as B, instead of the
Benson graph, the point/line incidence graph of the projective plane (introduced in
Subsection 2.1.3 as Construction 1.) and modifying slightly the definition of an
edge in G. Let V(G) := E(B) and let P be one of the partite sets of B, say the
points of the projective plane. Fix an arbitrary ordering < on P. Two vertices
T1Y1, T2y of G are adjacent if 1 < T2, Y1 # Y2 and z1y> € E(B). (So roughly “half”
of the edges are kept compared to the previous construction.) Show that this graph
is an explicit lower bound of order k%% for R(3,k).

6.1.2 Alon’s Construction

As in all our Ramsey-type constructions, we try to imitate randomness. We aim to
bound the independence number of the constructed quasi-random graph via its second
eigenvalue. Cayley graphs are very symmetric and their eigenvalues are strongly con-
nected to the charaters of the underlying group. Let us be given a group H where the
operation + is written additively. We define a graph G on the vertex set H = V(G).
The adjacency relation will be given by a subset S C H the in the following fashion:
g,h € H are adjacent if g—h € S. To make sure that the adjacency relation is symmetric
we also require that S = —S. In order to avoid loops we assume 0 € S. Note that the
neighborhood of each vertex g € V(G) is the set g + S.

Cayley graphs are often good quasi-random graph provided the subset S is chosen
“random enough” inside the underlying group. For example, if one chooses S to be a
proper subgroup of H, then G(H, S) is very not quasi-random, it is not even connected:
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it contains |H|/|S| disjoint cliques, each being a coset of the subgroup S < H. In other
words, a subgroup of H is not a random-like subset of H.

Passing to Cayley graphs from general graphs represents a simplification of our task,
in some sense we reduce the “dimension of our problem”: instead of trying to construct
all the edges of a quasi-random graph, we are content with describing a quasi-random
neighborhood of one vertex and then make sure that all vertices look the same locally.
Definition and analysis gets simpler, but of course, we reduce the playing field signifi-
cantly.

Let us start by looking at what makes a Cayley graph triangle-free.

Claim 4 A Cayley graph G(S, H) is triangle-free if and only if the equation s; + sy +
s3 = 0 has no solution s{,5s,,83 1n S.

Proof. Suppose that u,v,w € V(G) form a triangle. Then v = u + s; for some s; € S,
w = v+ S, for some s, € S, u = w+ 53 for some s3 € S. Hence u = w+583 = v+589+ 83 =
U+ S1 + Sy + s3 implying s; + s2 + s3 = 0. For the other direction, let us assume that
51+ s2+ s3 = 0 for some s1, 55,53 € S. Then for any u € V(G), the vertices u,u + s; and
U+ S; + s; form a triangle. It is clear that there is an edge between any pair of these
three vertices, and then this also implies that they do represent three different vertices,
since G is loop-free. O

In a vector space over the two-element field F, the linear equation s; + s, + s3 = 0 is
equivalent to the vectors s;, s; and s; being linearly dependent. Hence triangle-freeness
of a Cayley graph G(F3, S) is equivalent to the set S being three-wise linearly indepen-
dent (cf. the three-wise independence of sample spaces as defined in Subsection 5.1.2).
Consequently, the idea of using the parity check matrices of BCH-codes arises quite
naturally.

The first try

First we obtain a weaker bound on R(3, k) by introducing one of the basic ideas of Alon’s
construction. Let G be the Cayley graph on the group Z% with a “neighborhood set”
S C ZZF, that consists of the column vectors of the parity check matrix of the binary
BCH-code of designed distance 5. To recall, this construction uses the 2*-element field
Fox. On the one hand F,: is a k-dimensional vector space over F,, that is, its elements
can be written as 0 — 1-vectors of length k and the addition in F,x is just the usual vector
addition in Z%. On the other hand, the multiplication of F,x completely “messes up” the
additive structure. We will in fact use the vector notation to denote the elements of the
field but will switch between interpreting the 0-1-vector as an element of Fox or Z%. For
two vectors u,v € Z% let [u,v] denote their concatenation in Z2*.

Let S = Sﬁfznple = {[z,2%] € Z2 . z € Fu \ {0}}. Here, of course, z* denotes the
binary vector of length k corresponding to the field element z3.

The number of vertices in this Cayley graph is n = 22*, while the degree d of regularity
is equal to |S| = 2F — 1 ~ /n.
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This graph certainly does not contain any triangle, as that would mean that there
are three different 2, 20, 23 € Faor \ {0} such that

21 +23+23 = 0and
2428+ = 0.

This is of course impossible since substituting z; + 2, for z; in the second equation (we
used that £ = —z over characteristic 2) we get 0 = 23 + 23 + (21 + 22)°* = 23 + 25 + 23 +
32225 + 32123 + 23 = z125(21 + 22) = 212223. Hence one of the z; must be 0 which is not
allowed. Thus there is no triangle in G.

Exercise 6.2 Argue why using squares instead of cubes in the definition of S would
not be a good idea. That is, what is the problem with the neighborhood set {[z, z?] :
zc ng}?

How about the largest independent set? We intend to use Corollary A.36 and bound
the largest non-principal Fourier coefficients of the characteristic vector of the neighbor-
hood set S.

By Corollary A.36 we know that a(G(S)) < n%. What is now $(S)? For that,

what is Tg = > scs X(s)? Recall that every character of Z3* is determined by an element
of Z2* the following way: xs(a) = (—1)*#). Then

nls(xp) = > xp(s) =D (-1)%.

scS scS

Imagine that the elements of S written as colums of the 2k x (2¥ — 1) -dimensional
matrix M. We are interested in the vector 87 M, whose components are the bits (8, s).
In fact we are rather interested in the Hamming weight w = w(8) of 87 M: for each
1-coordinate of ST M we have a —1 term in the corresponding Fourier coefficient, while
for each 0-coordinate we have a 1. That is the corresponding Fourier coefficient is d — 2w.
Obviously, we want this to be as small as possible, that is, we want roughly the same
number of ones and zeros in the vector BT M, for every 8 € Z2*, 8 # 0. This is certainly
easy to check for a g of the form [B;,0] where B, € Z%, B, #: there are exactly one more
ones than zeros in 7M. Similar is true for 8 of the form [0, B;] where 8, € Z%, 8, #
provided z — 2% is a bijection, that is, if 3 /2F — 1 or k is odd.

Now comes the big cannon, a theorem of Carlitz and Uchiyama (which is itself a
nontrivial consequence of the theorem of Weil about the Rieman hyothesis over finite
fields) tells us that the Hamming weight of 87 M is roughly half of the length for any
B € Z%,B8 # 0. More precisely, |w — 2°71| < 2¥/2, This means that for every 8 # 0,
Inls(xs)| < 2*/2 and thus (S) < 2% ~ v/d.

Combining this with our bound on the independence number we have a(G(S)) <
n/v/d = n**. Hence we have shown EzpR(3,k) 2 k*/2.

Remark. The matrix M is the parity check matrix of a binary BCH code (with designed
distance 5), and as such, the linear combinations of its rows form the dual of the code.



6.1. Constructive R(Ks, Ky) 125

That is, the vector 87 A, which is just linear combination of the rows with coefficients g;,
is an element of this dual code. The theorem of Carlitz and Uchiyama then tells us that
the weight of any code word in the dual of a BCH code is roughly half of the length.

Increasing the degree

Are we at the end of the road for the BCH-idea? One certainly senses the presence of
some leftover in the triangle-freeness proof: the full power of the BCH-matrix is not
exploited. We only use that any three columns of M are linearly independent, while it
is also true that any four of them are.

Observe that our bound on the independence number depends on ®(S)/|S|. If we
assume that S is perfectly quasi-random in the sense that ®(S) &~ /]S, then the upper
bound on a(G) depends solely on how big the degree d = |S| is. In the previous
subsection we had d = ©(n'/?), so there could be some room for improvement.

How can we increase the degree? Considering larger BCH-matrices and taking not
only z and 23, but 2%, 27, etc..., will increase the length of our vectors, together with
the parameter of their linear independence property, but the degree of the graph goes
down (see Exercise 6.3). The Carlitz-Uchiyama bound remains valid, however, thus the
Hamming weight of 87 M remains roughly half of the length, just the error term worsens
by a constant factor.

Theorem 6.1 (Carlitz-Uchiyama) Let M = M, be the hk x (2F — 1) matriz whose columns
are the vectors of the form [z,2%,2%,...,2%"7), with z € F},. Then for every B €
Zk, B # 0, the Haming weight w = w(B) of BT M satisfies

lw —2F71 < (A — 1)2%2,

Remark. The matrix Mj, is the parity-check matrix of the binary BCH-code of designed
distance 2h + 1. As it was proved in Subsection 5.1.2, any 2h columns of M, are linearly
independent.

Exercise 6.3 Describe an explicit construction showing EzpR(Cs, K;) = Q(k%/%), using
the parity check matriz of the BCH-code of designed distance 7. Ezplain why the
constructed graph is also Ks-free, but not Cy-free or Cg-free.

In the previous exercise we worked over a larger group Z3* and our neighbor set
Ssimple consisted of all vectors of the form [z,2% 2°], z € F},. This resulted in degree
only of order n'/3, so-so for Cs-freeness, but too little for a Kj-free construction. To
increase the degree, let us partition Smpe into two, for the moment arbitrary, subsets
Wy and W) and let us define our new neighbor set as S = {wo+w; : wo € Wy, w; € Wi}
Note that the degree d is |S| = |W,||Wh|; if wo + w; was equal to wy + wi, then, since
any four elements of S,y are linearly independent, we had wy = wy and w; = wj. To
maximize the degree, we will select W, and W; with almost equal size and then d ~ n?/3.
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Alon’s graph is the Cayley graph G on Z3* with the neighborhood set S, where the
partition Wy U Wy of Sgimpe Will be chosen later appropriately.

Why is there no triangle in G? Were there a triangle then by Claim 4 there would
be three different elements wo + wi, wy + wi, wy + wi of S which sum up to 0. On
the other hand we know that any siz members of S,y are linearly independent so
Wy + W, + Wy + wy + wy + wi can only be 0 if every vector occurs an even number of
times. Since the sets W, and W; are disjoint and the sum contains an odd number of
elements from each, this is clearly impossible.

For estimating the independence number we again use the upper bound involving
®(9).

dox(s)=D Y x(sotsi)= >, > x(s0)x(s1) = (Z x(%)) <Z x(81)>~

seS so€Wop s1€W1 s0€Wo s1€W1 so€Wo s1€W1

For a character x = xp, the sum Y, .. xp(s0) = >, e, (—1)¥* depends on the
Wo-entries of the vector ST M. By the same argument as in the previous subsection,
> socwo X8(S0) is equal to [Wy| — 2z where z is the Hamming weight of the vector 57 M
restricted to the coordinates at Wy. Similarly, >, .. Xxs(s1) is equal to |W:|— 2y where
y is the Hamming weight of the vector ST M restricted to the coordinates at W;. In
conclusion, our main concern is to minimize the product (|W,| — 2z)(|W:| — 2y). Of
course the Carlitz-Uchiyama bound does tell us that the sum z 4y, the Hamming weight
of the vector BT A, is roughly half of 2%, but in principle it could happen that z and y
are very non-equal resulting in (|Wy| — 2z)(|W;| — 2y) being very large.

In order to avoid this we must now specify the selection of W, and W; such that
T =~ y. A random partition would certainly fit the bill, but considering the business
we are in, we need to be, well, more explicit. We need to find a 0-1 vector of length
2% — 1, that is more or less independent of the previous row vectors of M. The message
of Subsection 5.1.2 was that the linear independence of the columns corresponds to
probabilistic independence of the rows and in particular the rows of the matrix of the
BCH-code proovide a good approximation of independence. Hence the natural choice
for the required quasi-random partition should be given by the first new row of the
next BCH-matrix M,. That involves the function 27, more precisely its first digit in its
expression as a bit vector of length k. For 2 = 0 and 1, let

W; :={[z, 2%, 2°] € Ssimpie : first digit of 27 is 1}.

The easiest way to ensure that W, and W, are roughly half of 2* is if we assume that
z — 2" is a bijection of Fy, which certainly happens if 7 f(2¥ — 1) or 3 /k.

After all the heuristic, how does one actually prove that this partition is a good
choice? The set W; was chosen such that its characteristic vector of W; is a row of
the one larger BCH-matrix (whose columns are the 4k-vectors [z, 2%, 2°,27]). We know
the Carlitz-Uchiyama bound holds for this matrix as well, maybe with a worse constant
factor in the error term, but who cares: any linear combination of the rows of M,
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have Hamming-weight roughly 2% . In particular, [, (1,0...,0)]M; = 1w, + BT M; is a
linear combination of the rows of M,. Compared to 87 M;, the Wy-entries do not change,
but all the Wi-entries flip, hence the Hamming-weight of this vector is z + |[W;| — y =
r + 28! — 1 —y. This is roughly 2*~! by the Carlitz-Uchiyama bound, so z ~ y. Or
more precisely, |z — y| < 3 - 2%/2,

We already know that z +y ~ 2¥~1 4+ 2.2%/2, s0 we have that z ~ y ~ 252 £ 4. 2/2,
Hence ||W;| — 2z| and similarly ||W:| — 2y| is O(2%/?). meaning that $(S) = O(2%) =
©(+/d), quasi-randomness at its best.

In conclusion we have shown that G is a triangle free graph with a(G) < n©(v/d)/d =
©(n?/®). This establishes EzpR(3,k) > ck®/?,

Can one improve further by making the graph denser? Maybe even up to the vicinity
of the truth, ©(n?/log®n)? The next subsection shows that to be impossible in very
strong sense.

Exercise 6.4 Prove that the number of Cy in Alon’s (n,d,\)-graph is asymptotically
the same as the expected number of C, in the random graph G(n,n_1/3).

6.1.3 Turan property of quasi-random graphs

Exercise 6.5 Prove that the independence of both of the previous constructions do
have independence number ©(n?3). Even more, any Ks-free d-regular graph with
d = ©(n%?®) has an independent set of order ©(n?3).

In the next section we will see that Alon’s construction is best possible in a much
stronger sense. There is not only one triangle in an (n, d, ©(v/d))-graph with d = Q(n?*/?)
but also there are so many triangles that one needs to delete half of the edges of the
graph to kill of them.

The quasi-randomizable proof of Turan’s theorem

There are many proofs of Turdn’s Theorem available (see the paper of Aigner [?] for six
of them). The main difficulty in generalizing these classical arguments that they are all
very much tailored to the complete graph K,. Here we need an approach that uses only
the quasi-random property of K,, that is, that the edges are “distributed sufficiently
evenly”, a property shared by all (n,d, A)-graphs with the appropriate parameters.

Our strategy will be the following.

1. We give a new(?) proof of Turdn’s theorem and identify the quasi-random proper-
ties that make it work.

2. Prove that our quasi-random graphs have these properties.

3. Prove that any graph having these properties are ¢-Turan.



