Chapter 1: Getting Started

———— g

The Probabilistic Method
Summer 2020

Freie Universitat Berlin

Chapter Overview

e Survey quick applications of the basic method to different areas

§1 Unsatisfiable Formulae §2 Prefix-free Codes

§3 Sum-free Subsets

§4 Schutte Tournaments §5 Ramsey Numbers

§1 Unsatisfiable Formulae

S ——————

Chapter 1: Getting Started
The Probabilistic Method

Boolean Logic

INMEIVACIIES
e Computers can only talk in Os and 1s
* In logical applications, we map those to False and True

Logical operators

e Can obtain new truth values from old ones
Not: — Or:V And: A

Boolean formulae
e Can build any True/False expression using these operations
* Such a formula is a function f:{0,1}"* — {0,1}

Anatomy of a Formula

Every Boolean formula can be written in Conjunctive Normal Form:

Variables
* X; € {0,1}

Literals

* Variable x; or its negation —Xx;

Clauses

 ‘OR’ of literals
*e.g..xq1 VX, VX3

CNF Formula

 ‘AND’ of several clauses
ceg:(xyVax, Vxg) A(=x; V) A(xy, VgV, V—xs)

A Little Complexity

Satisfiability Problem (SAT)

* Given a Boolean formula f, can f ever evaluate to True?
* If not, say f is unsatisfiable

Theorem 1.1.1 (Cook, 1971; Levin, 1973)

{

SAT is NP-Complete, i.e. is probably very difficult.

A universal model

* Most interesting problems can be reduced to SAT instances
e e.g.: Travelling Salesman Problem, Subgraph Isomorphism, Largest Clique

Restricted Formulae

Simplifying the problem
* Perhaps the problem is easier for ‘nice’ formulae
e k-SAT: each clause must have exactly k literals from distinct variables

Theorem 1.1.2 (Karp, 1975)

{

For all k > 3, k-SAT is still NP-Complete.

Does size matter?
e Karp = unsatisfiability does not require long clauses
* Does it at least require many clauses? Are short formulae always satisfiable?

Minimum Unsatisfiability

Extremal problem
* How small can an unsatisfiable instance of k-SAT be?

Definition 1.1.3

'Given k € N, let my(k) be the minimum m € N for which there is an
‘unsatisfiable instance of k-SAT with m clauses.

Small k-SAT is easy
* Can solve instances of k-SAT with m < my(k) clauses in constant time!
 (Existential) answer is always: yes (satisfiable)

A First Lower Bound

Lower bounds

e Given any instance of k-SAT with few clauses, need to show it is satisfiable
* First idea: build a satisfying argument greedily

A worked example (k = 3)
(X V—axy Vxg) A(=x; VX, Vaxy) A(=x, V—axg V—xe)

X1 | X2 | X3 | X4 | X5

? \ ? \ ? \ ? \ ?

A First Lower Bound

Lower bounds

e Given any instance of k-SAT with few clauses, need to show it is satisfiable
* First idea: build a satisfying argument greedily

A worked example (k = 3)

(; Vaxy Vxg) A(=x; Vxy Vaxy) A(=x, V—axg V—xe)

Step 1
 Select x; as the designated variable for the first clause

A First Lower Bound

Lower bounds

e Given any instance of k-SAT with few clauses, need to show it is satisfiable
* First idea: build a satisfying argument greedily

A worked example (k = 3)
(1V=ax, Vxz) A(OVxy Vaxy) A(axy V—axg V—xe)

Step 1
 Select x; as the designated variable for the first clause
* Set x; = 1 to satisfy the clause

A First Lower Bound

Lower bounds

e Given any instance of k-SAT with few clauses, need to show it is satisfiable
* First idea: build a satisfying argument greedily

A worked example (k = 3)
(1V-ax,Vx3) A(OV xy, Vaxy) A(axy Vaxg V—xe)

Step 2
* The second clause is still unsatisfied

A First Lower Bound

Lower bounds

e Given any instance of k-SAT with few clauses, need to show it is satisfiable
* First idea: build a satisfying argument greedily

A worked example (k = 3)
(IVOVx3)) A(OVIVaxy) AV ax3V axs)

Step 2
* The second clause is still unsatisfied
* Select x, as its designated variable, and set x, = 1

A First Lower Bound

Lower bounds

e Given any instance of k-SAT with few clauses, need to show it is satisfiable
* First idea: build a satisfying argument greedily

A worked example (k = 3)
(IvovoO)AOVIV-axy)AOVIV-axe)

Step 3
* The third clause is still unsatisfied, so we set x; = 0

A First Lower Bound

Lower bounds

e Given any instance of k-SAT with few clauses, need to show it is satisfiable
* First idea: build a satisfying argument greedily

A worked example (k = 3)
(IvoOvo)AOVIVAaxy)AOVIV-axe)

Step 3
* The third clause is still unsatisfied, so we set x; = 0
* This satisfies the formula, so we are done

A First Lower Bound

Proposition 1.1.4

'Forallk € N, my(k) > k.

Proof
* Let f be an arbitrary k-SAT formula with m < k clauses

We use the greedy algorithm, satisfying each clause one at a time

When dealing with the ith clause, for 1 < i < m, either:

* itis already satisfied by our previous assignments, or

« we havesetatmosti —1 < m — 1 < k variables, so there is a free variable to choose

Hence we can satisfy all the clauses
Thus f is satisfiable

Being Greedy Doesn’t Always Pay

What if we have more clauses?
* This greedy algorithm can get stuck

Extending our example

(X3 Vax, Vxz) A(=xy Vx, Vaxy) A(axy Vaxg Vaxe) A(Axg V—x, Vxg)

Being Greedy Doesn’t Always Pay

What if we have more clauses?
* This greedy algorithm can get stuck

Extending our example
(IVOVOAOVIVax)AOVIVaxg)AOVOVO)

Steps 1-3
* Proceed as before, with the same assignments
* Now the final clause is unsatisfiable

Being Greedy Doesn’t Always Pay

What if we have more clauses?
* This greedy algorithm can get stuck

Extending our example
(Ivovi) AOVIV=ax) A(OVOVI)AOVOVI)

Formula is still satisfiable
 Could have satisfied earlier clauses with different variables

An Unsatisfiable Formula

Intuition

e Clauses with unique variables are can always be satisfied
* Maybe hardest when all clauses share the same variables

Building an unsatisfiable formula

e With k variables, there are 2% possible inputs and 2* possible clauses
* Each clause is unsatisfied by a unique input

* e.g.: x; V X, V —x3 is not satisfied by (x1, x5, x3) = (0,1,1)
= The formula with all possible clauses is unsatisfiable

Proposition 1.1.5

Forallk € N, my(k) < 2*.

A Tight Result

Theorem 1.1.6

Forallk € N, my(k) = 2%.

i

Upper bound

* Previous construction

Lower bound

* Need to show every k-SAT instance with m < 2% clauses is satisfiable

Existential reformulation

* Given: k-SAT formula f with n variables and m < 2% clauses
* Goal: show there is some x € Q0 = {0,1}" with the property f(x¥) = 1

Randomness to the Rescue

Theorem 1.1.6

Forallk € N, my(k) = 2%.

Existential reformulation

* Given: k-SAT formula f with n variables and m < 2* clauses
* Goal: show there is some x € Q) = {0,1}" with the property f(x) = 1

The probabilistic method
* Choose x € {0,1}" uniformly at random
* Show P(f(x) =1)>0

Bounding Probabilities

Setting

* Given: f, a k-SAT formula with n variables and m < 2* clauses
e Given: uniformly random x € {0,1}"
* Goal: show P(f(x) =1) >0

Bad events

* Equivalently, want to show P(f(x) =0) < 1

* Let E; be the event that the ith clause is not satisfied by x
- {f(x=0)} = UL E

* = P(f(x) =0) = P(UZ, E))

Union Bound
\Given arbitrary events E;, we have P(U; E;) < X; P(E;).

o

Completing the Proof

Individual clauses

* Recall: E; is the event that the ith clause is not satisfied by x
» E; only depends on the values of the k variables it contains

e Exactly one of the 2% possible values does not satisfy the clause
« = P(E;) = 27F

P(f(¥) =0) =P (U El-) < z P(E,) =m27% < 1

Conclusion
* Therefore P(f(x) =1)=1-P(x=0)>0
 Hence there is some x € {0,1}" for which f(x) = 1

|s Repetition Necessary?

Trivial unsatisfiability

* In our construction to show my(k) < 2%, each clause had the same variables
* Clauses are then forced to be in conflict with one another

Non-repetitive formulae
* A k-SAT formula is non-repetitive if each clause has a distinct set of variables
* e.g.: cannot have both (x; V —=x, V x4) and (=x; V =x, V —=1x,4) as clauses
Extremal problem

 How many variables must an unsatisfiable non-repetitive k-SAT formula have?

Definition 1.1.7

'Given k € N, let ng(k) be the minimum n € N for which there is an
unsatisfiable non-repetitive k-SAT formula with n variables.

A Lower Bound

Observation
* A non-repetitive k-SAT formula with n variables can have at most (Z) clauses

lTheorem 1.1.6

Forall k € N, my(k) = 2k,

lCoroIIary 1.1.8

|
‘Forallk,n € N, if (',:) < 2%, then ny(k) > n.

An Upper Bound

Existential formulation

» Set of objects (): non-repetitive k-SAT formulae with n variables
* Desired property P: Vx € {0,1}", f(x) =0

Probabilistic approach

* There are (Z) sets of k variables:
* For each variable x;, there are two possible literals: x; and —x;
* Total of 2% possible clauses for this set of variables
* Choose one uniformly at random
* Make these choices independently

* This gives us a random f € ()
« Want to show P(Vx € {0,1}", f(x) =0) > 0

Analysing the Bad Events

Satisfying assignments
* For each x € {0,1}", let E; be the event that f(x) = 1
* We want to show [P’(Uf Ef) <1

* Union bound:
* There are 2™ possible x

» P(UzEz) < X P(Eg)
* Suffices to have P(Ez) < 27" for all x

Fix an assignment x

* For f(xX) = 1, x must satisfy each of the (Z) clauses

* Let F; be the event that x satisfies the ith clause
* Then Ef =ﬂl- Fi

Computing Probabilities

Recall

 f formed by choosing a random clause for each set of variables
« E>: event that f(X) = 1; F;: event that X satisfies the ith clause of f
* Suffices to show P(Ez) = P(N; F;) < 27"

Independence

* Clauses are chosen independently = events F; are independent
« > P(n; F;) =[1; P(F)

Satisfying a single clause

* Given i and our fixed X, unique choice of literals such that F; doesn’t hold
e > P(F)=1-27%

Putting it all together

A final calculation

* We therefore have P(Ey) = []; P(F;) = (1 _ z—k)(k)

]ExponenﬂafBound |
| i
‘Forallx eR, 1+ x <e* ’

« > P(Ep) = (1- z—k)(k) < e 2 ()
e This is less than 27 if (Z) > 2knIn2

Theorem 1.1.9

Forallk € N, if (2) < 2%, then ng(k) > n, and if (Z) > 2kn1n 2, then
ny(k) <n.

Just Kidding, There’s One More Calculation
Theorem 1.1.9 D

i

Forallk € N, if (7) < 2%, then ng(k) > n, and if (};) > 2¥nIn 2, then
ny(k) < n.

Binomial estimates

e Foralll < k < n, we have (%)k < (Z) < (%)k
* If k = an, then (}) = 2(1+o(M)H(@N 56 9y — oo

* Binary entropy: H(a) = —aloga — (1 — a) log(1 — a)
* For more estimates:

http://page.mi.fu-berlin.de/shagnik/notes/binomials.pdf

Just Kidding, There’s One More Calculation

Lower bound
e We use (Tl) _ 2(1+o(1))H(a)n
an

* Therefore (Z) ~2kifk=anand H(a) = «
e This happens for a = 0.7729 ...

Upper bound
* Binomial coefficient grows very fast
() =m0~ @

« = for some constant ¢, if n’ = a~'k + clogk, then (7}(’) ~ 2knIn2

Corollary 1.1.10

{

As k — 0, ny(k) = (1.2938 ...+ o(1))k.

Any questions?

E— — ——

§2 Prefix-free Codes

Chapter 1: Getting Started
The Probabilistic Method

A Motivating Example

Evolutionary pitfalls

* Imagine in some parallel universe a species evolves so that:
* they develop binary computers, and
* they communicate their emotional states through a set of five emojis

© ® O 6

Technical problem
* How should a binary computer transmit these states?

A First Attempt

Binary encoding
* We can index the emojis with integers 0 — 4
* The integers 0 — 7 can be written as binary strings of length 3
* Computers can send these strings to represent the emojis

000 001 010 011 100

Examples

(.9 () - 001 | 000 | 100 — 001000100
011000 - 011 | 000 - (=) ()

A Problem and a Fix

Wasteful encoding
* This is a bit costly — it takes three bits per emo;ji
e Can we reduce the bandwidth by using a shorter encoding?

ldea

* We need to encode five emojis
* There are six non-empty binary strings of length at most two
* Five is less than six

0O 00

The Problem in the “Fix”

Encoding is simple

(2) (2 () - 010101 - 010101

But how do we decode?
010101 - 01 |01 | 01— (L) (L) () ?

010101 -50|1]|0|1|0|1- LWE E W GE?
010101 - 01 |0 10| 1= () (C)(CHE)?

Coding: General Framework

Set-up
* Have an alphabet A = {a,, a,, ...,a,} of sizen
* Want to encode the letters of the alphabet as binary strings

Encoding
* Represent each a; with a word w; € {0,1}*, a non-empty finite binary string
* Let ; = |w;| be the length of the word w;

Objectives

* Decipherability: given a concatenation of words, should be able to recover the
original words uniquely

* Efficiency: would like to make the lengths £; as small as possible

Prefix-free Codes

Prefixes

* Given aword w € {0,1}*, the #-prefix of w is the subword of the first £ bits
* e.g.the non-empty prefixes of w = 00101 are 0, 00, 001, 0010 and 00101
* but the substring 010 is not a prefix

Prefix-free codes

* We say a code from an alphabet A to {0,1}" is prefix-free if no codeword w; is
a prefix of any other codeword w;, j # i

« Equivalently, if we place the codewords in the (infinite) binary tree of {0,1}%,
no codeword is an ancestor of another

Decipherability

lProposition 1.2.1
'All prefix-free codes are decipherable.

Proof
* Want to show that the concatenation w = w; w;_ ...w;_can be decoded

* Basecase:s =0
* In this case, w is the empty string = no codewords
* Induction step: s = 1

* Start from the beginning of w, and read until the prefix is some codeword w;
* Must terminate, as w;_ is a prefix of w

Cannot terminate on another codeword, as otherwise w; would be a prefix of w;_

Thus we know a;_ is the first letter

Remove w; , and decode w’ = w;, w; . w;, ...w;_(induction hypothesis)

Examples

Uniform codes

Given £, any
injection A —
{0,1}* is prefix-
free

Length

We must have
Al < [{0,1}| =
2%’
= ¢ > log|A|
= ¢ > [log|A]]

/\

/Q)\
N

ANAY

0[0]0

001

010

011

VANRVA

100

101

110

111

Examples - [l

Improvements

Can sometimes
find prefix-free
codes with a
shorter average
codeword length

7N

O/Q)\l
RN

/OO\ /01\ /10\ /1 1\

0[0]0

001

010

011

100

101

110

111

Short Prefix-free Codes

Extremal problem
 How small can the average length of a codeword of a prefix-free code be?

Theorem 1.2.2 (Kraft, 1945)

Given an alphabet A of size n, any prefix-free code with codeword |
lengths £, >, ..., £,, must satisfy

Y27 <1,

Corollary 1.2.3 (Convexityy

Given an alphabet A of size n, the average length of the codewords in
‘any prefix-free code is at least log n.

Proof |dea

Existential reformulation
* Want to show that an encoding with shorter codewords is not prefix-free
* Given:
* an encoding wy, Wy, ..., W, of A with lengths €1, %,, ..., £, such that }.i*, 27t > 1
* Seek:

* Codewords w;, wj, i # j, such that w; is a prefix of W;

Key observation
» Suppose we have a string w € {0,1}" such that both w;, w; are prefixes of w

* Then w; is a prefix of w; or wj is a prefix of w;

New objective
* Find a string w € {0,1}* that contains at least two codewords as prefixes

Probabilistic Framework

Probability space
* Let L = max {l;:i € [n]} be the length of the longest codeword
* Let w € {0,1}* be a uniformly random string of length L

Random variables

* Let X = |{i: w; is a prefix of w}| count the number of codeword prefixes

Basic Fact

For any random variable X, the events {X > E|X]} and {X < E[X]}
‘must occur with positive probability.

Simpler objective
* Since X is integer-valued, it suffices to show E[X] > 1

Computing the Expectation

Indicator random variables
* For each i € [n], let E; be the event that w; is a prefix of the random string w
* Let X; = 1g, be the indicator function of this event

* Then X =)1, X;

Linearity of Expectation

For any sequence X4, X5, ..., X,, of random variables, and any sequence |
C1,Cy, ..., Cp Of constants, if X = ¢ X; + ¢, X5 + - + ¢, X,,, then

E|X] = E[X;] + ,E[X5] + -+ + ¢, E[X,,].

Reduction to probabilities
 We therefore have E[X]| =)i, E[X;] = XL, P(E})

Finishing the Proof

Recall
* wis a uniformly random string
e X is the number of codewords that are prefixes of w
* E; is the event that the codeword w; is a prefix of w

 E[X] = 31, P(E)

Computing probabilities
* The event E; only depends on the first #; bits of w
e This is a uniformly random string in {0,1}?:
° = [P)(El) — 2_&

A grand finale
e > ifE[X] =Y, 27% > 1, there is some w € {0,1}* with two codewords as prefixes
* Hence, in any prefix-free code, Y.7" 4 | n

Linearity of Expectation

Union bound revisited
* In the previous calculation, we saw the expression);; P(E;)
* Union bound: P(U; E;) < }; P(E;)
« ~) P(E;) <1 = with positive probability, none of the events E; occur

Using linearity instead
*)., P(E;) is the expectation of the number X of events E; that occur
« ~), IP(E;) <1 = with positive probability, X = 0
 With linearity, we get information when);; P(E;) = 1 as well

Any questions?

E— — ——

§3 Sum-free Subsets

Chapter 1: Getting Started
The Probabilistic Method

Sum Theorems

Definition 1.3.1

Aset Aissum-freeiftherearenox,y,z € Awithx +y = z.

Theorem 1.3.2 (Fermat, 1637; *Wiles, 1995)

For alln = 3, the set {x™: x € N} is sum-free.

Theorem 1.3.3 (Schuir, 19f2) .

‘N cannot be partitioned into finitely many sum-free sets.

Sum-free Subsets of [n]

!Questlon

"How large can a sum-free subset of [n] be?

Answer
 If A is sum-free, then [A| < [ﬂ
e Odd integers: 0 = {x € [n]:x =1 (mod 2)}
 Large integers: L = {x € n]l:x > g}

* These are the only two maximum sum-free subsets of [n]

Sum-free Subsets of Sets

Theorem 1.3.4 (Deshouille_rs, Freiman, SOs)

If A € [n] is sum-free, then either A € 0, A C L, or |A]| < %n + 1.

lQuestion (Erd6s, 1965)

%

‘Does every set of n natural numbers have a large sum-free subset?

Extremal function
e GivenasetS C N, let f(5) = max {|A]: 4 € S, A sum—free}
* Let f(n) = min {f(5):S c N, |S| = n}
* Question: how quickly does f(n) grow?

Upper Bounds

A trivial bound

« f) < f([n]) = [3]

* Any good set should have lots of (well-distributed) sums
* [n] has lots of sums — could this be best possible?

Beating trivial
* Recall: biggest sum-free subsets have odd or large integers
* Let T € |n] be a set ofl—rg large odd integers, take S = [n] \ T

* If A C S is sum-free, then either A S O\T,A S L\T or |A] <§n+ |
. Thusf(%n) < f(S) <§n+ 1

. =>f(n)§§n+%0

Lower Bounds
Goal

e Given a set S of n natural numbers, find a large sum-free A € §

Greedy approach

e Start with A = @, and add elements one-by-one, keeping A sum-free
* If |A| = a, A defines at most (a;rl) sums
o If (a;rl) < n— a,thereis an element of S \ 4 that can be added to A

e = f(n) >+V2n -2

Theorem 1.3.5 (Erdés, 1955) .

Foralln €N, f(n) 2§(n+ 1).

A Cyclic Digression

The problem with [n]
* [n] does have large sum-free sets, O and L
* But S might be far away from these

The cyclic group has more symmetry
* Largest sum-free setin Z,,, p prime?
e M= {x:%p <x< %p} is sum-free
* Cauchy-Davenport: if A € Z,, then [A + A| = min {2|A| — 1, p}
 SinceAN(A+A) =0, |A| < [ﬂ
* Z, has many large sum-free sets
* Forany a € Z, \ {0}, aM = {ax:x € M} is also sum-free

Finding Large Sum-free Subsets

Theorem 1.3.5 (Erdés, 1955) N

Foralln €N, f(n) 2§(n+ 1).

Proof idea
* Givenaset$ c N of size n, embed § in Z,, for some suitable p

* Z, has many large sum-free subsets
* Find one that intersects S significantly

Randomness to the rescue

* A random sum-free subset works!

Setting Up

Choosing a prime
* Letp = 3k + 2 be prime with p > max §
e ThenM ={k+ 1,k + 2,..,2k + 1} is sum-free with size k + 1
* Embed S € Z,

Choosing a sum-free subset
* Let a € Z, \ {0} be chosen uniformly at random
e letS, =SnNnaM
* S, € Sissum-free:
* Ifx+y=2zinS,, thenx + y = z (mod p), so this would be a sum in aM

No Devil in the Details

Using linearity

* [Sql = ZSES 1{S_EaM}
« = E[|Sq|] = E_ZsES 1{S€aM}] — ZSES]E[]‘{SECZM}] = Dises P(s € aM)

Computing probabilities

sseEaM o alseM

* a uniform over Z, \ {0} = a~! uniform = a~'s uniform

M| k+1 1

° -1 — =
= P(a™'s € M) PR

Finishing the proof
« = E[|S,|] > %ISI = for some «, |S,| = %(n + 1)
* This gives a sum-free subset of S of the desired size

Finishing the Story

Improving the lower bound
* Using Fourier analysis, Bourgain (1997) proved f(n) = g(n +2)forn >3

e Best-known bound to date

Upper bounds

* Blow-ups of small constructions: several improvements over the years

e Until Eberhard, Green and Manners (2014) proved f(n) < (g + 0(1)) n

* Construction randomised, but intricate

Any questions?

E— — ——

§4 Schutte Tournaments

—

Chapter 1: Getting Started
The Probabilistic Method

War by Proxy

Rival superpowers
* Two powerful nations go to war
* Hire private military companies to do the actual fighting

Objectives

* Have enough power

* Need to ensure that hired companies can defeat any of the companies the enemy hires
* Be economical

* Hire as few companies as possible

Problem
* How many companies must be hired?

A Graph Theoretic Representation

Tournaments
* Build a directed graph

* Vertices: private military companies
* Arcs: edge x — y if x would defeat y in battle
* For every pair {x, y}, exactly one of the arcs x = y or y — x is in the graph

* Such a graph is called a tournament

Objectives

* Dominating set
* Asubset of vertices S such that, for every x € IV'\ S, there is some s € S withs - x
* Then we can always defeat the enemy’s army, regardless of their choice

* Economical
* Want to choose a small dominating set

Small Examples

Easy case

VAN

Small Examples

Easy case

a

* One vertex beats all others

Small Examples

Easy case

>3

* One vertex beats all others

» Defeats any choice the enemy makes

Small Examples

Easy case

) >

* One vertex beats all others

» Defeats any choice the enemy makes

Small Examples

Easy case

a

* One vertex beats all others

» Defeats any choice the enemy makes

* Dominating set of size one

Small Examples

Easy case Harder case
1 1
2 > 3 2 > 3
 One vertex beats all others * No such vertex

» Defeats any choice the enemy makes

* Dominating set of size one

Small Examples

Easy case Harder case
1
2 >3 2 >
 One vertex beats all others * No such vertex

* Defeats any choice the enemy makes * Any vertex we choose loses to another

* Dominating set of size one

Small Examples

Easy case Harder case
1 |
2 > 3
 One vertex beats all others * No such vertex

* Defeats any choice the enemy makes * Any vertex we choose loses to another

* Dominating set of size one

Small Examples

Easy case Harder case
1
2 > 3 >3
 One vertex beats all others * No such vertex

* Defeats any choice the enemy makes * Any vertex we choose loses to another

* Dominating set of size one

Small Examples

Easy case Harder case
1 1
2 > 3 2 > 3
 One vertex beats all others * No such vertex

* Defeats any choice the enemy makes * Any vertex we choose loses to another

* Dominating set of size one

Small Examples

Easy case Harder case
1
2 > 3
* One vertex beats all others No such vertex

* Defeats any choice the enemy makes * Any vertex we choose loses to another

 Dominating set of size one * Dominating set of size two exists

An Extremal Reformulation

Worst-case scenario

* How large can the smallest dominating set in an n-vertex tournament be?

* |Inverse formulation

» Say T has the Schiutte property Sy, if it has no dominating set of size at most k
* Let g(k) be the minimum number of vertices in a tournament with the property Sj
> ifn < o(k), then T has a dominating set of size < k

Proving bounds on a (k)

* Lower bound: g(k) > n
* Prove that any tournament on n vertices has a dominating set of size < k

* Upper bound: o(k) <n

* Prove there is a tournament on n vertices without a dominating set of size < k

The Greedy Lower Bound

lProposition 1.4.1
'Forallk €N, (k) > 2k*1 —1.

A recursive algorithm
* Given an optimal tournament T, let v € V(T)
Let A be the vertices dominating v, and B the vertices v dominates
e ThusV(T) =AUBU{v},withd—>v—>B
Let S’ be a dominating setin T[A], and set S = S’ U {v}
Ifx e V(T)\S:

* If x € A, then x is dominated by S’, so thereisans € S’ € S withs - x
e fx & A, thenx €EB,sov —> x

Thus S is a dominating set for T

Choosing the Right Vertex

Large out-degree

* |If A is small, then it has a small dominating set
* Thus we should choose v to make A as small as possible
* = choose a vertex of maximum out-degree

1 1
* Average out-degree is - (TZL) =3 n—1)

. : 1
* = by choosing v of maximum out-degree, we ensure |A4| < > (n—1)

Induction
* Since T has the property Sy, T[A] must have the property S;_
T %(n —1) > |A| = 6(k — 1) > 2% — 1 (induction hypothesis)
e Solving gives a(k) = n > 2k*t1 — 1

An Indomitable Tournament

Theorem 1.4.2 (Erdés, 1953) |

—K
fIf (Z)(l — 2"‘)” < 1, then there is an n-vertex tournament with
the property Sy.

Goal

* Need to construct a tournament with no dominating set of size k
* Greedy argument: tournament should be close to regular
* |dea: try a random tournament T

Random tournament

* Vertex set: V = [n]
* For every pair x,y € [n], choose x = y or y = x uniformly at random

Disproving Domination

Bad events

* GivenasetS € ([’;’]), let E5 be the event that S is a dominating set

e Then P(T has property S;,) = 1 — P(Ug Eg) = 1 —). IP(ES)
* Suffices to show), P(Es) < 1

Computing probabilities
: [n]

FixS € (-)

For S to dominate a fixed vertex v, cannot have all edges v — S
e k edges, chosen independently = probability is 1 — 27%

This must be true for all verticesinV \ S

* Edges again independent = P(Es) = (1 — Z‘k)n_k
_\n—k
= YsP(Es) = (P)(1-27%)" "< 1.

Computing the Bound

Find the smallest n for which (Z)(l - Z_R)n_k <1

* Estimates:
* () <nFand1-2- k<e_2_k
. = suffices to have nke=2 (=1 < 1
e ©oklnn< (n—k)27% (%)
e (x)>n>2F
e >Inn>kln?2
e () @>n>k?2%In2
e >lnn> k(ln 2 + 0(1)), so this suffices

Corollary 1.4.3
‘Ask - o, a(k) < k?22(In2 + o(1)).

—

Any questions?

E— — ——

§5 Ramsey Numbers

S ——————

Chapter 1: Getting Started
The Probabilistic Method

Reviewing the Classics

Definition 1.5.1 (Ramsey Eumt;er)

Given k € N, R(k) is the minimum n for which any n-vertex graph has
‘either a cligue or independent set on k vertices.

Theorem 1.5.2 (Erdé’s, 19417) N
As k — oo, we have

R(k) > (i + 0(1)) e
e\ 2

Proof idea
* Show that a uniformly random graph on this many vertices works

Ramsey Upper Bounds

Theorem 1.5.3 (Erdc’Ss-SzeEere_s__ 1935)

Forallk € N, we have R(k) < (Zk 2) In particular, as k — oo,

i 1+O(1) k
R(k) < o A

Proof by induction
* Introduce the asymmetric Ramsey numbers

Definition 1.5.4 (Asymme;c_ric R%amsey numbers)

Given £,k € N, R(¥, k) is the minimum n for which any n-vertex graph |
‘contains either a clique on £ vertices or an independent set on k

vertices.

Asymmetric Ramsey Bounds

Problem
* For fixed £ € N, how does R(¥, k) grow as k — oo?

Theorem 1.5.5 (Erd6s-SzeEeres:, 1935)
Forall £,k € N,
L+ k —

| R(f,k)s()) (kf’).

* Asymmetric Ramsey numbers grow at most polynomially
e Can we find matching lower bounds?

Turan’s Lower Bound
Goal

* Find a K,-free graph with no large independent sets

Intuition
* More edges = fewer independent sets
* How dense can a K,-free graph be?

Theorem 1.5.6 (Turan, 1951)

'An n-vertex K,-free graph can have at most (1 — i) (g) edges.

Construction
* Complete (£ — 1)-partite graph T}, p—4
e a(Tpoq) = ﬁ >R k)>(E-1D(k-1)

What About Randomness?
R (k) lower bound

* Symmetric situation — can switch edges and non-edges
e Used a uniformly random graph

* Equivalently: each edge appears independently with probability%

R(?, k) for fixed ¥ € N, k — oo

e Situation far from symmetric
« “easier” to make clique on ¥ vertices than an independent set on k vertices

* Should focus on graphs with fewer edges

Erd6s-Rényi model

* G(n,p): n vertices, each edge appears independently with probability p
* Allows us to “see” sparser graphs

A Random Lower Bound

Theorem 1.5.7
Given £,k,n € Nandp € [0,1], if

D+ (a-nt <.

| 4
then R(¢, k) > n.

Proof idea
« Sample the random graph G ~ G(n, p)

 What could go wrong?
e Could find a clique on ¢ vertices
* Could find an independent set on k vertices

Analysing Bad Events

Bad cliques
* GivenasetS € ([?]), let E5 be the event that G[S] is a clique
. (5) pairs, each an edge independently with probability p

* = P(Es) = P(g)

Bad independent sets
* GivenasetT € ([Z]), let Fr be the event that G[T] is an independent set
. (’2‘) pairs, each a non-edge independently with probability 1 — p

« 5 P(F) = (1 -p))

Completing the Proof

Recall
4
« E¢ = {G|S] is an —clique}, P(Es) = p(Z)

k

e Fr = {G[T] is an independent k—set}, P(F;) = (1 — p)(z)

Union bound does the job
* {G not Ramsey} = (Us E5) U (U Fr)
» - P(G not Ramsey) = P((Us Eg) U (Ur Fp)) < Ys P(Es) + X7 P(Fp)
k

« S5 P(Es) + X P(Fr) = (Mple) + (M - p)E) < 1

= P(G Ramsey) = 1 — IP(G not Ramsey) > 0

An Actual Bound

Theorem 1.5.7
Given £,k,n € Nandp € [0,1], if

(5)p) + (g a-»® <1

?
then R(¢, k) > n.

What does this tell us about R(¥, k)?
Goal

e Maximise n
k
2

* Subject to (?)p(g) + (Z’)(l — p)() < 1 forsomep € [0,1]

Computing a Lower Bound
Goal

* Maximise n
k
2

* Subject to (?)p(g) + (Z)(l = p)() < 1forsomep € [0,1]

Varying p
e ASD i n (g) i d(?)(1 (IZC) d
S p increases, ({,)p increases an (k)(— D) ecreases
* = at optimum, expect both quantities to be comparable

Simplification
k
2

* |Instead solve (?)p(g) < %and (Z)(l — p)() < %

Computing Some More

< 1
(ple) <3
N
* Bound (?) <n?, so (?)p(g) < (np{)Tl)
» Sufficient to have p < (1 — 0(1))n=%/¢*~1)
¢ 1
(Z)(l — p)(z) < E
+ Bound (") < n¥ and 1 —p < eP, 50 (N)(1 — p)&) < (ne-Pl-1/2)"
« Suffices to have ne Pk~1/2 < 1 = p(k—1) > 2Inn

 Substitute p = n—2/(t-1)
e =k >2n2/-Dipn

Concluding the Computations

Recall
o k ~2n%/=Dlnn

Solve for n
£—1 £—1

(k)T (k)T
N~ ~
2lnn 2Ink

Corollary 1.5.8

For fixed £ € N and k — oo, we have
-1

o - = R(¢, k) = 0(kt1)
2Ink B '

Any questions?

E— — ——

