So 2019

Exercise Sheet 6

Due date: 14:15, 2nd July

You should try to solve all of the exercises below, but clearly mark which three solutions you would like us to grade – each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 Consider a partial linear space $S = (\mathcal{P}, \mathcal{L}, I)$ for which the following conditions hold, with $s, t, \alpha \geq 1$ as constants§:

- S has order (s, t).
- For any $(x, \ell) \notin I$, x is collinear with exactly α points of ℓ .
- (a) Prove that if $\alpha \neq s+1$, then the collinearity graph of S is strongly regular and determine its parameters.
- (b) Let K be a set of points in PG(2, q) for which every line ℓ intersects K in 0 or d points, for some $d \in \{2, 3, ..., q 1\}$. Define the point-line geometry $\mathcal{S}(K)$ with points as the set of points of PG(2, q) outside K, and lines as those lines that intersect K in exactly d points (natural incidence). Prove that $\mathcal{S}(K)$ is a point-line geometry satisfying the conditions above, and determine the parameters s, t, α of $\mathcal{S}(K)$. When is $\mathcal{S}(K)$ a generalized quadrangle?

Exercise 2 A connected graph G of diameter d is called distance regular if there exist constants a_i, b_i, c_i , with $i \in \{0, 1, \ldots, d\}$ such that the following holds for any two vertices x and y of G at distance i from each other:

- there are a_i neighbours of y at distance i from x;
- there are b_i neighbours of y at distance i + 1 from x;
- there are c_i neighbours of y at distance i 1 from x.

Clearly $a_0 = c_0 = b_d = 0$ and G is k-regular with $k = a_0 + b_0 + c_0 = \cdots = a_d + b_d + c_d$.

- (a) Prove that the collinearity graph of a generalized *n*-gon of order (s, t) is a distance regular graph of diameter $\lfloor \frac{n}{2} \rfloor$.
- (b) Determine the number of points and lines in a generalized *n*-gon of order (s, t).

Exercise 3

(a) Prove that a k-regular graph of diameter d has at most

$$1 + k \sum_{i=0}^{d-1} (k-1)^i$$

vertices, with equality if and only if the graph is a Moore graph.

(b) Prove that a k-regular bipartite graph of diameter d has at most

$$2\sum_{i=0}^{d-1} (k-1)^i$$

vertices, with equality if and only if the graph is the incidence graph of a generalized d-gon of order (k-1, k-1).

Exercise 4 A near 2d-gon, for $d \ge 2$, is a partial linear space whose collinearity graph has diameter d, and for every point x and every line ℓ , there exists a unique point $x' \in \ell$ that is closest to x in the collinearity graph, among all points of ℓ .

- (a) Prove that every generalized 2d-gon is a near 2d-gon.
- (b) Prove that every near 2*d*-gon that satisfies the following two properties is a generalized 2*d*-gon: (i) every point is incident with at least two lines, and (ii) for every pair of points x and y at distance $2 \le i \le d-1$ from each other in the collinearity graph there is a unique neighbour of y at distance i-1 from x.

Exercise 5 Let G be the incidence graph of a non-thick generalized d-gon. Assume that G is not a cycle of length 2d. Let k be the minimum distance between two thick vertices of G.

- (a) Prove that if k = d, then G is the k-fold subdivision of a graph consisting of 2 vertices and at least 3 edges between them, that is, a multiple edge of multiplicity at least 3.
- (b) If k < d, show that G is the k-fold subdivision of the incidence graph G' of a thick generalized d'-gon, with d' = d/k.

[Hint (to be read backwards): G' ni 2d' htgnel fo elcyc a fo noisividbus dlof-k a si G ni 2d htgnel fo elcyc yreve taht wohS]