Chapter 2: Method of Alterations

The Probabilistic Method Summer 2020 Freie Universität Berlin

Chapter Overview

• Introduce the method of alterations

§1 Ramsey Revisited

Chapter 2: Method of Alteration The Probabilistic Method

§2 Dominating Sets

Chapter 2: Method of Alterations The Probabilistic Method

§3 Dependent Random Choice

Chapter 2: Method of Alterations The Probabilistic Method

§1 Ramsey Revisited

Chapter 2: Method of Alterations

The Probabilistic Method

Definition 1.5.4 (Asymmetric Ramsey numbers)

Given $\ell, k \in \mathbb{N}$, $R(\ell, k)$ is the minimum n for which any n-vertex graph contains either a clique on ℓ vertices or an independent set on k vertices.

Obtained lower bounds by considering the random graph G(n, p)

```
Corollary 1.5.8
For fixed \ell \in \mathbb{N} and k \to \infty, we have
\Omega\left(\left(\frac{k}{2\ln k}\right)^{\frac{\ell-1}{2}}\right) = R(\ell, k) = O(k^{\ell-1}).
```

Triangle-free Graphs

Corollary 1.5.8
For fixed
$$\ell \in \mathbb{N}$$
 and $k \to \infty$, we have
$$\Omega\left(\left(\frac{k}{2\ln k}\right)^{\frac{\ell-1}{2}}\right) = R(\ell, k) = O(k^{\ell-1})$$

The case $\ell = 3$

- General lower bound gives $\Omega\left(\frac{k}{\ln k}\right)$
 - $R(3,k) \ge k$ is utterly trivial
 - Complete bipartite graph gives $R(3, k) \ge 2k 1$
- Can improve lower bound by more careful computation

Sharper Analysis

Theorem 1.5.7 ($\ell = 3$) Given $k, n \in \mathbb{N}$ and $p \in [0,1]$, if $\binom{n}{3}p^3 + \binom{n}{k}(1-p)^{\binom{k}{2}} < 1$,

then R(3, k) > n.

Better estimates

•
$$\binom{n}{3}p^3 \approx \frac{(np)^3}{6}$$

• $\binom{n}{k} \approx 2^{H\binom{k}{n}n}$
• $(1-p)^{\binom{k}{2}} \approx e^{\frac{-pk^2}{2}}$

 \Rightarrow R(3,k) > ck for $c \approx 1.298$

Can We Go Further?

What happens for larger n?

- $\binom{n}{k} \ge \left(\frac{n}{k}\right)^k = e^{k \ln \frac{n}{k}}$
- $(1-p)^{\binom{k}{2}} > e^{-2p\binom{k}{2}} > e^{-pk^2}$
- \Rightarrow need $p = \Omega\left(k^{-1}\ln\frac{n}{k}\right)$, otherwise $\binom{n}{k}(1-p)^{\binom{k}{2}}$ grows exponentially
- But then $\binom{n}{3}p^3 = \Theta((np)^3) = \Theta\left(\left(\frac{n}{k}\ln\frac{n}{k}\right)^3\right)$

• Bigger than 1 if n > Ck for some constant C

Lemma 2.1.1

There is some constant *C* such that, if n > Ck, then $\binom{n}{3}p^3 + \binom{n}{k}(1-p)^{\binom{k}{2}} > 1.$

Reinterpreting the Proof

Proof we saw

- $\mathbb{P}(\{G(n,p) \text{ not Ramsey}\}) \leq {\binom{n}{3}}p^3 + {\binom{n}{k}}(1-p)^{\binom{k}{2}}$
- If this is less than 1, we get a Ramsey graph with positive probability
- If this is more than 1, we get no useful information

Linearity of expectation

- $\binom{n}{3}p^3$: expected number of triangles in G(n, p)
- $\binom{n}{k}(1-p)^{\binom{k}{2}}$: expected number of independent sets of size k in G(n,p)
- $\Rightarrow \binom{n}{3}p^3 + \binom{n}{k}(1-p)^{\binom{k}{2}}$ is the expected number of bad subgraphs
- If this is less than 1, then with positive probability we have no bad subgraphs
- \Rightarrow we get a Ramsey graph

Shades of Grey

Great expectations

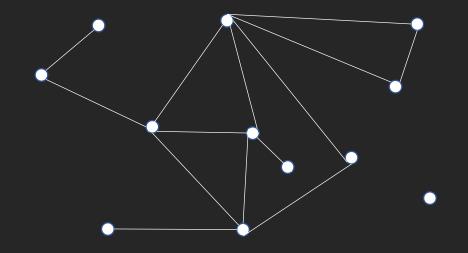
- What does $\mathbb{E}[\#$ bad subgraphs $] \ge 1$ mean?
- Do we have to have bad subgraphs?
 - Not necessarily; see Chapter 3 for details
- Gives some guarantee of goodness
 - There is a graph with at most $\binom{n}{3}p^3 + \binom{n}{k}(1-p)^{\binom{k}{2}}$ bad subgraphs
 - If this is small, perhaps we can fix it

Method of Alterations

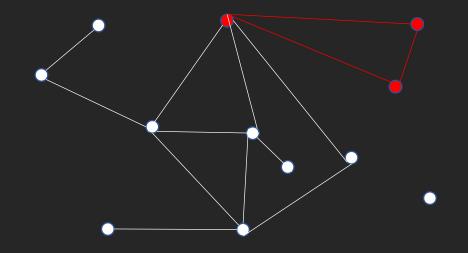
Goal: existence of an object with property ${\mathcal P}$

- 1. Show random object is with positive probability *close* to having \mathcal{P}
- 2. Make deterministic changes to the random object to achieve ${\mathcal P}$

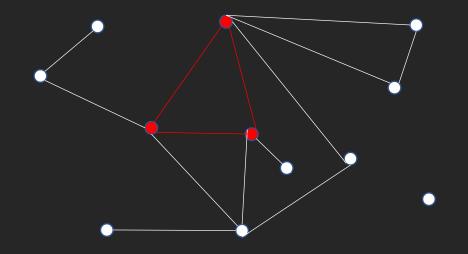
Given



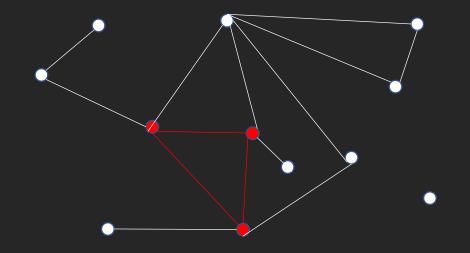
Given



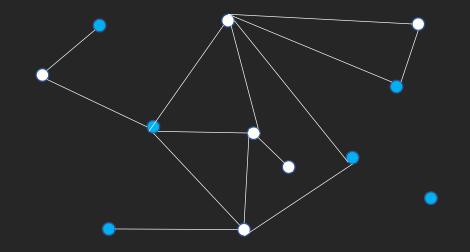
Given



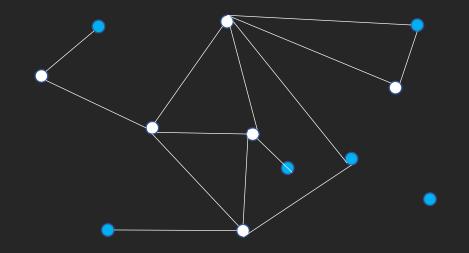
Given



Given



Given

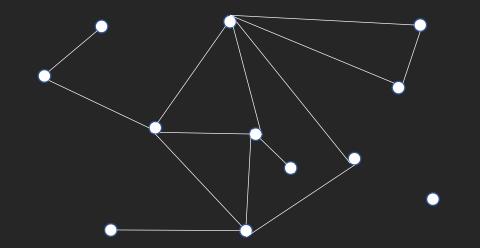


Given

• Graph with few triangles/large independent sets

Goal

• Edit graph to obtain a Ramsey graph



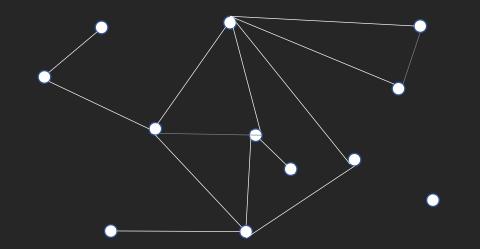
Idea: remove an edge from each triangle

Given

• Graph with few triangles/large independent sets

Goal

• Edit graph to obtain a Ramsey graph



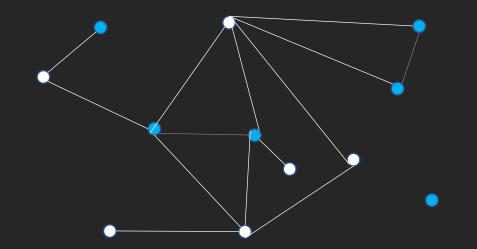
Idea: remove an edge from each triangle

Given

• Graph with few triangles/large independent sets

Goal

• Edit graph to obtain a Ramsey graph



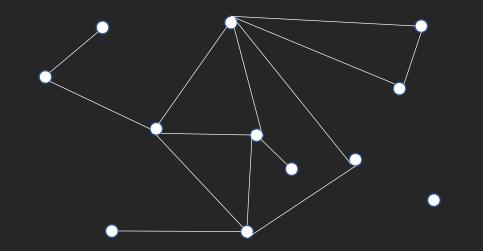
Idea: remove an edge from each triangle Problem: creates new independent sets

Given

Graph with few triangles/large independent sets

Goal

• Edit graph to obtain a Ramsey graph



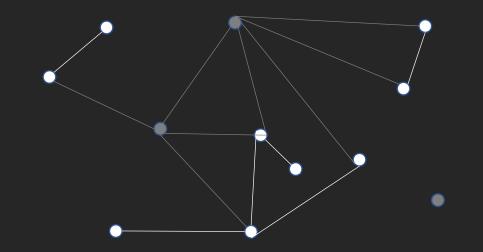
Solution: remove a *vertex* from each triangle/independent set

Given

• Graph with few triangles/large independent sets

Goal

• Edit graph to obtain a Ramsey graph



Solution: remove a *vertex* from each triangle/independent set Result: a Ramsey graph, albeit on fewer vertices

An Altered Theorem

Theorem 2.1.2 For every $n, \ell, k \in \mathbb{N}$ and $p \in [0,1]$, we have $R(\ell,k) > n - {n \choose \ell} p^{\binom{\ell}{2}} - {n \choose k} (1-p)^{\binom{k}{2}}.$

Proof

- Let $G \sim G(n, p)$
- $\mu \coloneqq \binom{n}{\ell} p^{\binom{\ell}{2}} + \binom{n}{k} (1-p)^{\binom{k}{2}}$ is the expected number of K_{ℓ} and $\overline{K_k}$
- \Rightarrow there is an *n*-vertex graph with at most μ bad subgraphs
- Delete one vertex from each bad subgraph
- Obtain a Ramsey subgraph on at least $n \mu$ vertices

R(3,k): A New Bound

Theorem 2.1.2 ($\ell = 3$)

For every $n, k \in \mathbb{N}$ and $p \in [0,1]$, we have $R(3,k) > n - \binom{n}{3}p^3 - \binom{n}{k}(1-p)^{\binom{k}{2}}.$

Goal

• Choose *n*, *p* to maximise $n - \binom{n}{3}p^3 - \binom{n}{k}(1-p)^{\binom{k}{2}}$

Choosing p

- Small p makes the second term small
- Recall: need $p = \Omega\left(k^{-1}\ln\frac{n}{k}\right)$, otherwise third term exponentially large
- When p is this large, third term exponentially small insignificant

R(3,k): A New Bound

Recall

- Maximising $n \binom{n}{3}p^3 \binom{n}{k}(1-p)^{\binom{k}{2}}$
- Take $p = \Theta\left(k^{-1}\ln\frac{n}{k}\right)$

Choosing n

• Want to maximise
$$n - \Theta\left(\left(\frac{n}{k}\ln\frac{n}{k}\right)^3\right)$$

• At maximum: $\left(\frac{n}{k}\ln\frac{n}{k}\right)^3 = \Theta(n)$
• $\Rightarrow n = \Theta\left(\left(\frac{k}{\ln\frac{n}{k}}\right)^{\frac{3}{2}}\right) = \Theta\left(\left(\frac{k}{\ln k}\right)^{\frac{3}{2}}\right)$

 $\sum k/$

Where We Stand

Corollary 2.1.3 As $k \rightarrow \infty$, we have

$$R(3,k) = \Omega\left(\left(\frac{k}{\ln k}\right)^{\frac{3}{2}}\right).$$

Lower bound

- Superlinear lower bound
- Beats Turán

Upper bound

- Erdős-Szekeres: $R(3, k) = O(k^2)$
- Can we narrow the gap? Stay tuned!

Any questions?

§2 Dominating Sets

Chapter 2: Method of Alterations

The Probabilistic Method

BER: A Modern Tragicomedy

Sep 2006 Berlin-Brandenburg Airport to open Oct 2011

Jun 2010 Opening postponed to Jun 2012

May 2012 Fire detection systems do not work!

Solution

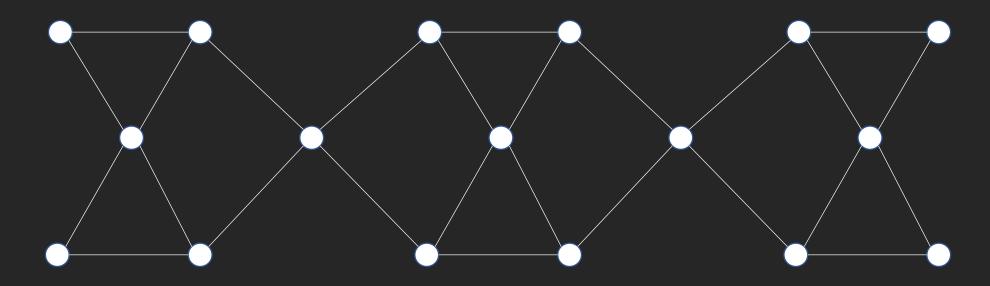
• Hire people to stand around the airport looking for signs of fire

Problem

- Already overbudget
- ⇒ want to hire as few people as possible

The airport is a graph

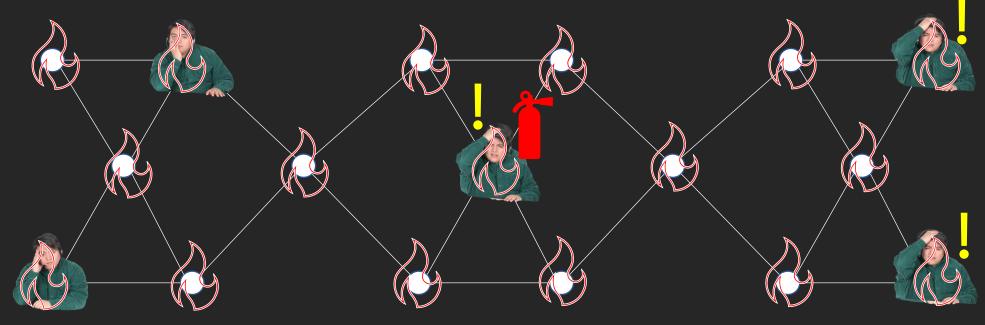
- Vertices: areas where fire could break out
- Edges: lines of sight between areas



Objective

The airport is a graph

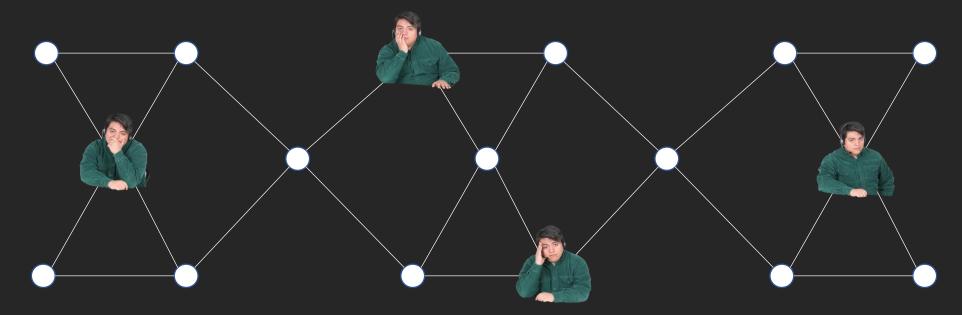
- Vertices: areas where fire could break out
- Edges: lines of sight between areas



Objective

The airport is a graph

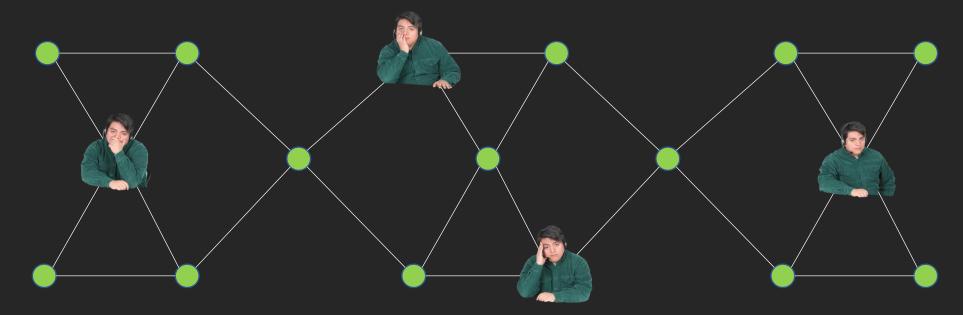
- Vertices: areas where fire could break out
- Edges: lines of sight between areas



Objective

The airport is a graph

- Vertices: areas where fire could break out
- Edges: lines of sight between areas



Objective

Small Dominating Sets

Definition 2.2.1

Given a graph G = (V, E), a set $S \subseteq V$ of vertices is a *dominating set* if, for every $v \in V \setminus S$, there is some $s \in S$ with $\{s, v\} \in E$.

Extremal problem

• How large can the smallest dominating set of an *n*-vertex graph *G* be?

Answer

- n (!)
- Isolated vertices must be in any dominating set

Avoiding trivialities

• What if we require G to have minimum degree δ ?

Do Random Sets Dominate?

Problem

Given G on n vertices with $\delta(G) \ge \delta$, how large can its smallest dominating set be?

Random set

- Let $S \subseteq V$ be a random set
- $v \in S$ with probability p, independently

Undominated vertices

- For $u \in V$, define the event $E_u = \{u \text{ not dominated by } S\}$
- For E_u to hold, need:
 - *u* ∉ *S*
 - $v \notin S$ for all neighbours v of u

•
$$\Rightarrow \mathbb{P}(E_u) = (1-p)^{d(u)+1}$$

Calculations Continued

Failure probability

- {*S* not dominating} = $\bigcup_{u \in V} E_u$
- $\mathbb{P}(\bigcup_{u \in V} E_u) < \sum_{u \in V} \mathbb{P}(E_u) = \sum_{u \in V} (1-p)^{d(u)+1}$
- $\sum_{u \in V} (1-p)^{d(u)+1} \le n(1-p)^{\delta+1} \le ne^{-p(\delta+1)}$
- \Rightarrow if $p = \frac{\ln n}{\delta + 1}$, then $\mathbb{P}(S \text{ not dominating}) < 1$
- \Rightarrow S is dominating with positive probability

Size of the dominating set

- $|S| \sim \operatorname{Bin}(n,p)$
- $\Rightarrow \mathbb{E}[|S|] = np = \frac{n \ln n}{\delta + 1}$
- \Rightarrow with positive probability, $|S| \leq \frac{n \ln n}{\delta + 1}$

Putting Things Together

Concurrence of events

- Want events {*S* is dominating} and {*S* is small} to hold simultaneously
- Suffices to have $\mathbb{P}(S \text{ not dominating}), \mathbb{P}(S \text{ large}) < \frac{1}{2}$

Non-domination

• $\mathbb{P}(S \text{ not dominating}) < ne^{-p(\delta+1)} = \frac{1}{2} \text{ if } p = \frac{\ln 2n}{\delta+1}$

Large sets

• Binomial distribution $\Rightarrow \mathbb{P}(|S| > (n+1)p) \le \frac{1}{2}$

Proposition 2.2.3

Let *G* be an *n*-vertex graph with $\delta(G) \ge \delta \ge \ln 2n$. Then *G* has a dominating set $S \subseteq V(G)$ with $|S| \le \frac{(n+1) \ln 2n}{\delta+1}$.

Altering Our Approach

Reduced requirements

- Need large probability p for the random set S to be dominating
- What if we instead only want it to be *close* to dominating?
- Set *S* should dominate *most* vertices of *G*

Undominated vertices

- Given a graph G, set of vertices $T \subseteq V(G)$
- Let $U(T) = \{v \in V \setminus T : N(v) \cap T = \emptyset\}$ be the vertices not dominated by T

Observation For any $T \subseteq V$, the set $T \cup U(T)$ is a dominating set.

Altering Our Results

Theorem 2.2.4

Let G be an n-vertex graph with $\delta(G) \ge \delta$, and let $p \in [0,1]$. Then G has a dominating set $S \subseteq V(G)$ with $|S| \le np + ne^{-p(\delta+1)}$.

Proof

- Let T be a random set of vertices, chosen independently with probability p
- $\Rightarrow \mathbb{E}[|T|] = np$
- Recall: $\mathbb{P}(u \text{ not dominated by } T) = (1-p)^{d(u)+1} \le e^{-p(\delta+1)}$
- Linearity of expectation $\Rightarrow \mathbb{E}[|U(T)|] \le ne^{-p(\delta+1)}$
- Let $S = T \cup U(T)$
 - *S* is a dominating set
- $\mathbb{E}[|S|] = \mathbb{E}[|T \cup U(T)|] = \mathbb{E}[|T|] + \mathbb{E}[|U(T)|] \le np + ne^{-p(\delta+1)}$
- \Rightarrow existence of a dominating set of at most this size

Running the Numbers

Goal

• Minimise $np + ne^{-p(\delta+1)} = n(p + e^{-p(\delta+1)})$

A little calculus

• Let
$$f(p) = p + e^{-p(\delta+1)}$$

• $f'(p) = 1 - (\delta + 1)e^{-p(\delta+1)}$
• $f'(p_0) = 0 \Leftrightarrow p_0 = \frac{\ln(\delta+1)}{\delta+1}$
• $f(p_0) = \frac{\ln(\delta+1)+1}{\delta+1}$

Corollary 2.2.5

Let *G* be an *n*-vertex graph with $\delta(G) \ge \delta$. Then *G* has a dominating set $S \subseteq V(G)$ with $|S| \le \left(\frac{\ln(\delta+1)+1}{\delta+1}\right)n$.

BER: Epilogue

May 2012Firewatch plan rejected, opening set for Mar 2013Sep 2012Opening postponed further to Oct 20132013-2019Series of delays, no new opening date setApr 2020Building authority approval! Opening 31 Oct 2020

Total delays 3072 days (and counting?)

Original budget€2.3 billionActual cost€7.3 billion (and counting?)

Any questions?

§3 Dependent Random Choice

Chapter 2: Method of Alterations

The Probabilistic Method

Turán Numbers

Definition 2.3.1

Given a graph H and $n \in \mathbb{N}$, the *Turán number* ex(n, H) is the maximum number of edges in an H-free n-vertex graph.

Theorem 1.5.6 (Turán, 1941)
For
$$\ell \ge 2$$
, $ex(n, K_{\ell}) = \left(1 - \frac{1}{\ell - 1} + o(1)\right) {n \choose 2}$.

Theorem 2.3.2 (Erdős-Stone-Simonovits, 1966) For any graph H, $ex(n, H) = \left(1 - \frac{1}{\chi(H) - 1} + o(1)\right) \binom{n}{2}$.

Bipartite Turán Numbers

Theorem 2.3.2 (Erdős-Stone-Simonovits, 1966) For any graph H, $ex(n, H) = \left(1 - \frac{1}{\chi(H) - 1} + o(1)\right) \binom{n}{2}$.

- Determines ex(n, H) asymptotically when $\chi(H) \ge 3$
- *H* bipartite: only shows $ex(n, H) = o(n^2)$

Theorem 2.3.3 (Kővári-Sós-Turán, 1954)

If H is bipartite with at most t vertices in one part, then

$$\exp(n,H) = O(n^{2-1/t}).$$

Tightness of Kővári-Sós-Turán

Theorem 2.3.3 (Kővári-Sós-Turán, 1954)

If H is bipartite with at most t vertices in one part, then

$$\exp(n,H) = O(n^{2-1/t}).$$

Complete bipartite graphs

• Tight for $H = K_{t,s}$ when s > (t - 1)! [Alon-Rónyai-Szabó, 1999]

Even cycles

- Far from tight for cycles
- $ex(n, C_{2k}) = O(n^{1+1/k})$ [Bondy-Simonovits, 1974]

General graphs

• Can we find a sharper general bound?

Dependent Random Choice

Embedding H

- Need to show any sufficiently dense graph G must contain a copy of H
- We know nothing about G apart from its density
- This is enough to extract some structure

Lemma 2.3.4 (Dependent Random Choice)

Let $a, d, m, n, t \in \mathbb{N}$. Let G be an n-vertex graph with average degree d. If there is some $s \in \mathbb{N}$ with

$$\frac{d^s}{n^{s-1}} - \binom{n}{t} \left(\frac{m}{n}\right)^s \ge a,$$

then G contains a subset A of at least a vertices, any t of which have more than m common neighbours.

A Turánnical Application

Theorem 2.3.5 (Alon-Krivelevich-Sudakov, 2003)

Let *H* be a bipartite graph with maximum degree *t* in one part. Then

$$ex(n,H) = O(n^{2-1/t}).$$

Kővári-Sós-Turán

- Immediate consequence of the above theorem
- Same examples show bound can be tight

Wider class of graphs

- Gives reasonable bounds for graphs of arbitrary order
- e.g. even subdivisions F_{sub} of a graph F
 - Each edge of *F* replaced by an even path
- Can apply Theorem 2.3.5 with $t = 2 \Rightarrow ex(n, F_{sub}) = O(n^{3/2})$

Setting Up the Proof

Theorem 2.3.5 (Alon-Krivelevich-Sudakov, 2003)

Let H be a bipartite graph with maximum degree t in one part. Then

$$ex(n,H) = O(n^{2-1/t}).$$

Given

- Bipartite H with vertex classes $U \cup W$
- Maximum degree in W is t

Objective

- Given *n*-vertex graph *G* with $e(G) \ge \Omega(n^{2-1/t})$
- Need to show $H \subseteq G$

Applying Dependent Random Choice

Lemma 2.3.4 (Dependent Random Choice)

Let $a, d, m, n, t \in \mathbb{N}$. Let G be an n-vertex graph with average degree d. If there is some $s \in \mathbb{N}$ with

$$\frac{d^s}{n^{s-1}} - \binom{n}{t} \left(\frac{m}{n}\right)^s \ge a,$$

then G contains a subset A of at least a vertices, any t of which have more than m common neighbours.

Idea

- Embed *U* in *A* arbitrarily
- Each $w \in W$ has at most t neighbours in U
- Corresponding set of t vertices in A has at least m common neighbours in G
- May have used some on earlier vertices, but if $m \ge v(H)$, one is free to embed w
- \Rightarrow can embed W one vertex at a time

A Little Arithmetic

Target

•
$$\frac{d^s}{n^{s-1}} - {\binom{n}{t}} \left(\frac{m}{n}\right)^s \ge a$$
 where
• $a = |U| \le v(H) =: h$

- m = h
- $d = C_H n^{1-1/t}$ for some constant C_H we can choose
- we can choose $s \in \mathbb{N}$

Simplify

- $\binom{n}{t} \leq n^t$
- Sufficient to have $C_H^s n^{1-s/t} h^s n^{t-s} \ge h$
- \Rightarrow need to take s = t
- Sufficient to have $C_H^t \ge h^t + h$
- Satisfied by taking $C_H = 2^{1/t}h$, completing the proof

Proving Dependent Random Choice

Lemma 2.3.4 (Dependent Random Choice)

Let $a, d, m, n, t \in \mathbb{N}$. Let G be an n-vertex graph with average degree d. If there is some $s \in \mathbb{N}$ with

$$\frac{d^s}{n^{s-1}} - \binom{n}{t} \left(\frac{m}{n}\right)^s \ge a,$$

then G contains a subset A of at least a vertices, any t of which have at least m common neighbours.

Does a random set work for A?

- No G could be bipartite
- Then a random set will intersect both parts
- Subsets meeting both parts have no common neighbours

An Indirect Selection

Idea

- We choose a small random set S of vertices
- Let their *common neighbourhood B* be our candidate for *A*

Intuition

- *G* has large average degree *d*
 - \Rightarrow S should have many common neighbours
- If a set of vertices has few neighbours, unlikely that S was chosen from them
 - \Rightarrow will not see these *t* vertices in *B*
- Can expect *t*-subsets of *B* to have large common neighbourhood

Fleshing Out the Details

Choosing S

- Sample s vertices from V(G), independently (with repetition!)
- Let S be the set of vertices selected

Common neighbourhood B

- Let $B = \{v \in V(G) : \forall s \in S, \{v, s\} \in E(G)\}$
- For $v \in B$, all vertices in S had to be neighbours of v

•
$$\Rightarrow \mathbb{P}(v \in B) = \left(\frac{d(v)}{n}\right)^{s}$$

• $\Rightarrow \mathbb{E}[|B|] = \sum_{v} \left(\frac{d(v)}{n}\right)^{s} = n^{-s} \sum_{v} d(v)^{s}$

• $x \mapsto x^s$ is a convex function

•
$$\Rightarrow \mathbb{E}[|B|] = n^{-s} \sum_{v} d(v)^{s} \ge n^{1-s} \left(\frac{\sum_{v} d(v)}{n}\right)^{s} = \frac{d^{s}}{n^{s-1}}$$

Fixing the Set

Bad subsets

- Let T be a set of t vertices with at most m common neighbours
- To have $T \subseteq B$, need to select S from these common neighbours
- $|\bullet \Rightarrow \mathbb{P}(T \subseteq B) \le \left(\frac{m}{n}\right)^{S}$
- Linearity of expectation $\Rightarrow \mathbb{E}[\# \text{ bad subsets}] \leq \binom{n}{t} \left(\frac{m}{n}\right)^{s}$

Alteration

- Remove one vertex from each bad subset
- Let A be the remaining set
 - Every *t*-subset of *A* has more than *m* common neighbours
- $\mathbb{E}[|A|] \ge \mathbb{E}[|B|] \mathbb{E}[\# \text{ bad subsets}] \ge \frac{d^s}{n^{s-1}} \binom{n}{t} \left(\frac{m}{n}\right)^s \ge a$
- \Rightarrow there exists such a set A of size at least a

Any questions?