Exercise Sheet 3

Due date: 14:15, 21st May

You should try to solve all of the exercises below, but clearly mark which three solutions you would like us to grade – each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 A blocking set with respect to (n-1)-dimensional subspaces in a projective or affine space of dimension n is a set of points such that every (n-1)-dimensional subspace meets the set non-trivially. Let $n \ge 2$ be an integer and q an arbitrary prime power.

- (a) Find the minimum possible size of such a blocking set in PG(n,q), and classify the smallest examples.
- (b) Find the minimum possible size of such a blocking set in AG(n, q).

Exercise 2 Let π be a projective plane of order q (not necessarily a prime power) and \mathcal{L} be a subcollection of lines of π . A set B of points of π is called a blocking set relative to \mathcal{L} if for every line ℓ in \mathcal{L} , we have $\ell \cap B \neq \emptyset$.

Let \mathcal{O} be an oval of π and assume that q is odd. For each of the following subcollections \mathcal{L} of lines, find the smallest possible size of a blocking set relative to \mathcal{L} .

- (a) the set of all external lines to \mathcal{O} .
- (b) the set of all secants and tangents to \mathcal{O} .

(Bonus) In each case characterise the smallest examples, assuming that $\pi \cong PG(2, q)$.

Exercise 3 For a subset S of points in AG(2, q) we say that S determines a direction m if there exist two points in S such that the line joining them has slope m, where $m \in \mathbb{F}_q \cup \{\infty\}$ (vertical lines given by the equation x = c are assumed to have slope ∞).

- (a) Prove that if |S| > q, then S determines all directions.
- (b) Let f be a function from \mathbb{F}_q to \mathbb{F}_q . Consider the set $S = \{(x, f(x)) : x \in \mathbb{F}_q\}$ of points in AG(2, q) and let D be the set of directions determined by S. Prove that if |D| > 1, then the set $B_f = S \cup D$ is a non-trivial blocking set in the projective completion PG(2, q) of AG(2, q).
- (c) Determine the size of the blocking set B_f when $f(x) = x^{(q+1)/2}$, assuming q to be odd.

Exercise 4 Let f(q) be the smallest possible size of a set S of points in AG(3, q) such that every line intersects S non-trivially.

(a) Prove that

$$2q^2 - q \le f(q) \le 3q^2 - 3q + 1$$

for all q.

(b) Improve the lower bound to $2q^2 - 1$, for all q.

(Hint: enil nevig yna hguorht senalp 1 + q era ereht)

(Bonus) For q square improve the upper bound on f(q) to $f(q) \le 2q^2 + o(q^2)$, by using the fact that there exist 2 disjoint Baer subplanes in PG(2, q).

Exercise 5 Let \mathcal{A} be an affine plane of order q^2 , and let π be the projective plane of order q^2 obtained from \mathcal{A} by adding a line ℓ_{∞} . Let D be a set of q + 1 points on ℓ_{∞} with the following property: for any two distinct points x, y of \mathcal{A} , if the line xy meets ℓ_{∞} in a point of D, then there exists a Baer subplane B of π containing x and y such that $B \cap \ell_{\infty} = D$. Define the following point-line geometry $\mathcal{A}_D = (\mathcal{P}, \mathcal{L}, I)$:

- (a) \mathcal{P} is equal to the point set of \mathcal{A} .
- (b) $\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2$, where \mathcal{L}_1 is the set of lines of \mathcal{A} that meet ℓ_{∞} in a point outside D, and \mathcal{L}_2 is the set of Baer subplanes B of π that satisfy $B \cap \ell_{\infty} = D$.
- (c) I is the natural incidence of containment.

Prove that \mathcal{A}_D is an affine plane of order q^2 .¹

Exercise 6

(a) Let S be be a subset of points in a projective plane of order q, and let k_1, \ldots, k_{q^2+q+1} be the intersection sizes of the $q^2 + q + 1$ lines with the set S. Prove that

$$\sum_{i=1}^{q^2+q+1} \left(k_i - \frac{(q+1)|S|}{q^2+q+1}\right)^2 \le q|S|.$$

(b) Let S be a set of points and T a set of lines in a projective plane of order q. Define i(S,T) to be the number of incidences between the points of S and the lines of T, that is, $i(S,T) = |I \cap (S \times T)|$, where I is the point-line incidence relation of the projective plane. Prove that

$$\left| i(S,T) - \frac{q+1}{q^2+q+1} |S| |T| \right| \le \sqrt{q|S||T|}.$$

¹By choosing such sets D in $PG(2, q^2)$ one can construct non-Desarguesian planes of order q^2 . You can try to find such a set and show that the plane you construct is non-Desarguesian, for all $q \ge 3$.