Exercise Sheet 1

Due date: 14:15, 23rd April

You should try to solve all of the exercises below, but clearly mark which three solutions you would like us to grade – each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1

- (a) Let S be a linear space on n^2 points where each line is incident with exactly n points, for some integer $n \ge 2$. Prove that S is an affine plane.
- (b) Prove that if a system of n-1 mutually orthogonal Latin squares of order n exists, then there exists an affine plane of order n.

Exercise 2

- (a) Given two Latin squares of orders m and n, construct a Latin square of order mn.
- (b) Given two orthogonal Latin squares of order m, and two orthogonal Latin squares of order n, construct two orthogonal Latin squares of order mn.
- (c) Prove that for every $n \not\equiv 2 \pmod{4}$, there exist two orthogonal Latin squares of order n.

(Hint: In part (a) try to construct the new Latin square over the ground set $S_1 \times S_2$, where S_1 is the ground set of the first Latin square and S_2 of the second Latin square.)

Exercise 3 For $n \ge 2$ an integer, define a graph G_n whose vertex set is equal to the set of all $n \times n$ Latin squares on the ground set [n], and two Latin squares are adjacent if they are orthogonal to each other. Prove that for all n, the chromatic number $\chi(G_n)$ is at most n-1. For what values of n is the chromatic number equal to n-1?

Exercise 4 A subplane of a projective plane $(\mathcal{P}, \mathcal{L}, I)$ is a projective plane $(\mathcal{P}', \mathcal{L}', I')$ such that $\mathcal{P}' \subsetneq \mathcal{P}, \mathcal{L}' \subsetneq \mathcal{L}$ and $I' = I \cap (\mathcal{P}' \times \mathcal{L}')$.

- (a) Prove that if a projective plane has order n and m is the order of a subplane of the projective plane, then $n \ge m^2$.
- (b) Prove that the bound above is tight by constructing a projective plane of order m^2 and a subplane in it that has order m, for some m (preferably an infinite family of m's).

Exercise 5 For a prime power q, and integers $0 \le k \le n$, the Gaussian binomial coefficient is defined as

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{(q^n - 1)(q^{n-1} - 1)\cdots(q^{n-k+1} - 1)}{(q^k - 1)(q^{k-1} - 1)\cdots(q - 1)}.$$

(a) Prove that the number of k-dimensional subspaces of PG(n,q) is equal to $\binom{n+1}{k+1}_q$.

(b) Give combinatorial proofs of the following identities:

(i)

$$\begin{bmatrix} n\\ k \end{bmatrix}_{q} = \begin{bmatrix} n-1\\ k-1 \end{bmatrix}_{q} + q^{k} \begin{bmatrix} n-1\\ k \end{bmatrix}_{q}.$$
(ii)

$$\begin{bmatrix} n\\ k \end{bmatrix}_{q} = \begin{bmatrix} n\\ n-k \end{bmatrix}_{q}.$$

Exercise 6 For integers $1 \le k \le n$, prove the points of PG(n-1,q) can be partitioned into a collection of pairwise disjoint k-1 dimensional subspaces if and only if k divides n.

(Hint: There is a natural map from the vector space $\mathbb{F}_{q^k}^m$ to the vector space \mathbb{F}_q^{km} , where km = n, which uses the isomorphism between the additive structure of \mathbb{F}_{q^k} and the vector space \mathbb{F}_q^k .)