
Background required

1 Linear Algebra

The reader should be familiar with the following notions from linear algebra: vector spaces
over a field, linear independence, span, basis of a vector space, the lattice of subspaces,
linear maps between vector spaces, linear forms, ranks of matrices, determinants, quotient
spaces, eigenvalues and eigenspaces.

The following basic theorems will often be directly useful to us.

Theorem 0.1. Let U1, U2 be two finite dimensional subspaces of a vector space V . Then

dimU1 + dimU2 = dim(U1 \ U2) + dim(U1 + U2).

Theorem 0.2 (Rank-Nullity Theorem). Let L be a linear map from a vector space V to

a vector space W . Then

dimker(L) + dim im(L) = dimV.

Theorem 0.3. Let U be a subspace of an n dimensional vector space V , and let V/U be

the quotient space with respect to U . Then dimV/U = n� dimU .

Theorem 0.4. Let A be a square matrix of order n. Then the eigenvalues of A are the

solutions of the degree n polynomial equation det(A � �I) = 0, where I is the identity

matrix.

Corollary 0.5. The sum of all eigenvalues of A is equal to the trace of A, that is, the sum

of the diagonal entries of A, and the product of all eigenvalues is equal to the determinant

of A.

Theorem 0.6. Let A be a real symmetric matrix of order n. Then A has n eigenvalues,

�1 � · · · � �n, counted with multiplicity. Moreover, there exists an orthonormal basis of

Rn
, x1, . . . , xn, such that xi is an eigenvector of M with eigenvalue equal to �i.

2 Finite Fields

The reader should be familiar with the notions of groups, rings, ideals, fields, quotient
rings, isomorphism of rings/fields and field extensions.

The simplest example of a finite field is Fp = Z/pZ, that is, the integers modulo p,
for a prime number p. The main thing to check is that every element has an inverse,
which follows from Euclid’s theorem: for any integers a, b with GCD(a, b) = 1, there exist
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integers x and y such that ax+ by = 1. Let F be an arbitrary field which is finite. By the
repeated addition of 1, we see that there exists a smallest integer m such that 1 + · · ·+ 1
(m times) is equal to 0 in F . This smallest integer must necessarily be a prime p, since
there are no zero divisors in F , and this prime number is known as the characteristic of
the finite field F . The set {0, s1, . . . , sp�1} ✓ F where si is the i-fold sum of 1, is a subfield
of F , which is known as the prime subfield, and it is isomorphic to Fp.

Theorem 0.7. For every finite field F , there exists a prime number p and a positive

integer n such that |F | = pn.

Proof. Let p be the characteristic of F , and let n be the dimension of F when seen as a
vector space over its prime subfield. The number of elements in an n-dimensional vector
space over Fp is equal to pn.

Therefore, every finite field must have order equal to a prime power. In fact, we have the
following converse.

Theorem 0.8. For every prime power q, there exists a unique field of order q (up to

isomorphism).

Proof. Let q = pn where p is a prime. Any finite field of characteristic p is algebraic over
the subfield Fp, since it is finite, and hence contained in the algebraic closure F of Fp.
The unique field of order q is then just the set of zeros of the polynomial xq � x in F .

This finite field of order q = pn is denoted by Fq.1 The proof above is not really construc-
tive. The most concrete way to construct the finite field Fq, and to do computations in
it, is to take an irreducible polynomial f(x) 2 Fp[x] of degree n (they always exist), to
get the field Fq as Fp[x]/(f(x)).

We now enumerate some basic properties of Fq that will be useful to us.

(a) For every ↵ 2 Fq we have ↵q = ↵. Moreover, the elements of the prime subfield are
precisely the zeros of the polynomial xp � x 2 Fq[x].

(b) Fpm is a subfield of Fpn if and only if m divides n. Moreover, for every divisor m of n,
there exists a unique copy of Fpm in the subfield lattice of Fpn , given by the elements
satisfying ↵pm = ↵ in Fpn .

(c) The additive group of Fq is isomorphic to (Z/pZ)n. The multiplicative group F⇤
q of

Fq, is generated by a single element of order q � 1, and therefore it’s isomorphic to
Z/(q � 1)Z. Any generator of this group is called a primitive element of Fq.

(d) The map x 7! xp is an automorphism of the field Fq. The full automorphism group
of Fq is a cyclic group of order n consisting of the maps x 7! xpi , for i = 1, . . . , n.

(e) For q odd, there are precisely (q�1)/2 squares (quadratic residues) in F⇤
q and (q�1)/2

non-squares. Multiplying F⇤
q by a square fixes these two sets while multiplying by a

non-square permutes the two of them. For q even, every element of Fq is a square
since x 7! x2 is a field automorphism.

1In finite geometry literature it is sometimes denoted by GF(q), where GF stands for Galois Field.
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Lemma 0.9. For all i 2 N, the sum X

a2Fq

ai

is �1 if i is a multiple of q � 1 and 0 otherwise.

Proof. Let S be the sum and ↵ be the generator of the group F⇤
q. Then

S =
X

a2Fq

ai =
X

a2Fq

(↵a)i = ↵i
X

a2Fq

ai = ↵iS.

Now, ↵i is equal to 1 if and only if i is a multiple of q�1, and hence for all i 62 (q�1)N, we
must have S = 0 for the equality above to hold. When i 2 (q � 1)N, then since aq�1 = 1
for all a 6= 0, S is the (q � 1)-fold sum of the identity 1, and hence it’s equal to �1.

Definition 0.10. Let Fqn be a field extension of Fq. Then the trace function, with respect
to this extension, is defined as

Tr(x) = x+ xq + xq2 + · · ·+ xqn�1
.

The norm function with respect to this extension is defined as

Norm(x) = xxq · · · xqn�1
= x(qn�1)/(q�1).

If Fq is the prime subfield, then these maps are known as absolute trace and absolute

norm, respectively.

Lemma 0.11. Tr is an additive surjective function from Fqn to Fq with |Tr�1(a)| = qn�1

for all a 2 Fq.

Lemma 0.12. Norm is a multiplicative function from F⇤
qn to F⇤

q, with |Norm�1(a)| =
(qn � 1)/(q � 1) for all a 2 F⇤

q.
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