So 2019

Exercise Sheet 2

Due date: 14:15, 7th May

You should try to solve all of the exercises below, but clearly mark which three solutions you would like us to grade – each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1

- (a) Prove that the Fano plane is not a subplane of $PG(2, \mathbb{R})$.
- (b) Give a characterisation of all fields F, in terms of the characteristic of F, for which the Fano plane is a subplane of PG(2, F).

Exercise 2 Let K_6 denote the complete graph on the vertex set $[6] := \{1, 2, 3, 4, 5, 6\}$. Define a point line geometry $(\mathcal{P}, \mathcal{L}, I)$ as follows:

- $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$ where $\mathcal{P}_1 = [6]$ and \mathcal{P}_2 is the set of all distinct 1-factors (perfect matchings) of K_6 .
- $\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2$ where $\mathcal{L}_1 = {\binom{[6]}{2}}$ and \mathcal{L}_2 is the set of all distinct 1-factorizations of K_6 .¹
- a vertex $x \in \mathcal{P}_1$ is incident to an edge $e \in \mathcal{L}_1$ if $x \in e$ and it is never incident to an element of \mathcal{L}_2 ; a 1-factor $f \in \mathcal{P}_2$ is incident to an edge $e \in \mathcal{L}_1$ if $e \in f$ and it is incident to a 1-factorization $F \in \mathcal{L}_2$ if $f \in F$.
- (a) Prove that this point-line geometry is a projective plane of order 4.
- (b) Prove that this projective plane is isomorphic to PG(2, 4).

Exercise 3 In this exercise we give an alternate proof of the fact any oval in a finite projective plane of even order can be uniquely extended to a hyperoval. Let \mathcal{O} be an oval in a finite projective plane of even order.

- (a) Prove that through every point of the plane which lies on a secant of \mathcal{O} , i.e. a line intersecting \mathcal{O} in exactly two points, there is a unique line which is tangent to \mathcal{O} .
- (b) Deduce that all tangents of \mathcal{O} intersect in a common point, and thus show that \mathcal{O} can be uniquely extended to a hyperoval.

¹A 1-factorization is a partition of the edges of K_6 into pairwise disjoint 1-factors.

Exercise 4 Let q be an odd prime power and let S be a set of points in PG(3, q) such that no three of them are collinear.

- (a) Prove that $|S| \le q^2 + 1$ with equality if and only if every plane of PG(3, q) intersects S in 0, 1 or q + 1 points.
- (b) Prove that if $|S| = q^2 + 1$ then through every point x of S, there exists a unique plane π_x such that $S \cap \pi_x = \{x\}$ and moreover, for any line ℓ through x, we have $\ell \cap S = \{x\}$ if and only if $\ell \in \pi_x$.
- (c) (Bonus) Construct such a set S with $|S| = q^2 + 1$, for every odd prime power q.

Exercise 5

- (a) For an arbitrary field F, let S be a set of 5 points in PG(2, F) such that no three of them are collinear. Prove that there exists a unique conic containing S. Moreover, show that the conic is non-degenerate.
- (b) Find the number of distinct non-degenerate conics in PG(2, q).
- (c) For every even prime power $q \ge 8$, show that there exists an oval in PG(2,q) which is not a conic.

Exercise 6 Let F be a finite field of characteristic 2, and let C be a conic given by $ax^2 + by^2 + cz^2 + fyz + gzx + hxy = 0.$

- (a) Prove that C is equal to a repeated line if and only if f = g = h = 0.
- (b) Say C is not equal to a repeated line, and let N be the point of PG(2, F) with coordinates (f, g, h). Prove that C is singular if and only if N lies on C.
- (c) Say C is irreducible. Then prove that every line tangent to C passes through the point N.

Hints:

- Ex 1 Without loss of generality you can start by assuming that (1,0,0), (0,1,0), (0,0,1) and (1,1,1) are the coordinates of four points of the Fano subplane.² What are the coordinates of the other three points?
- Ex 2 (b) A hyperoval in PG(2,4) has 6 points, and they exist.
- Ex 4 Look at $S \cap \pi$ where π runs through the set of planes containing a well chosen line with respect to S.
- Ex 5 (a) Look at the hint for Exercise 1. What can we assume about the coordinates of these five points?

 $^{^2 \}rm Prove$ this claim if you use it!