
Chapter 1: Getting Started

The Probabilistic Method

Summer 2020

Freie Universität Berlin

Chapter Overview

• Survey quick applications of the basic method to different areas

§1 Unsatisfiable Formulae
Chapter 1: Getting Started

The Probabilistic Method

Boolean Logic

Binary values
• Computers can only talk in 0s and 1s

• In logical applications, we map those to 𝐹𝑎𝑙𝑠𝑒 and 𝑇𝑟𝑢𝑒

Logical operators
• Can obtain new truth values from old ones

Not: ¬ Or: ∨ And: ∧

Boolean formulae
• Can build any 𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒 expression using these operations

• Such a formula is a function 𝑓: 0,1 𝑛 → 0,1

Anatomy of a Formula
Every Boolean formula can be written in Conjunctive Normal Form:

Variables
• 𝑥𝑖 ∈ 0,1

Literals
• Variable 𝑥𝑖 or its negation ¬𝑥𝑖

Clauses
• ‘OR’ of literals

• e.g.: 𝑥1 ∨ ¬𝑥2 ∨ 𝑥3

CNF Formula
• ‘AND’ of several clauses

• e.g.: 𝑥1 ∨ ¬𝑥2 ∨ 𝑥3 ∧ ¬𝑥1 ∨ 𝑥2 ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥4 ∨ ¬𝑥5)

A Little Complexity

Satisfiability Problem (SAT)
• Given a Boolean formula 𝑓, can 𝑓 ever evaluate to 𝑇𝑟𝑢𝑒?

• If not, say 𝑓 is unsatisfiable

Theorem 1.1.1 (Cook, 1971; Levin, 1973)

SAT is 𝑁𝑃-Complete, i.e. is probably very difficult.

A universal model
• Most interesting problems can be reduced to SAT instances

• e.g.: Travelling Salesman Problem, Subgraph Isomorphism, Largest Clique

Restricted Formulae

Simplifying the problem
• Perhaps the problem is easier for ‘nice’ formulae

• 𝑘-SAT: each clause must have exactly 𝑘 literals from distinct variables

Theorem 1.1.2 (Karp, 1972)

For all 𝑘 ≥ 3, 𝑘-SAT is still 𝑁𝑃-Complete.

Does size matter?
• Karp ⇒ unsatisfiability does not require long clauses

• Does it at least require many clauses? Are short formulae always satisfiable?

Minimum Unsatisfiability

Extremal problem
• How small can an unsatisfiable instance of 𝑘-SAT be?

Definition 1.1.3

Given 𝑘 ∈ ℕ, let 𝑚0 𝑘 be the minimum 𝑚 ∈ ℕ for which there is an
unsatisfiable instance of 𝑘-SAT with 𝑚 clauses.

Small 𝑘-SAT is easy
• Can solve instances of 𝑘-SAT with 𝑚 < 𝑚0 𝑘 clauses in constant time!

• (Existential) answer is always: yes (satisfiable)

A First Lower Bound
Lower bounds

• Given any instance of 𝑘-SAT with few clauses, need to show it is satisfiable

• First idea: build a satisfying argument greedily

A worked example (𝑘 = 3)

𝑥1 ∨ ¬𝑥2 ∨ 𝑥3 ∧ ¬𝑥1 ∨ 𝑥2 ∨ ¬𝑥4 ∧ ¬𝑥2 ∨ ¬𝑥3 ∨ ¬𝑥5

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓

? ? ? ? ?

A First Lower Bound
Lower bounds

• Given any instance of 𝑘-SAT with few clauses, need to show it is satisfiable

• First idea: build a satisfying argument greedily

A worked example (𝑘 = 3)

𝑥1 ∨ ¬𝑥2 ∨ 𝑥3 ∧ ¬𝑥1 ∨ 𝑥2 ∨ ¬𝑥4 ∧ ¬𝑥2 ∨ ¬𝑥3 ∨ ¬𝑥5

Step 1
• Select 𝑥1 as the designated variable for the first clause

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓

? ? ? ? ?

A First Lower Bound
Lower bounds

• Given any instance of 𝑘-SAT with few clauses, need to show it is satisfiable

• First idea: build a satisfying argument greedily

A worked example (𝑘 = 3)

1 ∨ ¬𝑥2 ∨ 𝑥3 ∧ 0 ∨ 𝑥2 ∨ ¬𝑥4 ∧ ¬𝑥2 ∨ ¬𝑥3 ∨ ¬𝑥5

Step 1
• Select 𝑥1 as the designated variable for the first clause

• Set 𝑥1 = 1 to satisfy the clause

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓

1 ? ? ? ?

A First Lower Bound
Lower bounds

• Given any instance of 𝑘-SAT with few clauses, need to show it is satisfiable

• First idea: build a satisfying argument greedily

A worked example (𝑘 = 3)

1 ∨ ¬𝑥2 ∨ 𝑥3 ∧ 0 ∨ 𝑥2 ∨ ¬𝑥4 ∧ ¬𝑥2 ∨ ¬𝑥3 ∨ ¬𝑥5

Step 2
• The second clause is still unsatisfied

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓

1 ? ? ? ?

A First Lower Bound
Lower bounds

• Given any instance of 𝑘-SAT with few clauses, need to show it is satisfiable

• First idea: build a satisfying argument greedily

A worked example (𝑘 = 3)

1 ∨ 0 ∨ 𝑥3 ∧ 0 ∨ 1 ∨ ¬𝑥4 ∧ 0 ∨ ¬𝑥3 ∨ ¬𝑥5

Step 2
• The second clause is still unsatisfied

• Select 𝑥2 as its designated variable, and set 𝑥2 = 1

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓

1 1 ? ? ?

A First Lower Bound
Lower bounds

• Given any instance of 𝑘-SAT with few clauses, need to show it is satisfiable

• First idea: build a satisfying argument greedily

A worked example (𝑘 = 3)

1 ∨ 0 ∨ 0 ∧ 0 ∨ 1 ∨ ¬𝑥4 ∧ 0 ∨ 1 ∨ ¬𝑥5

Step 3
• The third clause is still unsatisfied, so we set 𝑥3 = 0

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓

1 1 0 ? ?

A First Lower Bound
Lower bounds

• Given any instance of 𝑘-SAT with few clauses, need to show it is satisfiable

• First idea: build a satisfying argument greedily

A worked example (𝑘 = 3)

1 ∨ 0 ∨ 0 ∧ 0 ∨ 1 ∨ ¬𝑥4 ∧ 0 ∨ 1 ∨ ¬𝑥5

Step 3
• The third clause is still unsatisfied, so we set 𝑥3 = 0

• This satisfies the formula, so we are done

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓

1 1 0 ? ?

A First Lower Bound

Proof

• Let 𝑓 be an arbitrary 𝑘-SAT formula with 𝑚 ≤ 𝑘 clauses

• We use the greedy algorithm, satisfying each clause one at a time

• When dealing with the 𝑖th clause, for 1 ≤ 𝑖 ≤ 𝑚, either:

• it is already satisfied by our previous assignments, or

• we have set at most 𝑖 − 1 ≤ 𝑚 − 1 < 𝑘 variables, so there is a free variable to choose

• Hence we can satisfy all the clauses

• Thus 𝑓 is satisfiable ∎

Proposition 1.1.4

For all 𝑘 ∈ ℕ, 𝑚0 𝑘 > 𝑘.

Being Greedy Doesn’t Always Pay
What if we have more clauses?

• This greedy algorithm can get stuck

Extending our example

𝑥1 ∨ ¬𝑥2 ∨ 𝑥3 ∧ ¬𝑥1 ∨ 𝑥2 ∨ ¬𝑥4 ∧ ¬𝑥2 ∨ ¬𝑥3 ∨ ¬𝑥5 ∧ ¬𝑥1 ∨ ¬𝑥2 ∨ 𝑥3

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓

? ? ? ? ?

Being Greedy Doesn’t Always Pay
What if we have more clauses?

• This greedy algorithm can get stuck

Extending our example

1 ∨ 0 ∨ 0 ∧ 0 ∨ 1 ∨ ¬𝑥4 ∧ 0 ∨ 1 ∨ ¬𝑥5 ∧ 0 ∨ 0 ∨ 0

Steps 1-3
• Proceed as before, with the same assignments

• Now the final clause is unsatisfiable

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓

1 1 0 ? ?

Being Greedy Doesn’t Always Pay
What if we have more clauses?

• This greedy algorithm can get stuck

Extending our example

1 ∨ 0 ∨ 1 ∧ 0 ∨ 1 ∨ ¬𝑥4 ∧ 0 ∨ 0 ∨ 1 ∧ 0 ∨ 0 ∨ 1

Formula is still satisfiable
• Could have satisfied earlier clauses with different variables

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓

1 1 1 ? 0

Proposition 1.1.5

For all 𝑘 ∈ ℕ, 𝑚0 𝑘 ≤ 2𝑘.

An Unsatisfiable Formula
Intuition

• Clauses with unique variables are can always be satisfied
• Maybe hardest when all clauses share the same variables

Building an unsatisfiable formula
• With 𝑘 variables, there are 2𝑘 possible inputs and 2𝑘 possible clauses
• Each clause is unsatisfied by a unique input

• e.g.: 𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3 is not satisfied by 𝑥1, 𝑥2, 𝑥3 = 0,1,1

• ⇒ The formula with all possible clauses is unsatisfiable

A Tight Result

Upper bound
• Previous construction

Lower bound

• Need to show every 𝑘-SAT instance with 𝑚 < 2𝑘 clauses is satisfiable

Existential reformulation

• Given: 𝑘-SAT formula 𝑓 with 𝑛 variables and 𝑚 < 2𝑘 clauses

• Goal: show there is some Ԧ𝑥 ∈ Ω = {0,1}𝑛 with the property 𝑓 Ԧ𝑥 = 1

Theorem 1.1.6

For all 𝑘 ∈ ℕ, 𝑚0 𝑘 = 2𝑘.

Randomness to the Rescue

Existential reformulation

• Given: 𝑘-SAT formula 𝑓 with 𝑛 variables and 𝑚 < 2𝑘 clauses

• Goal: show there is some Ԧ𝑥 ∈ Ω = {0,1}𝑛 with the property 𝑓 Ԧ𝑥 = 1

The probabilistic method
• Choose Ԧ𝑥 ∈ {0,1}𝑛 uniformly at random

• Show ℙ 𝑓 Ԧ𝑥 = 1 > 0

Theorem 1.1.6

For all 𝑘 ∈ ℕ, 𝑚0 𝑘 = 2𝑘.

Union Bound

Given arbitrary events 𝐸𝑖, we have ℙ 𝑖ڂ 𝐸𝑖 ≤ σ𝑖ℙ 𝐸𝑖 .

Bounding Probabilities
Setting

• Given: 𝑓, a 𝑘-SAT formula with 𝑛 variables and 𝑚 < 2𝑘 clauses

• Given: uniformly random Ԧ𝑥 ∈ {0,1}𝑛

• Goal: show ℙ 𝑓 Ԧ𝑥 = 1 > 0

Bad events

• Equivalently, want to show ℙ 𝑓 Ԧ𝑥 = 0 < 1

• Let 𝐸𝑖 be the event that the 𝑖th clause is not satisfied by Ԧ𝑥

• 𝑓 Ԧ𝑥 = 0 = 𝑖=1ڂ
𝑚 𝐸𝑖

• ⇒ ℙ 𝑓 Ԧ𝑥 = 0 = ℙ 𝑖=1ڂ
𝑚 𝐸𝑖

Completing the Proof
Individual clauses

• Recall: 𝐸𝑖 is the event that the 𝑖th clause is not satisfied by Ԧ𝑥

• 𝐸𝑖 only depends on the values of the 𝑘 variables it contains

• Exactly one of the 2𝑘 possible values does not satisfy the clause

• ⇒ ℙ 𝐸𝑖 = 2−𝑘

ℙ 𝑓 Ԧ𝑥 = 0 = ℙ ራ

𝑖=1

𝑚

𝐸𝑖 ≤෍

𝑖=1

𝑚

ℙ 𝐸𝑖 = 𝑚2−𝑘 < 1

Conclusion
• Therefore ℙ 𝑓 Ԧ𝑥 = 1 = 1 − ℙ Ԧ𝑥 = 0 > 0

• Hence there is some Ԧ𝑥 ∈ {0,1}𝑛 for which 𝑓 Ԧ𝑥 = 1 ∎

Trivial unsatisfiability
• In our construction to show 𝑚0 𝑘 ≤ 2𝑘, each clause had the same variables

• Clauses are then forced to be in conflict with one another

Non-repetitive formulae
• A 𝑘-SAT formula is non-repetitive if each clause has a distinct set of variables

• e.g.: cannot have both (𝑥1 ∨ ¬𝑥2 ∨ 𝑥4) and (¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥4) as clauses

Extremal problem
• How many variables must an unsatisfiable non-repetitive 𝑘-SAT formula have?

Definition 1.1.7

Given 𝑘 ∈ ℕ, let 𝑛0 𝑘 be the minimum 𝑛 ∈ ℕ for which there is an
unsatisfiable non-repetitive 𝑘-SAT formula with 𝑛 variables.

Is Repetition Necessary?

Theorem 1.1.6

For all 𝑘 ∈ ℕ, 𝑚0 𝑘 = 2𝑘.

A Lower Bound

Observation
• A non-repetitive 𝑘-SAT formula with 𝑛 variables can have at most 𝑛

𝑘
clauses

Corollary 1.1.8

For all 𝑘, 𝑛 ∈ ℕ, if 𝑛
𝑘

< 2𝑘, then 𝑛0 𝑘 > 𝑛.

An Upper Bound
Existential formulation

• Set of objects Ω: non-repetitive 𝑘-SAT formulae with 𝑛 variables

• Desired property 𝒫: ∀ Ԧ𝑥 ∈ {0,1}𝑛, 𝑓 Ԧ𝑥 = 0

Probabilistic approach
• There are 𝑛

𝑘
sets of 𝑘 variables:

• For each variable 𝑥𝑖, there are two possible literals: 𝑥𝑖 and ¬𝑥𝑖
• Total of 2𝑘 possible clauses for this set of variables

• Choose one uniformly at random

• Make these choices independently

• This gives us a random 𝑓 ∈ Ω

• Want to show ℙ ∀ Ԧ𝑥 ∈ {0,1}𝑛, 𝑓 Ԧ𝑥 = 0 > 0

Analysing the Bad Events
Satisfying assignments

• For each Ԧ𝑥 ∈ {0,1}𝑛, let 𝐸 Ԧ𝑥 be the event that 𝑓 Ԧ𝑥 = 1

• We want to show ℙ ڂ Ԧ𝑥 𝐸 Ԧ𝑥 < 1

• Union bound:
• There are 2𝑛 possible Ԧ𝑥

• ℙ ڂ Ԧ𝑥𝐸 Ԧ𝑥 ≤ σ Ԧ𝑥ℙ 𝐸 Ԧ𝑥

• Suffices to have ℙ 𝐸 Ԧ𝑥 < 2−n for all Ԧ𝑥

Fix an assignment Ԧ𝑥
• For 𝑓 Ԧ𝑥 = 1, Ԧ𝑥 must satisfy each of the 𝑛

𝑘
clauses

• Let 𝐹𝑖 be the event that Ԧ𝑥 satisfies the 𝑖th clause

• Then 𝐸 Ԧ𝑥 =∩𝑖 𝐹𝑖

Computing Probabilities
Recall

• 𝑓 formed by choosing a random clause for each set of variables

• 𝐸 Ԧ𝑥: event that 𝑓 Ԧ𝑥 = 1; 𝐹𝑖: event that Ԧ𝑥 satisfies the 𝑖th clause of 𝑓

• Suffices to show ℙ 𝐸 Ԧ𝑥 = ℙ ∩𝑖 𝐹𝑖 < 2−𝑛

Independence
• Clauses are chosen independently ⇒ events 𝐹𝑖 are independent

• ⇒ ℙ ∩𝑖 𝐹𝑖 = ς𝑖ℙ 𝐹𝑖

Satisfying a single clause
• Given 𝑖 and our fixed Ԧ𝑥, unique choice of literals such that 𝐹𝑖 doesn’t hold

• ⇒ ℙ 𝐹𝑖 = 1 − 2−𝑘

Theorem 1.1.9

For all 𝑘 ∈ ℕ, if 𝑛
𝑘

< 2𝑘, then 𝑛0 𝑘 > 𝑛, and if 𝑛
𝑘

> 2𝑘𝑛 ln 2, then
𝑛0 𝑘 ≤ 𝑛.

Putting it all together
A final calculation

• We therefore have ℙ 𝐸 Ԧ𝑥 = ς𝑖ℙ 𝐹𝑖 = 1 − 2−𝑘
𝑛
𝑘

Exponential bound

For all 𝑥 ∈ ℝ, 1 + 𝑥 ≤ 𝑒𝑥

• ⇒ ℙ 𝐸 Ԧ𝑥 = 1 − 2−𝑘
𝑛
𝑘 ≤ 𝑒−2

−𝑘 𝑛
𝑘

• This is less than 2−𝑛 if 𝑛
𝑘

> 2𝑘𝑛 ln 2

Just Kidding, There’s One More Calculation

Binomial estimates

• For all 1 ≤ 𝑘 ≤ 𝑛, we have
𝑛

𝑘

𝑘
≤ 𝑛

𝑘
≤

𝑛𝑒

𝑘

𝑘

• If 𝑘 = 𝛼𝑛, then 𝑛
𝑘

= 2 1+𝑜 1 𝐻 𝛼 𝑛 as 𝑛 → ∞
• Binary entropy: 𝐻 𝛼 = −𝛼 log𝛼 − 1 − 𝛼 log 1 − 𝛼

• For more estimates:
http://page.mi.fu-berlin.de/shagnik/notes/binomials.pdf

Theorem 1.1.9

For all 𝑘 ∈ ℕ, if 𝑛
𝑘

< 2𝑘, then 𝑛0 𝑘 > 𝑛, and if 𝑛
𝑘

> 2𝑘𝑛 ln 2, then
𝑛0 𝑘 ≤ 𝑛.

http://page.mi.fu-berlin.de/shagnik/notes/binomials.pdf

Just Kidding, There’s One More Calculation
Lower bound

• We use 𝑛
𝛼𝑛

= 2 1+𝑜 1 𝐻 𝛼 𝑛

• Therefore 𝑛
𝑘

∼ 2𝑘 if 𝑘 = 𝛼𝑛 and 𝐻 𝛼 = 𝛼
• This happens for 𝛼 = 0.7729…

Upper bound
• Binomial coefficient grows very fast

• 𝑛+1
𝑘

=
𝑛+1

𝑛−𝑘+1

𝑛
𝑘

∼
1

1−𝛼

𝑛
𝑘

• ⇒ for some constant 𝑐, if 𝑛′ = 𝛼−1𝑘 + 𝑐 log 𝑘, then 𝑛′

𝑘
∼ 2𝑘𝑛 ln 2

Corollary 1.1.10

As 𝑘 → ∞, 𝑛0 𝑘 = 1.2938…+ 𝑜 1 𝑘.

Any questions?

§2 Prefix-free Codes
Chapter 1: Getting Started

The Probabilistic Method

😡 😢 😐 🙂 😴

A Motivating Example

Evolutionary pitfalls
• Imagine in some parallel universe a species evolves so that:

• they develop binary computers, and

• they communicate their emotional states through a set of five emojis

Technical problem
• How should a binary computer transmit these states?

A First Attempt

Binary encoding
• We can index the emojis with integers 0 − 4

• The integers 0 − 7 can be written as binary strings of length 3

• Computers can send these strings to represent the emojis

Examples
😢😡😴→ 001 | 000 | 100 → 001000100

011000 → 011 | 000 →🙂😡

😡 😢 😐 🙂 😴
000 001 010 011 100

A Problem and a Fix

Wasteful encoding
• This is a bit costly – it takes three bits per emoji

• Can we reduce the bandwidth by using a shorter encoding?

Idea

• We need to encode five emojis

• There are six non-empty binary strings of length at most two

• Five is less than six

😡 😢 😐 🙂 😴
0 1 00 01 10

The Problem in the “Fix”

Encoding is simple
🙂🙂🙂→ 01 | 01 | 01 → 010101

But how do we decode?
010101 → 01 | 01 | 01 →🙂🙂🙂 ?

010101 → 0 | 1 | 0 | 1 | 0 | 1 →😡😢😡😢😡😢?

010101 → 01 | 0 | 10 | 1 →🙂😡😴😢?

😡 😢 😐 🙂 😴
0 1 00 01 10

Coding: General Framework
Set-up

• Have an alphabet 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 of size 𝑛

• Want to encode the letters of the alphabet as binary strings

Encoding
• Represent each 𝑎𝑖 with a word 𝑤𝑖 ∈ 0,1 ∗, a non-empty finite binary string

• Let ℓ𝑖 = 𝑤𝑖 be the length of the word 𝑤𝑖

Objectives
• Decipherability: given a concatenation of words, should be able to recover the

original words uniquely

• Efficiency: would like to make the lengths ℓ𝑖 as small as possible

Prefix-free Codes

Prefixes
• Given a word 𝑤 ∈ 0,1 ∗, the ℓ-prefix of 𝑤 is the subword of the first ℓ bits

• e.g. the non-empty prefixes of 𝑤 = 00101 are 0, 00, 001, 0010 and 00101

• but the substring 010 is not a prefix

Prefix-free codes
• We say a code from an alphabet 𝐴 to 0,1 ∗ is prefix-free if no codeword 𝑤𝑖 is

a prefix of any other codeword 𝑤𝑗, 𝑗 ≠ 𝑖

• Equivalently, if we place the codewords in the (infinite) binary tree of 0,1 ∗,
no codeword is an ancestor of another

Decipherability

Proof
• Want to show that the concatenation 𝑤 = 𝑤𝑖1𝑤𝑖2 …𝑤𝑖𝑠 can be decoded

• Base case: 𝑠 = 0

• In this case, 𝑤 is the empty string ⇒ no codewords

• Induction step: 𝑠 ≥ 1

• Start from the beginning of 𝑤, and read until the prefix is some codeword 𝑤𝑗
• Must terminate, as 𝑤𝑖1 is a prefix of 𝑤

• Cannot terminate on another codeword, as otherwise 𝑤𝑗 would be a prefix of 𝑤𝑖1

• Thus we know 𝑎𝑖1 is the first letter

• Remove 𝑤𝑖1, and decode 𝑤′ = 𝑤𝑖2𝑤𝑖3𝑤𝑖4 …𝑤𝑖𝑠 (induction hypothesis) ∎

Proposition 1.2.1

All prefix-free codes are decipherable.

Examples

Uniform codes

Given ℓ, any
injection 𝐴 →
{0,1}ℓ is prefix-
free

∅

0 1

00 01 10 11

000 001 010 011 100 101 110 111

😡 😢 😐 🙂 😴 ___

Length

We must have
𝐴 ≤ 0,1 ℓ =
2ℓ

⇒ ℓ ≥ log 𝐴
⇒ ℓ ≥ log 𝐴

Examples - II

Improvements

Can sometimes
find prefix-free
codes with a
shorter average
codeword length

∅

0 1

00 01 10 11

😡 😢 😐____________

000 001 010 011 100 101 110 111

🙂 😴

Theorem 1.2.2 (Kraft, 1949)

Given an alphabet 𝐴 of size 𝑛, any prefix-free code with codeword
lengths ℓ1, ℓ2, … , ℓ𝑛 must satisfy

σ𝑖=1
𝑛 2−ℓ𝑖 ≤ 1.

Short Prefix-free Codes

Extremal problem
• How small can the average length of a codeword of a prefix-free code be?

Corollary 1.2.3 (Convexity)

Given an alphabet 𝐴 of size 𝑛, the average length of the codewords in
any prefix-free code is at least log 𝑛.

Proof Idea
Existential reformulation

• Want to show that an encoding with shorter codewords is not prefix-free

• Given:
• an encoding 𝑤1, 𝑤2, … , 𝑤𝑛 of 𝐴 with lengths ℓ1, ℓ2, … , ℓ𝑛 such that σ𝑖=1

𝑛 2−ℓ𝑖 > 1

• Seek:
• Codewords 𝑤𝑖 , 𝑤𝑗, 𝑖 ≠ 𝑗, such that 𝑤𝑖 is a prefix of 𝑤𝑗

Key observation
• Suppose we have a string 𝑤 ∈ 0,1 ∗ such that both 𝑤𝑖 , 𝑤𝑗 are prefixes of 𝑤

• Then 𝑤𝑖 is a prefix of 𝑤𝑗 or wj is a prefix of 𝑤𝑖

New objective
• Find a string 𝑤 ∈ 0,1 ∗ that contains at least two codewords as prefixes

Basic Fact

For any random variable 𝑋, the events 𝑋 ≥ 𝔼 𝑋 and 𝑋 ≤ 𝔼 𝑋
must occur with positive probability.

Probabilistic Framework
Probability space

• Let 𝐿 = max 𝑙𝑖: 𝑖 ∈ 𝑛 be the length of the longest codeword

• Let 𝑤 ∈ 0,1 𝐿 be a uniformly random string of length 𝐿

Random variables

• Let 𝑋 = 𝑖: 𝑤𝑖 is a prefix of 𝑤 count the number of codeword prefixes

Simpler objective
• Since 𝑋 is integer-valued, it suffices to show 𝔼 𝑋 > 1

Linearity of Expectation

For any sequence 𝑋1, 𝑋2, … , 𝑋𝑛 of random variables, and any sequence
𝑐1, 𝑐2, … , 𝑐𝑛 of constants, if 𝑋 = 𝑐1𝑋1 + 𝑐2𝑋2 +⋯+ 𝑐𝑛𝑋𝑛, then

𝔼 𝑋 = 𝑐1𝔼 𝑋1 + 𝑐2𝔼 𝑋2 +⋯+ 𝑐𝑛𝔼 𝑋𝑛 .

Computing the Expectation
Indicator random variables

• For each 𝑖 ∈ 𝑛 , let 𝐸𝑖 be the event that 𝑤𝑖 is a prefix of the random string 𝑤

• Let 𝑋𝑖 = 1𝐸𝑖 be the indicator function of this event

• Then 𝑋 = σ𝑖=1
𝑛 𝑋𝑖

Reduction to probabilities
• We therefore have 𝔼 𝑋 = σ𝑖=1

𝑛 𝔼[𝑋𝑖] = σ𝑖=1
𝑛 ℙ(𝐸𝑖)

Finishing the Proof
Recall

• 𝑤 is a uniformly random string
• 𝑋 is the number of codewords that are prefixes of 𝑤
• 𝐸𝑖 is the event that the codeword 𝑤𝑖 is a prefix of 𝑤

• 𝔼 𝑋 = σ𝑖=1
𝑛 ℙ(𝐸𝑖)

Computing probabilities
• The event 𝐸𝑖 only depends on the first ℓ𝑖 bits of 𝑤
• This is a uniformly random string in 0,1 ℓ𝑖

• ⇒ ℙ 𝐸𝑖 = 2−ℓ𝑖

A grand finale
• ⇒ if 𝔼 𝑋 = σ𝑖=1

𝑛 2−ℓ𝑖 > 1, there is some 𝑤 ∈ 0,1 ∗ with two codewords as prefixes

• Hence, in any prefix-free code, σ𝑖=1
𝑛 2−ℓ𝑖 ≤ 1 ∎

Linearity of Expectation

Union bound revisited
• In the previous calculation, we saw the expression σ𝑖ℙ 𝐸𝑖
• Union bound: ℙ ∪𝑖 𝐸𝑖 < σ𝑖ℙ 𝐸𝑖
• ∴ σ𝑖ℙ 𝐸𝑖 < 1 ⇒ with positive probability, none of the events 𝐸𝑖 occur

Using linearity instead
• σ𝑖ℙ 𝐸𝑖 is the expectation of the number 𝑋 of events 𝐸𝑖 that occur

• ∴ σ𝑖ℙ 𝐸𝑖 < 1 ⇒ with positive probability, 𝑋 = 0

• With linearity, we get information when σ𝑖ℙ 𝐸𝑖 ≥ 1 as well

Any questions?

§3 Sum-free Subsets
Chapter 1: Getting Started

The Probabilistic Method

Sum Theorems

Definition 1.3.1

A set 𝐴 is sum-free if there are no 𝑥, 𝑦, 𝑧 ∈ 𝐴 with 𝑥 + 𝑦 = 𝑧.

Theorem 1.3.3 (Schur, 1912)

ℕ cannot be partitioned into finitely many sum-free sets.

Theorem 1.3.2 (Fermat, 1637; Wiles, 1995)

For all 𝑛 ≥ 3, the set 𝑥𝑛: 𝑥 ∈ ℕ is sum-free.

Sum-free Subsets of [𝑛]

Answer

• If 𝐴 is sum-free, then A ≤
𝑛

2

• Odd integers: 𝑂 = 𝑥 ∈ 𝑛 : 𝑥 ≡ 1 mod 2

• Large integers: 𝐿 = 𝑥 ∈ 𝑛 : 𝑥 >
𝑛

2

• These are the only two maximum sum-free subsets of [𝑛]

Question

How large can a sum-free subset of [𝑛] be?

Sum-free Subsets of Sets

Extremal function
• Given a set S ⊆ ℕ, let 𝑓 𝑆 = max 𝐴 : 𝐴 ⊆ 𝑆, 𝐴 sum−free

• Let 𝑓 𝑛 = min 𝑓 𝑆 : 𝑆 ⊂ ℕ, 𝑆 = 𝑛

• Question: how quickly does 𝑓(𝑛) grow?

Question (Erdős, 1965)

Does every set of 𝑛 natural numbers have a large sum-free subset?

Theorem 1.3.4 (Deshouillers, Freiman, Sós)

If 𝐴 ⊆ [𝑛] is sum-free, then either 𝐴 ⊆ 𝑂, 𝐴 ⊆ 𝐿, or 𝐴 <
2

5
𝑛 + 1.

Upper Bounds

Beating trivial
• Recall: biggest sum-free subsets have odd or large integers

• Let 𝑇 ⊆ 𝑛 be a set of
𝑛

10
large odd integers, take 𝑆 = 𝑛 ∖ 𝑇

• If 𝐴 ⊆ 𝑆 is sum-free, then either 𝐴 ⊆ 𝑂 ∖ 𝑇, 𝐴 ⊆ 𝐿 ∖ 𝑇 or 𝐴 <
2

5
𝑛 + 1

• Thus 𝑓
9

10
𝑛 ≤ 𝑓 𝑆 <

2

5
𝑛 + 1

• ⇒ 𝑓 𝑛 ≤
4

9
𝑛 +

10

9

A trivial bound

• 𝑓 𝑛 ≤ 𝑓 𝑛 =
𝑛

2

• Any good set should have lots of (well-distributed) sums

• [𝑛] has lots of sums – could this be best possible?

Lower Bounds

Goal
• Given a set 𝑆 of 𝑛 natural numbers, find a large sum-free 𝐴 ⊆ 𝑆

Greedy approach

• Start with 𝐴 = ∅, and add elements one-by-one, keeping 𝐴 sum-free

• If 𝐴 = 𝑎, 𝐴 defines at most 𝑎+1
2

sums

• If 𝑎+1
2

< 𝑛 − 𝑎, there is an element of 𝑆 ∖ 𝐴 that can be added to 𝐴

• ⇒ 𝑓 𝑛 > 2𝑛 − 2

Theorem 1.3.5 (Erdős, 1965)

For all 𝑛 ∈ ℕ, 𝑓 𝑛 ≥
1

3
(𝑛 + 1).

A Cyclic Digression

The problem with 𝑛
• 𝑛 does have large sum-free sets, 𝑂 and 𝐿

• But 𝑆 might be far away from these

The cyclic group has more symmetry
• Largest sum-free set in ℤ𝑝, 𝑝 prime?

• 𝑀 = 𝑥:
1

3
𝑝 < 𝑥 <

2

3
𝑝 is sum-free

• Cauchy-Davenport: if 𝐴 ⊆ ℤ𝑝, then 𝐴 + 𝐴 ≥ min 2 𝐴 − 1, 𝑝

• Since 𝐴 ∩ 𝐴 + 𝐴 = ∅, 𝐴 ≤
𝑝

3

• ℤ𝑝 has many large sum-free sets
• For any 𝛼 ∈ ℤ𝑝 ∖ 0 , 𝛼𝑀 = {𝛼𝑥: 𝑥 ∈ 𝑀} is also sum-free

Finding Large Sum-free Subsets

Proof idea
• Given a set 𝑆 ⊂ ℕ of size 𝑛, embed 𝑆 in ℤ𝑝 for some suitable 𝑝

• ℤ𝑝 has many large sum-free subsets
• Find one that intersects 𝑆 significantly

Randomness to the rescue

• A random sum-free subset works!

Theorem 1.3.5 (Erdős, 1965)

For all 𝑛 ∈ ℕ, 𝑓 𝑛 ≥
1

3
(𝑛 + 1).

Setting Up

Choosing a prime
• Let 𝑝 = 3𝑘 + 2 be prime with 𝑝 > max 𝑆

• Then 𝑀 = {𝑘 + 1, 𝑘 + 2,… , 2𝑘 + 1} is sum-free with size 𝑘 + 1

• Embed 𝑆 ⊆ ℤ𝑝

Choosing a sum-free subset
• Let 𝛼 ∈ ℤ𝑝 ∖ 0 be chosen uniformly at random

• Let 𝑆𝛼 = 𝑆 ∩ 𝛼𝑀

• 𝑆𝛼 ⊆ 𝑆 is sum-free:
• If 𝑥 + 𝑦 = 𝑧 in 𝑆𝛼, then 𝑥 + 𝑦 ≡ 𝑧 mod 𝑝 , so this would be a sum in 𝛼𝑀

No Devil in the Details
Using linearity

• 𝑆𝛼 = σ𝑠∈𝑆 1 𝑠∈𝛼𝑀

• ⇒ 𝔼 𝑆𝛼 = 𝔼 σ𝑠∈𝑆 1 𝑠∈𝛼𝑀 = σ𝑠∈𝑆𝔼 1 𝑠∈𝛼𝑀 = σ𝑠∈𝑆ℙ 𝑠 ∈ 𝛼𝑀

Computing probabilities

• 𝑠 ∈ 𝛼𝑀 ⇔ 𝛼−1𝑠 ∈ 𝑀

• 𝛼 uniform over ℤ𝑝 ∖ 0 ⇒ 𝛼−1 uniform ⇒ 𝛼−1𝑠 uniform

• ⇒ ℙ 𝛼−1𝑠 ∈ 𝑀 =
𝑀

𝑝−1
=

𝑘+1

3𝑘+1
>

1

3

Finishing the proof

• ⇒ 𝔼 𝑆𝛼 >
1

3
𝑆 ⇒ for some 𝛼, 𝑆𝛼 ≥

1

3
(𝑛 + 1)

• This gives a sum-free subset of 𝑆 of the desired size ∎

Finishing the Story

Improving the lower bound

• Using Fourier analysis, Bourgain (1997) proved 𝑓 𝑛 ≥
1

3
(𝑛 + 2) for 𝑛 ≥ 3

• Best-known bound to date

Upper bounds
• Blow-ups of small constructions: several improvements over the years

• Until Eberhard, Green and Manners (2014) proved 𝑓 𝑛 ≤
1

3
+ 𝑜 1 𝑛

• Construction randomised, but intricate

Any questions?

§4 Schütte Tournaments
Chapter 1: Getting Started

The Probabilistic Method

War by Proxy
Rival superpowers

• Two powerful nations go to war

• Hire private military companies to do the actual fighting

Objectives
• Have enough power

• Need to ensure that hired companies can defeat any of the companies the enemy hires

• Be economical
• Hire as few companies as possible

Problem
• How many companies must be hired?

A Graph Theoretic Representation
Tournaments

• Build a directed graph
• Vertices: private military companies

• Arcs: edge 𝑥 → 𝑦 if 𝑥 would defeat 𝑦 in battle

• For every pair {𝑥, 𝑦}, exactly one of the arcs 𝑥 → 𝑦 or 𝑦 → 𝑥 is in the graph

• Such a graph is called a tournament

Objectives
• Dominating set

• A subset of vertices 𝑆 such that, for every 𝑥 ∈ 𝑉 ∖ 𝑆, there is some 𝑠 ∈ 𝑆 with 𝑠 → 𝑥

• Then we can always defeat the enemy’s army, regardless of their choice

• Economical
• Want to choose a small dominating set

Small Examples

Easy case

1

2 3

Small Examples

Easy case

• One vertex beats all others

1

2 3

Small Examples

Easy case

• One vertex beats all others

• Defeats any choice the enemy makes

1

2 3

Small Examples

Easy case

• One vertex beats all others

• Defeats any choice the enemy makes

1

2 3

Small Examples

Easy case

• One vertex beats all others

• Defeats any choice the enemy makes

• Dominating set of size one

1

2 3

Small Examples

Easy case

• One vertex beats all others

• Defeats any choice the enemy makes

• Dominating set of size one

1

2 3

Harder case

• No such vertex

1

2 3

Small Examples

Easy case

• One vertex beats all others

• Defeats any choice the enemy makes

• Dominating set of size one

1

2 3

Harder case

• No such vertex

• Any vertex we choose loses to another

1

2 3

Small Examples

Easy case

• One vertex beats all others

• Defeats any choice the enemy makes

• Dominating set of size one

1

2 3

Harder case

• No such vertex

• Any vertex we choose loses to another

1

2 3

Small Examples

Easy case

• One vertex beats all others

• Defeats any choice the enemy makes

• Dominating set of size one

1

2 3

Harder case

• No such vertex

• Any vertex we choose loses to another

1

2 3

Small Examples

Easy case

• One vertex beats all others

• Defeats any choice the enemy makes

• Dominating set of size one

1

2 3

Harder case

• No such vertex

• Any vertex we choose loses to another

1

2 3

Small Examples

Easy case

• One vertex beats all others

• Defeats any choice the enemy makes

• Dominating set of size one

1

2 3

Harder case

• No such vertex

• Any vertex we choose loses to another

• Dominating set of size two exists

1

2 3

An Extremal Reformulation

Worst-case scenario
• How large can the smallest dominating set in an 𝑛-vertex tournament be?

• Inverse formulation
• Say 𝑇 has the Schütte property 𝑆𝑘 if it has no dominating set of size at most 𝑘

• Let 𝜎(𝑘) be the minimum number of vertices in a tournament with the property 𝑆𝑘
• ⇒ if 𝑛 < 𝜎(𝑘), then 𝑇 has a dominating set of size ≤ 𝑘

Proving bounds on 𝜎(𝑘)
• Lower bound: 𝜎 𝑘 > 𝑛

• Prove that any tournament on 𝑛 vertices has a dominating set of size ≤ 𝑘

• Upper bound: 𝜎 𝑘 ≤ 𝑛
• Prove there is a tournament on 𝑛 vertices without a dominating set of size ≤ 𝑘

The Greedy Lower Bound

A recursive algorithm
• Given an optimal tournament 𝑇, let 𝑣 ∈ 𝑉(𝑇)

• Let 𝐴 be the vertices dominating 𝑣, and 𝐵 the vertices 𝑣 dominates
• Thus 𝑉 𝑇 = 𝐴 ∪ 𝐵 ∪ 𝑣 , with 𝐴 → 𝑣 → 𝐵

• Let 𝑆′ be a dominating set in 𝑇[𝐴], and set 𝑆 = 𝑆′ ∪ {𝑣}

• If 𝑥 ∈ 𝑉 𝑇 ∖ 𝑆:
• If 𝑥 ∈ 𝐴, then 𝑥 is dominated by 𝑆′, so there is an 𝑠 ∈ 𝑆′ ⊆ 𝑆 with 𝑠 → 𝑥

• If 𝑥 ∉ 𝐴, then 𝑥 ∈ 𝐵, so 𝑣 → 𝑥

• Thus 𝑆 is a dominating set for 𝑇

Proposition 1.4.1

For all 𝑘 ∈ ℕ, 𝜎 𝑘 ≥ 2𝑘+1 − 1.

Choosing the Right Vertex

Large out-degree
• If 𝐴 is small, then it has a small dominating set

• Thus we should choose 𝑣 to make 𝐴 as small as possible

• ⇒ choose a vertex of maximum out-degree

• Average out-degree is
1

𝑛

𝑛
2
=

1

2
(𝑛 − 1)

• ⇒ by choosing 𝑣 of maximum out-degree, we ensure 𝐴 ≤
1

2
(𝑛 − 1)

Induction

• Since 𝑇 has the property 𝑆𝑘, 𝑇[𝐴] must have the property 𝑆𝑘−1

• ⇒
1

2
𝑛 − 1 ≥ 𝐴 ≥ 𝜎 𝑘 − 1 ≥ 2𝑘 − 1 (induction hypothesis)

• Solving gives 𝜎 𝑘 = 𝑛 ≥ 2𝑘+1 − 1 ∎

An Indomitable Tournament

Goal
• Need to construct a tournament with no dominating set of size 𝑘

• Greedy argument: tournament should be close to regular

• Idea: try a random tournament 𝑇

Random tournament

• Vertex set: 𝑉 = 𝑛

• For every pair 𝑥, 𝑦 ∈ [𝑛], choose 𝑥 → 𝑦 or 𝑦 → 𝑥 uniformly at random

Theorem 1.4.2 (Erdős, 1963)

If 𝑛
𝑘

1 − 2−𝑘
𝑛−𝑘

< 1, then there is an 𝑛-vertex tournament with
the property 𝑆𝑘.

Disproving Domination
Bad events

• Given a set 𝑆 ∈ 𝑛
𝑘

, let 𝐸𝑆 be the event that 𝑆 is a dominating set

• Then ℙ 𝑇 has property 𝑆𝑘 = 1 − ℙ ∪𝑆 𝐸𝑆 ≥ 1 − σ𝑆ℙ 𝐸𝑆
• Suffices to show σ𝑆ℙ 𝐸𝑆 < 1

Computing probabilities

• Fix 𝑆 ∈ 𝑛
𝑘

• For 𝑆 to dominate a fixed vertex 𝑣, cannot have all edges 𝑣 → 𝑆
• 𝑘 edges, chosen independently ⇒ probability is 1 − 2−𝑘

• This must be true for all vertices in 𝑉 ∖ 𝑆

• Edges again independent ⇒ℙ 𝐸𝑆 = 1 − 2−𝑘
𝑛−𝑘

• ⇒ σ𝑆ℙ 𝐸𝑆 = 𝑛
𝑘

1 − 2−𝑘
𝑛−𝑘

< 1. ∎

Corollary 1.4.3

As 𝑘 → ∞, 𝜎 𝑘 ≤ 𝑘22𝑘 ln 2 + 𝑜 1 .

Computing the Bound

Find the smallest 𝑛 for which 𝑛
𝑘

1 − 2−𝑘
𝑛−𝑘

< 1

• Estimates:

• 𝑛
𝑘

≤ 𝑛𝑘 and 1 − 2−𝑘 < 𝑒−2
−𝑘

• ⇒ suffices to have 𝑛𝑘𝑒−2
−𝑘 𝑛−𝑘 < 1

• ⇔ 𝑘 ln𝑛 < 𝑛 − 𝑘 2−𝑘 ∗

• ∗ ⇒ 𝑛 > 2𝑘

• ⇒ ln𝑛 > 𝑘 ln 2

• ∗ ⇒ 𝑛 > 𝑘22𝑘 ln 2
• ⇒ ln𝑛 > 𝑘 ln 2 + 𝑜 1 , so this suffices

Any questions?

§5 Ramsey Numbers
Chapter 1: Getting Started

The Probabilistic Method

Theorem 1.5.2 (Erdős, 1947)

As 𝑘 → ∞, we have

𝑅 𝑘 ≥
1

𝑒 2
+ 𝑜 1 𝑘 2

𝑘
.

Reviewing the Classics

Definition 1.5.1 (Ramsey number)

Given 𝑘 ∈ ℕ, 𝑅 𝑘 is the minimum 𝑛 for which any 𝑛-vertex graph has
either a clique or independent set on 𝑘 vertices.

Proof idea
• Show that a uniformly random graph on this many vertices works

Ramsey Upper Bounds

Proof by induction
• Introduce the asymmetric Ramsey numbers

Theorem 1.5.3 (Erdős-Szekeres, 1935)

For all 𝑘 ∈ ℕ, we have 𝑅 𝑘 ≤ 2𝑘−2
𝑘−1

. In particular, as 𝑘 → ∞,

𝑅 𝑘 ≤
1+𝑜 1

4 𝜋𝑘
4𝑘.

Definition 1.5.4 (Asymmetric Ramsey numbers)

Given ℓ, 𝑘 ∈ ℕ, 𝑅(ℓ, 𝑘) is the minimum 𝑛 for which any 𝑛-vertex graph
contains either a clique on ℓ vertices or an independent set on 𝑘
vertices.

Theorem 1.5.5 (Erdős-Szekeres, 1935)

For all ℓ, 𝑘 ∈ ℕ,

𝑅 ℓ, 𝑘 ≤
ℓ + 𝑘 − 2

ℓ − 1
= 𝑂 𝑘ℓ−1 .

Asymmetric Ramsey Bounds

Problem
• For fixed ℓ ∈ ℕ, how does 𝑅 ℓ, 𝑘 grow as 𝑘 → ∞?

• Asymmetric Ramsey numbers grow at most polynomially

• Can we find matching lower bounds?

Theorem 1.5.6 (Turán, 1941)

An 𝑛-vertex 𝐾ℓ-free graph can have at most 1 −
1

ℓ−1

𝑛
2

edges.

Turán’s Lower Bound
Goal

• Find a 𝐾ℓ-free graph with no large independent sets

Intuition
• More edges ⇒ fewer independent sets

• How dense can a 𝐾ℓ-free graph be?

Construction
• Complete (ℓ − 1)-partite graph 𝑇𝑛,ℓ−1

• 𝛼 𝑇𝑛,ℓ−1 =
𝑛

ℓ−1
⇒ 𝑅 ℓ, 𝑘 > ℓ − 1 𝑘 − 1

What About Randomness?
𝑅 𝑘 lower bound

• Symmetric situation – can switch edges and non-edges

• Used a uniformly random graph

• Equivalently: each edge appears independently with probability
1

2

𝑅(ℓ, 𝑘) for fixed ℓ ∈ ℕ, 𝑘 → ∞

• Situation far from symmetric
• “easier” to make clique on ℓ vertices than an independent set on 𝑘 vertices

• Should focus on graphs with fewer edges

Erdős-Rényi model

• 𝐺 𝑛, 𝑝 : 𝑛 vertices, each edge appears independently with probability 𝑝

• Allows us to “see” sparser graphs

A Random Lower Bound

Proof idea
• Sample the random graph 𝐺 ∼ 𝐺(𝑛, 𝑝)

• What could go wrong?
• Could find a clique on ℓ vertices

• Could find an independent set on 𝑘 vertices

Theorem 1.5.7

Given ℓ, 𝑘, 𝑛 ∈ ℕ and 𝑝 ∈ 0,1 , if
𝑛

ℓ
𝑝

ℓ
2 +

𝑛

𝑘
1 − 𝑝

𝑘
2 < 1,

then 𝑅 ℓ, 𝑘 > 𝑛.

Analysing Bad Events

Bad cliques

• Given a set 𝑆 ∈ [𝑛]
ℓ

, let 𝐸𝑆 be the event that 𝐺[𝑆] is a clique

• ℓ
2

pairs, each an edge independently with probability 𝑝

• ⇒ ℙ 𝐸𝑆 = 𝑝
ℓ
2

Bad independent sets

• Given a set 𝑇 ∈ 𝑛
𝑘

, let 𝐹𝑇 be the event that 𝐺[𝑇] is an independent set

• 𝑘
2

pairs, each a non-edge independently with probability 1 − 𝑝

• ⇒ ℙ 𝐹𝑇 = 1 − 𝑝
𝑘
2

Completing the Proof

Recall

• 𝐸𝑆 = 𝐺 𝑆 is an ℓ−clique , ℙ 𝐸𝑆 = 𝑝
ℓ
2

• 𝐹𝑇 = 𝐺 𝑇 is an independent 𝑘−set , ℙ 𝐹𝑇 = 1 − 𝑝
𝑘
2

Union bound does the job
• 𝐺 not Ramsey = ∪𝑆 𝐸𝑆 ∪ ∪𝑇 𝐹𝑇
• ∴ ℙ 𝐺 not Ramsey = ℙ (∪𝑆 𝐸𝑆) ∪ ∪𝑇 𝐹𝑇 ≤ σ𝑆ℙ 𝐸𝑆 + σ𝑇ℙ(𝐹𝑇)

• σ𝑆ℙ(𝐸𝑆) + σ𝑇ℙ(𝐹𝑇) =
𝑛
ℓ
𝑝

ℓ
2 + 𝑛

𝑘
1 − 𝑝

𝑘
2 < 1

⇒ ℙ 𝐺 Ramsey = 1 − ℙ(𝐺 not Ramsey) > 0 ∎

An Actual Bound

What does this tell us about 𝑅(ℓ, 𝑘)?

Goal
• Maximise 𝑛

• Subject to 𝑛
ℓ
𝑝

ℓ
2 + 𝑛

𝑘
1 − 𝑝

𝑘
2 < 1 for some 𝑝 ∈ [0,1]

Theorem 1.5.7

Given ℓ, 𝑘, 𝑛 ∈ ℕ and 𝑝 ∈ 0,1 , if
𝑛

ℓ
𝑝

ℓ
2 +

𝑛

𝑘
1 − 𝑝

𝑘
2 < 1,

then 𝑅 ℓ, 𝑘 > 𝑛.

Computing a Lower Bound
Goal

• Maximise 𝑛

• Subject to 𝑛
ℓ
𝑝

ℓ
2 + 𝑛

𝑘
1 − 𝑝

𝑘
2 < 1 for some 𝑝 ∈ [0,1]

Varying 𝑝

• As 𝑝 increases, 𝑛
ℓ
𝑝

ℓ
2 increases and 𝑛

𝑘
1 − 𝑝

𝑘
2 decreases

• ⇒ at optimum, expect both quantities to be comparable

Simplification

• Instead solve 𝑛
ℓ
𝑝

ℓ
2 <

1

2
and 𝑛

𝑘
1 − 𝑝

𝑘
2 <

1

2

Computing Some More

𝑛
ℓ
𝑝

ℓ
2 <

1

2
:

• Bound 𝑛
ℓ
≤ 𝑛ℓ, so 𝑛

ℓ
𝑝

ℓ
2 ≤ 𝑛𝑝

ℓ−1

2

ℓ

• Sufficient to have 𝑝 ≤ 1 − 𝑜 1 𝑛−2/(ℓ−1)

𝑛
𝑘

1 − 𝑝
𝑘
2 <

1

2
:

• Bound 𝑛
𝑘

≤ 𝑛𝑘 and 1 − 𝑝 ≤ 𝑒−𝑝, so 𝑛
𝑘

1 − 𝑝
𝑘
2 ≤ 𝑛𝑒−𝑝 𝑘−1 /2 𝑘

• Suffices to have 𝑛𝑒−𝑝 𝑘−1 /2 < 1 ⇒ 𝑝 𝑘 − 1 > 2 ln 𝑛

• Substitute 𝑝 ≈ 𝑛−2/(ℓ−1)

• ⇒ 𝑘 > 2𝑛2/(ℓ−1) ln 𝑛

Corollary 1.5.8

For fixed ℓ ∈ ℕ and 𝑘 → ∞, we have

Ω
𝑘

2 ln 𝑘

ℓ−1
2

= 𝑅 ℓ, 𝑘 = 𝑂 𝑘ℓ−1 .

Concluding the Computations
Recall

• 𝑘 ≈ 2𝑛2/(ℓ−1) ln 𝑛

Solve for 𝑛

• 𝑛 ≈
𝑘

2 ln 𝑛

ℓ−1

2
≈

𝑘

2 ln 𝑘

ℓ−1

2

Any questions?

