Exercise Sheet 4

Due date: 14:15, 4th June

You should try to solve all of the exercises below, but clearly mark which three solutions you would like us to grade – each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 Let $\mathcal{H} = \{(x, y, z) \in PG(2, q^2) : x^{q+1} + y^{q+1} + z^{q+1} = 0\}.$

(a) Determine $|\mathcal{H}|$ by considering the following three types of points in the plane that can lie on \mathcal{H} : $\{(x, 1, 0) : x \in \mathbb{F}_{q^2}\}, \{(0, y, 1) : y \in \mathbb{F}_{q^2}\}$ and $\{(x, y, 1) : x, y \in \mathbb{F}_{q^2}, x \neq 0\}$.

[Hint (to be read backwards): \mathbb{F}_q dleifbus sti ot \mathbb{F}_{q^2} morf noitcnuf mron eht ta kooL]

For the next two parts assume that \mathcal{H} does not contain any line completely.

- (b) For an arbitrary point P of \mathcal{H} find a line ℓ_P through P that is tangent to \mathcal{H} .
- (c) Show that every line meets \mathcal{H} in exactly 1 or q + 1 points and determine the number of lines of each kind through every point of $PG(2, q^2)$.

(Bonus) Show that \mathcal{H} does not contain any line completely.

Exercise 2 Prove that the following graphs are strongly regular and determine their parameters.

- (a) Given a set of m 2 MOLS of order $n, m \ge 2$, the graph $L_m(n)$ with vertex set $[n]^2$ and two vertices adjacent if they either share a coordinate, or have the same symbol appearing in the coordinates in one of the Latin squares (if m > 2).
- (b) The graph on the lines of PG(n,q), $n \ge 3$, with two lines adjacent if they meet in a point.
- (c) Let $P_1, \ldots, P_5, Q_1, \ldots, Q_5$ be disjoint copies of the cycle graph C_5 . Label the vertices of P_i as $\{v_{i1}, v_{i2}, v_{i3}, v_{i4}, v_{i5}\}$ such that v_{ik} is adjacent to $v_{i(k+1)}$. Label the vertices of Q_j as $\{u_{j1}, u_{j2}, u_{j3}, u_{j4}, u_{j5}\}$ such that u_{jk} is adjacent to $u_{j(k+2)}$.¹ For all $1 \le i, j, k \le 5$ connect v_{ik} to $u_{jk'}$ with an edge where k' = ij + k (the arithmetic on all indices is done modulo 5).

¹With this labelling P_i 's look like pentagons whereas Q_j 's look like pentagrams.

Exercise 3 Let G be an $srg(n, k, \lambda, \mu)$.

- (a) Prove that $\mu \leq k$, with equality if and only if G is a complete multipartite graph.
- (b) Prove that the following are equivalent: (i) $\mu = 0$, (ii) $k = \lambda + 1$, (iii) G is a disjoint union of complete graphs, (iv) G is disconnected.

Exercise 4 Let G be a graph with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.

(a) Prove that

$$\lambda_1 = \max_{||x||=1} x^T A x = \max_{x \neq 0} \frac{x^T A x}{||x||^2},$$

and deduce that $\lambda_1 \geq \overline{d}(G)$, that is, the average degree of G.

(b) Suppose G is k-regular and connected. Prove that G is bipartite if and only if $\lambda_n = -k$.

Exercise 5 Let G be a graph with [n] as its vertex set, and let A be its adjacency matrix. Let C = [2m] for some $1 \le m \le n/2$, and $D = [n] \setminus C$, such that the following two properties hold: (i) the induced subgraph on the vertex set C is regular and (ii) every vertex in D is adjacent to 0, m or 2m vertices in C. Let

$$Q = \begin{pmatrix} \frac{1}{m} J_{2m} - I_{2m} & 0\\ 0 & I_{n-2m} \end{pmatrix}$$

- (a) Prove that QAQ^T is an adjacency matrix of a simple graph G' such that Spec(G') = Spec(G).
- (b) Use this idea to construct a pair of non-isomorphic graphs on 9 vertices that have the same spectrum.

Exercise 6 Let q be an odd prime power, and define a directed graph on \mathbb{F}_q by taking (a, b) as an edge if a - b is a square in \mathbb{F}_q .

- (a) Prove that this graph is an undirected graph if and only if $q \equiv 1 \pmod{4}$.
- (b) Prove that for $q \equiv 1 \pmod{4}$, this graph is a strongly regular graph and compute its parameters.
- (c) Find the independence number of the graph when $q \equiv 1 \pmod{4}$ and q is an even power of a prime.

Exercise 7 [Bonus]

- (a) Let \mathcal{O} be an oval in a finite projective plane of order 5. Prove that the graph defined on the interior points of the plane, that is, the points through which there are no tangents to \mathcal{O} , with two points adjacent if the line joining them is a secant of \mathcal{O} , is isomorphic to the Petersen Graph.
- (b) Use this to identify all points and lines of the projective plane with certain substructures of the Petersen graph (vertices, edges, 1-factors, etc.), and thus prove the uniqueness of the projective plane of order 5 assuming it contains an oval.
- (c) Show that every projective plane of order 5 has an oval.