Due date: 14:15, 9th July

Exercise Sheet 7

You should try to solve all of the exercises below, but clearly mark which three solutions you would like us to grade – each problem is worth 10 points. We encourage you to submit in pairs, but please remember to indicate the author of each solution.

Exercise 1 An ovoid \mathcal{O} in $\mathrm{PG}(n,q)$ is a set of points with the following two properties: (i) no three distinct points of \mathcal{O} are collinear, and (ii) for all points $x \in \mathcal{O}$ there exists a hyperplane H_x such that the set of lines through x that are tangent to \mathcal{O} is equal to the set of lines through x in H_x .

- (a) Prove that an ovoid in PG(n,q) has $q^{n-1} + 1$ points.
- (b) Prove that for every $n \ge 4$, PG(n, q) does not contain any ovoids.

Exercise 2

(a) Prove that a bipartite k-regular graph of girth $g \ge 4$ has at least

$$2\sum_{i=0}^{(g-2)/2} (k-1)^i,$$

vertices, and for every $g \in \{4, 6, 8, 12\}$ the bound is sharp for infinitely many values of k.

- (b) For every prime power q, construct a bipartite q-regular graph of girth 6 with $2q^2$ vertices, and of girth 8 with $2q^3$ vertices.
- (c) (Bonus) Improve the constructions from (b) to get as close as you can to the lower bounds of $2(q^2 q + 1)$ and $2(q^3 2q^2 + 2q)$, respectively.

Exercise 3 Let π be the Fano plane PG(2, 2). Construct the following point-line geometry $S = (\mathcal{P}, \mathcal{L})$.

- \mathcal{P} is equal to the set of all points, lines, and all point-line pairs (p, ℓ) of π .
- \mathcal{L} is equal to the set of all the following 3-element subsets of \mathcal{P} : for every incident pointline pair (p, ℓ) in π , the sets $\{p, \ell, (p, \ell)\}$, $\{(p, \ell), (p_1, \ell_1), (p_2, \ell_2)\}$ and $\{(p, \ell), (p_1, \ell_2), (p_2, \ell_1)\}$, where p, p_1, p_2 are the points on ℓ in π and ℓ, ℓ_1, ℓ_2 are the lines through p in π .
- (a) Determine the number of points and the number of lines in S and prove that it is a partial-linear space of order (2, 2).
- (b) Prove that \mathcal{S} is a generalized hexagon.

Exercise 4 A bilinear form $\beta : V \times V \to F$, for some vector space V over F, is called *alternating* if $\beta(u, u) = 0$ for all $u \in V$. It is called non-degenerate if $\beta(u, v) = 0$ for all $v \in V$ implies that u = 0.

- (a) Show that if β is an alternating bilinear form then $\beta(u, v) = -\beta(v, u)$ for all u, v.
- (b) Prove that the maximum vector space dimension of a totally isotropic subspace with respect to a non-degenerate alternating bilinear form over a vector space of dimension n+1 is equal to (n+1)/2, and hence deduce that n must be odd.
- (c) Prove that the totally isotropic points and lines of PG(n, F) with respect to a nondegenerate alternating bilinear form over the underlying vector space F^{n+1} , form a nondegenerate polar space. Also determine the order (s, t) of this polar space if $F = \mathbb{F}_q$.

Exercise 5 Let S be an orthogonal polar space of rank r and type ϵ , over \mathbb{F}_q . Prove that the number of totally singular subspaces of vector space dimension r is equal to

$$\prod_{i=1}^{r} (q^{i+\epsilon} + 1).$$

Exercise 6

- (a) Give an example of a non-degenerate symmetric bilinear form that contains totally isotropic points and lines, such that these point and lines give rise to a degenerate polar space.
- (b) Prove that a quadratic form over a field of characteristic not equal to 2 is non-degenerate if and only if the bilinear form associated with it is non-degenerate.
- (c) Give an example of a non-degenerate quadratic form Q such that the bilinear form β associated with it is degenerate.

Exercise 7 (Bonus 10 points) Let β be a non-degenerate symmetric bilinear form over \mathbb{F}_q^5 , that gives a polarity \perp of $\mathrm{PG}(4,q)$ by mapping a point x to the hyperplane $x^{\perp} = \{y \in \mathrm{PG}(4,q) : \beta(x,y) = 0\}$. Let z be a point of $\mathrm{PG}(4,q)$ such that $z \notin z^{\perp}$, and let \mathcal{O} be an ovoid in $z^{\perp} \cong \mathrm{PG}(3,q)$.

Define a graph G with vertex set equal to the set of points x in $PG(4,q) \setminus (z^{\perp} \cup \{z\})$ such that x lies on a line joining z and a point of \mathcal{O} , and making two vertices x, y adjacent if $x \in y^{\perp}$.

- (a) Determine the number of vertices n in G and show that the number of edges is at least $Cn^{5/3}$, for some constant C and large enough n.
- (b) Prove that G does not contain any copies of the graph $K_{3,3}$.¹

¹In fact, the graph G is asymptotically the densest possible graph on n vertices that does not contain a $K_{3,3}$.