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Chapter Overview

• Introduce the method of alterations
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Definition 1.5.4 (Asymmetric Ramsey numbers)

Given ℓ, 𝑘 ∈ ℕ, 𝑅(ℓ, 𝑘) is the minimum 𝑛 for which any 𝑛-vertex graph 
contains either a clique on ℓ vertices or an independent set on 𝑘
vertices.

Asymmetric Ramsey Bounds

Obtained lower bounds by considering the random graph 𝐺 𝑛, 𝑝

Corollary 1.5.8

For fixed ℓ ∈ ℕ and 𝑘 → ∞, we have

Ω
𝑘

2 ln 𝑘

ℓ−1
2

= 𝑅 ℓ, 𝑘 = 𝑂 𝑘ℓ−1 .



Triangle-free Graphs

The case ℓ = 3

• General lower bound gives Ω
𝑘

ln 𝑘
• 𝑅 3, 𝑘 ≥ 𝑘 is utterly trivial

• Complete bipartite graph gives 𝑅 3, 𝑘 ≥ 2𝑘 − 1

• Can improve lower bound by more careful computation

Corollary 1.5.8

For fixed ℓ ∈ ℕ and 𝑘 → ∞, we have

Ω
𝑘

2 ln 𝑘

ℓ−1
2

= 𝑅 ℓ, 𝑘 = 𝑂 𝑘ℓ−1 .



Sharper Analysis

Better estimates

• 𝑛
3
𝑝3 ≈

𝑛𝑝 3

6

• 𝑛
𝑘

≈ 2
𝐻

𝑘

𝑛
𝑛

• 1 − 𝑝
𝑘
2 ≈ 𝑒

−𝑝𝑘2

2

⇒ 𝑅 3, 𝑘 > 𝑐𝑘 for 𝑐 ≈ 1.298

Theorem 1.5.7 (ℓ = 3)

Given 𝑘, 𝑛 ∈ ℕ and 𝑝 ∈ 0,1 , if
𝑛

3
𝑝3 +

𝑛

𝑘
1 − 𝑝

𝑘
2 < 1,

then 𝑅 3, 𝑘 > 𝑛.



Lemma 2.1.1

There is some constant 𝐶 such that, if 𝑛 > 𝐶𝑘, then
𝑛

3
𝑝3 +

𝑛

𝑘
1 − 𝑝

𝑘
2 > 1.

Can We Go Further?
What happens for larger 𝑛?

• 𝑛
𝑘

≥
𝑛

𝑘

𝑘
= 𝑒𝑘 ln

𝑛

𝑘

• 1 − 𝑝
𝑘
2 > 𝑒

−2𝑝 𝑘
2 > 𝑒−𝑝𝑘

2

• ⇒ need 𝑝 = Ω 𝑘−1 ln
𝑛

𝑘
, otherwise 𝑛

𝑘
1 − 𝑝

𝑘
2 grows exponentially

• But then 𝑛
3
𝑝3 = Θ 𝑛𝑝 3 = Θ

𝑛

𝑘
ln

𝑛

𝑘

3

• Bigger than 1 if 𝑛 > 𝐶𝑘 for some constant 𝐶



Reinterpreting the Proof
Proof we saw

• ℙ 𝐺 𝑛, 𝑝 not Ramsey ≤ 𝑛
3
𝑝3 + 𝑛

𝑘
1 − 𝑝

𝑘
2

• If this is less than 1, we get a Ramsey graph with positive probability

• If this is more than 1, we get no useful information

Linearity of expectation

• 𝑛
3
𝑝3: expected number of triangles in 𝐺 𝑛, 𝑝

• 𝑛
𝑘

1 − 𝑝
𝑘
2 : expected number of independent sets of size 𝑘 in 𝐺 𝑛, 𝑝

• ⇒ 𝑛
3
𝑝3 + 𝑛

𝑘
1 − 𝑝

𝑘
2 is the expected number of bad subgraphs

• If this is less than 1, then with positive probability we have no bad subgraphs

• ⇒ we get a Ramsey graph



Method of Alterations

Goal: existence of an object with property 𝒫

1. Show random object is with positive probability close to having 𝒫

2. Make deterministic changes to the random object to achieve 𝒫

Shades of Grey
Great expectations

• What does 𝔼 # bad subgraphs ≥ 1 mean?

• Do we have to have bad subgraphs?
• Not necessarily; see Chapter 3 for details

• Gives some guarantee of goodness

• There is a graph with at most 𝑛
3
𝑝3 + 𝑛

𝑘
1 − 𝑝

𝑘
2 bad subgraphs

• If this is small, perhaps we can fix it



Graph Surgery
Given

• Graph with few triangles/large independent sets
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Graph Surgery
Given

• Graph with few triangles/large independent sets

Goal
• Edit graph to obtain a Ramsey graph

Idea: remove an edge from each triangle
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Graph Surgery
Given

• Graph with few triangles/large independent sets

Goal
• Edit graph to obtain a Ramsey graph

Idea: remove an edge from each triangle

Problem: creates new independent sets



Graph Surgery
Given

• Graph with few triangles/large independent sets

Goal
• Edit graph to obtain a Ramsey graph

Solution: remove a vertex from each triangle/independent set



Graph Surgery
Given

• Graph with few triangles/large independent sets

Goal
• Edit graph to obtain a Ramsey graph

Solution: remove a vertex from each triangle/independent set

Result: a Ramsey graph, albeit on fewer vertices



An Altered Theorem

Proof

• Let 𝐺 ∼ 𝐺 𝑛, 𝑝

• 𝜇 ≔ 𝑛
ℓ
𝑝

ℓ
2 + 𝑛

𝑘
1 − 𝑝

𝑘
2 is the expected number of 𝐾ℓ and 𝐾𝑘

• ⇒ there is an 𝑛-vertex graph with at most 𝜇 bad subgraphs

• Delete one vertex from each bad subgraph

• Obtain a Ramsey subgraph on at least 𝑛 − 𝜇 vertices ∎

Theorem 2.1.2

For every 𝑛, ℓ, 𝑘 ∈ ℕ and 𝑝 ∈ [0,1], we have

𝑅 ℓ, 𝑘 > 𝑛 −
𝑛

ℓ
𝑝

ℓ
2 −

𝑛

𝑘
1 − 𝑝

𝑘
2 .



𝑅(3, 𝑘): A New Bound

Goal

• Choose 𝑛, 𝑝 to maximise 𝑛 − 𝑛
3
𝑝3 − 𝑛

𝑘
1 − 𝑝

𝑘
2

Choosing 𝑝

• Small 𝑝 makes the second term small

• Recall: need 𝑝 = Ω 𝑘−1 ln
𝑛

𝑘
, otherwise third term exponentially large

• When 𝑝 is this large, third term exponentially small – insignificant

Theorem 2.1.2 (ℓ = 3)

For every 𝑛, 𝑘 ∈ ℕ and 𝑝 ∈ [0,1], we have

𝑅 3, 𝑘 > 𝑛 −
𝑛

3
𝑝3 −

𝑛

𝑘
1 − 𝑝

𝑘
2 .



𝑅(3, 𝑘): A New Bound
Recall

• Maximising 𝑛 − 𝑛
3
𝑝3 − 𝑛

𝑘
1 − 𝑝

𝑘
2

• Take 𝑝 = Θ 𝑘−1 ln
𝑛

𝑘

Choosing 𝑛

• Want to maximise 𝑛 − Θ
𝑛

𝑘
ln

𝑛

𝑘

3

• At maximum: 
𝑛

𝑘
ln

𝑛

𝑘

3
= Θ 𝑛

• ⇒ 𝑛 = Θ
𝑘

ln
𝑛

𝑘

3

2

= Θ
𝑘

ln 𝑘

3

2



Where We Stand

Lower bound
• Superlinear lower bound

• Beats Turán

Upper bound

• Erdős-Szekeres: 𝑅 3, 𝑘 = 𝑂(𝑘2)

• Can we narrow the gap? Stay tuned!

Corollary 2.1.3

As 𝑘 → ∞, we have

R 3, k = Ω
𝑘

ln 𝑘

3
2

.



Any questions?



§2 Dominating Sets
Chapter 2: Method of Alterations

The Probabilistic Method



BER: A Modern Tragicomedy

Sep 2006 Berlin-Brandenburg Airport to open Oct 2011

Jun 2010 Opening postponed to Jun 2012

May 2012 Fire detection systems do not work!

Solution
• Hire people to stand around the airport looking for signs of fire

Problem
• Already overbudget

• ⇒ want to hire as few people as possible



Combinatorics to the Rescue
The airport is a graph

• Vertices: areas where fire could break out

• Edges: lines of sight between areas

Objective
• Find a set of vertices that “see” all other vertices
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Combinatorics to the Rescue
The airport is a graph

• Vertices: areas where fire could break out

• Edges: lines of sight between areas

Objective
• Find a set of vertices that “see” all other vertices



Small Dominating Sets

Extremal problem
• How large can the smallest dominating set of an 𝑛-vertex graph 𝐺 be?

Answer

• 𝑛 (!)

• Isolated vertices must be in any dominating set

Avoiding trivialities

• What if we require 𝐺 to have minimum degree 𝛿?

Definition 2.2.1

Given a graph 𝐺 = 𝑉, 𝐸 , a set 𝑆 ⊆ 𝑉 of vertices is a dominating set if, 
for every 𝑣 ∈ 𝑉 ∖ 𝑆, there is some 𝑠 ∈ 𝑆 with 𝑠, 𝑣 ∈ 𝐸.



Do Random Sets Dominate?

Random set
• Let 𝑆 ⊆ 𝑉 be a random set

• 𝑣 ∈ 𝑆 with probability 𝑝, independently

Undominated vertices
• For 𝑢 ∈ 𝑉, define the event 𝐸𝑢 = 𝑢 not dominated by 𝑆

• For 𝐸𝑢 to hold, need:
• 𝑢 ∉ 𝑆

• 𝑣 ∉ 𝑆 for all neighbours 𝑣 of 𝑢

• ⇒ ℙ 𝐸𝑢 = 1 − 𝑝 𝑑 𝑢 +1

Problem

Given 𝐺 on 𝑛 vertices with 𝛿 𝐺 ≥ 𝛿, how large can its smallest 
dominating set be?



Calculations Continued

Failure probability
• 𝑆 not dominating = ∪𝑢∈𝑉 𝐸𝑢
• ℙ ∪𝑢∈𝑉 𝐸𝑢 < σ𝑢∈𝑉ℙ 𝐸𝑢 = σ𝑢∈𝑉 1 − 𝑝 𝑑 𝑢 +1

• σ𝑢∈𝑉 1 − 𝑝 𝑑 𝑢 +1 ≤ 𝑛 1 − 𝑝 𝛿+1 ≤ 𝑛𝑒−𝑝 𝛿+1

• ⇒ if 𝑝 =
ln 𝑛

𝛿+1
, then ℙ 𝑆 not dominating < 1

• ⇒ 𝑆 is dominating with positive probability

Size of the dominating set

• 𝑆 ∼ Bin 𝑛, 𝑝

• ⇒ 𝔼 𝑆 = 𝑛𝑝 =
𝑛 ln 𝑛

𝛿+1

• ⇒ with positive probability, 𝑆 ≤
𝑛 ln 𝑛

𝛿+1



Proposition 2.2.3

Let 𝐺 be an 𝑛-vertex graph with 𝛿 𝐺 ≥ 𝛿 ≥ ln 2𝑛. Then 𝐺 has a 

dominating set 𝑆 ⊆ 𝑉(𝐺) with 𝑆 ≤
(𝑛+1) ln 2𝑛

𝛿+1
.

Putting Things Together
Concurrence of events

• Want events {𝑆 is dominating} and 𝑆 is small to hold simultaneously

• Suffices to have ℙ 𝑆 not dominating , ℙ 𝑆 large <
1

2

Non-domination

• ℙ 𝑆 not dominating < 𝑛𝑒−𝑝 𝛿+1 =
1

2
if 𝑝 =

ln 2𝑛

𝛿+1

Large sets

• Binomial distribution ⇒ ℙ 𝑆 > 𝑛 + 1 𝑝 ≤
1

2



Observation

For any T ⊆ 𝑉, the set T ∪ 𝑈(𝑇) is a dominating set.

Altering Our Approach

Reduced requirements
• Need large probability 𝑝 for the random set 𝑆 to be dominating

• What if we instead only want it to be close to dominating?

• Set 𝑆 should dominate most vertices of 𝐺

Undominated vertices

• Given a graph 𝐺, set of vertices T ⊆ 𝑉(𝐺)

• Let 𝑈 𝑇 = 𝑣 ∈ 𝑉 ∖ 𝑇:𝑁 𝑣 ∩ 𝑇 = ∅ be the vertices not dominated by 𝑇



Altering Our Results

Proof
• Let 𝑇 be a random set of vertices, chosen independently with probability 𝑝

• ⇒ 𝔼 𝑇 = 𝑛𝑝

• Recall: ℙ 𝑢 not dominated by 𝑇 = 1 − 𝑝 𝑑 𝑢 +1 ≤ 𝑒−𝑝 𝛿+1

• Linearity of expectation ⇒ 𝔼 𝑈 𝑇 ≤ 𝑛𝑒−𝑝 𝛿+1

• Let 𝑆 = 𝑇 ∪ 𝑈(𝑇)
• 𝑆 is a dominating set

• 𝔼 𝑆 = 𝔼 𝑇 ∪ 𝑈 𝑇 = 𝔼 𝑇 + 𝔼 𝑈 𝑇 ≤ 𝑛𝑝 + 𝑛𝑒−𝑝 𝛿+1

• ⇒ existence of a dominating set of at most this size ∎

Theorem 2.2.4

Let 𝐺 be an 𝑛-vertex graph with 𝛿 𝐺 ≥ 𝛿, and let 𝑝 ∈ [0,1]. Then 𝐺
has a dominating set 𝑆 ⊆ 𝑉 𝐺 with 𝑆 ≤ 𝑛𝑝 + 𝑛𝑒−𝑝 𝛿+1 . 



Corollary 2.2.5

Let 𝐺 be an 𝑛-vertex graph with 𝛿 𝐺 ≥ 𝛿. Then 𝐺 has a dominating 

set 𝑆 ⊆ 𝑉 𝐺 with 𝑆 ≤
ln 𝛿+1 +1

𝛿+1
𝑛.

Running the Numbers
Goal

• Minimise 𝑛𝑝 + 𝑛𝑒−𝑝 𝛿+1 = 𝑛 𝑝 + 𝑒−𝑝 𝛿+1

A little calculus
• Let 𝑓 𝑝 = 𝑝 + 𝑒−𝑝 𝛿+1

• 𝑓′ 𝑝 = 1 − 𝛿 + 1 𝑒−𝑝 𝛿+1

• 𝑓′ 𝑝0 = 0 ⇔ 𝑝0 =
ln 𝛿+1

𝛿+1

• 𝑓 𝑝0 =
ln 𝛿+1 +1

𝛿+1



BER: Epilogue

May 2012 Firewatch plan rejected, opening set for Mar 2013

Sep 2012 Opening postponed further to Oct 2013

2013-2019 Series of delays, no new opening date set

Apr 2020 Building authority approval! Opening 31 Oct 2020

Total delays 3072 days (and counting?)

Original budget €2.3 billion

Actual cost €7.3 billion (and counting?)



Any questions?
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Definition 2.3.1

Given a graph 𝐻 and 𝑛 ∈ ℕ, the Turán number ex(𝑛, 𝐻) is the 
maximum number of edges in an 𝐻-free 𝑛-vertex graph.

Turán Numbers

Theorem 2.3.2 (Erdős-Stone-Simonovits, 1966)

For any graph 𝐻, ex 𝑛, 𝐻 = 1 −
1

𝜒 𝐻 −1
+ 𝑜 1 𝑛

2
.

Theorem 1.5.6 (Turán, 1941)

For ℓ ≥ 2, ex 𝑛, 𝐾ℓ = 1 −
1

ℓ−1
+ 𝑜 1 𝑛

2
.



Theorem 2.3.2 (Erdős-Stone-Simonovits, 1966)

For any graph 𝐻, ex 𝑛, 𝐻 = 1 −
1

𝜒 𝐻 −1
+ 𝑜 1 𝑛

2
.

Bipartite Turán Numbers

• Determines ex(𝑛, 𝐻) asymptotically when 𝜒 𝐻 ≥ 3

• 𝐻 bipartite: only shows ex 𝑛, 𝐻 = 𝑜 𝑛2

Theorem 2.3.3 (Kővári-Sós-Turán, 1954)

If 𝐻 is bipartite with at most 𝑡 vertices in one part, then 

ex 𝑛, 𝐻 = 𝑂 𝑛2−1/𝑡 .



Tightness of Kővári-Sós-Turán

Complete bipartite graphs
• Tight for 𝐻 = 𝐾𝑡,𝑠 when 𝑠 > 𝑡 − 1 ! [Alon-Rónyai-Szabó, 1999]

Even cycles

• Far from tight for cycles

• ex 𝑛, 𝐶2𝑘 = 𝑂(𝑛1+1/𝑘) [Bondy-Simonovits, 1974]

General graphs

• Can we find a sharper general bound?

Theorem 2.3.3 (Kővári-Sós-Turán, 1954)

If 𝐻 is bipartite with at most 𝑡 vertices in one part, then 

ex 𝑛, 𝐻 = 𝑂 𝑛2−1/𝑡 .



Lemma 2.3.4 (Dependent Random Choice)

Let 𝑎, 𝑑,𝑚, 𝑛, 𝑡 ∈ ℕ. Let 𝐺 be an 𝑛-vertex graph with average degree 𝑑. 
If there is some 𝑠 ∈ ℕ with

𝑑𝑠

𝑛𝑠−1
−

𝑛

𝑡

𝑚

𝑛

𝑠

≥ 𝑎,

then 𝐺 contains a subset 𝐴 of at least 𝑎 vertices, any 𝑡 of which have 
more than 𝑚 common neighbours.

Dependent Random Choice

Embedding 𝐻
• Need to show any sufficiently dense graph 𝐺 must contain a copy of 𝐻

• We know nothing about 𝐺 apart from its density

• This is enough to extract some structure



A Turánnical Application

Kővári-Sós-Turán
• Immediate consequence of the above theorem

• Same examples show bound can be tight

Wider class of graphs
• Gives reasonable bounds for graphs of arbitrary order

• e.g. even subdivisions 𝐹𝑠𝑢𝑏 of a graph 𝐹
• Each edge of 𝐹 replaced by an even path

• Can apply Theorem 2.3.5 with 𝑡 = 2 ⇒ 𝑒𝑥 𝑛, 𝐹𝑠𝑢𝑏 = 𝑂(𝑛3/2)

Theorem 2.3.5 (Alon-Krivelevich-Sudakov, 2003)

Let 𝐻 be a bipartite graph with maximum degree 𝑡 in one part. Then

𝑒𝑥 𝑛, 𝐻 = 𝑂 𝑛2−1/𝑡 .



Setting Up the Proof

Given
• Bipartite 𝐻 with vertex classes 𝑈 ∪𝑊

• Maximum degree in 𝑊 is 𝑡

Objective

• Given 𝑛-vertex graph 𝐺 with 𝑒 𝐺 ≥ Ω(𝑛2−1/𝑡)

• Need to show 𝐻 ⊆ 𝐺

Theorem 2.3.5 (Alon-Krivelevich-Sudakov, 2003)

Let 𝐻 be a bipartite graph with maximum degree 𝑡 in one part. Then

𝑒𝑥 𝑛, 𝐻 = 𝑂 𝑛2−1/𝑡 .



Applying Dependent Random Choice

Idea
• Embed 𝑈 in 𝐴 arbitrarily
• Each 𝑤 ∈ 𝑊 has at most 𝑡 neighbours in 𝑈
• Corresponding set of 𝑡 vertices in 𝐴 has at 

least 𝑚 common neighbours in 𝐺
• May have used some on earlier vertices, but 

if 𝑚 ≥ 𝑣(𝐻), one is free to embed 𝑤
• ⇒ can embed 𝑊 one vertex at a time 

Lemma 2.3.4 (Dependent Random Choice)
Let 𝑎, 𝑑,𝑚, 𝑛, 𝑡 ∈ ℕ. Let 𝐺 be an 𝑛-vertex graph with average degree 𝑑. If 
there is some 𝑠 ∈ ℕ with

𝑑𝑠

𝑛𝑠−1
−

𝑛

𝑡

𝑚

𝑛

𝑠

≥ 𝑎,

then 𝐺 contains a subset 𝐴 of at least 𝑎 vertices, any 𝑡 of which have more 
than 𝑚 common neighbours.



A Little Arithmetic
Target

•
𝑑𝑠

𝑛𝑠−1
− 𝑛

𝑡

𝑚

𝑛

𝑠
≥ 𝑎 where

• 𝑎 = 𝑈 ≤ 𝑣 𝐻 =: ℎ

• 𝑚 = ℎ

• 𝑑 = C𝐻𝑛
1−1/𝑡 for some constant 𝐶𝐻 we can choose

• we can choose 𝑠 ∈ ℕ

Simplify

• 𝑛
𝑡
≤ 𝑛𝑡

• Sufficient to have 𝐶𝐻
𝑠𝑛1−𝑠/𝑡 − ℎ𝑠𝑛𝑡−𝑠 ≥ ℎ

• ⇒ need to take 𝑠 = 𝑡

• Sufficient to have 𝐶𝐻
𝑡 ≥ ℎ𝑡 + ℎ

• Satisfied by taking 𝐶𝐻 = 21/𝑡ℎ, completing the proof ∎



Proving Dependent Random Choice

Does a random set work for 𝐴?
• No - 𝐺 could be bipartite

• Then a random set will intersect both parts

• Subsets meeting both parts have no common neighbours

Lemma 2.3.4 (Dependent Random Choice)

Let 𝑎, 𝑑,𝑚, 𝑛, 𝑡 ∈ ℕ. Let 𝐺 be an 𝑛-vertex graph with average degree 𝑑. 
If there is some 𝑠 ∈ ℕ with

𝑑𝑠

𝑛𝑠−1
−

𝑛

𝑡

𝑚

𝑛

𝑠

≥ 𝑎,

then 𝐺 contains a subset 𝐴 of at least 𝑎 vertices, any 𝑡 of which have at 
least 𝑚 common neighbours.



An Indirect Selection

Idea
• We choose a small random set 𝑆 of vertices

• Let their common neighbourhood 𝐵 be our candidate for 𝐴

Intuition
• 𝐺 has large average degree 𝑑

• ⇒ 𝑆 should have many common neighbours

• If a set of vertices has few neighbours, unlikely that 𝑆 was chosen from them
• ⇒ will not see these 𝑡 vertices in 𝐵

• Can expect 𝑡-subsets of 𝐵 to have large common neighbourhood



Fleshing Out the Details

Choosing 𝑆
• Sample 𝑠 vertices from 𝑉(𝐺), independently (with repetition!)

• Let 𝑆 be the set of vertices selected

Common neighbourhood 𝐵

• Let 𝐵 = 𝑣 ∈ 𝑉 𝐺 : ∀𝑠 ∈ 𝑆, {𝑣, 𝑠} ∈ 𝐸 𝐺

• For 𝑣 ∈ 𝐵, all vertices in 𝑆 had to be neighbours of 𝑣

• ⇒ ℙ 𝑣 ∈ 𝐵 =
𝑑 𝑣

𝑛

𝑠

• ⇒ 𝔼 𝐵 = σ𝑣
𝑑 𝑣

𝑛

𝑠
= 𝑛−𝑠 σ𝑣 𝑑 𝑣 𝑠

• 𝑥 ↦ 𝑥𝑠 is a convex function

• ⇒ 𝔼 𝐵 = 𝑛−𝑠 σ𝑣 𝑑 𝑣 𝑠 ≥ 𝑛1−𝑠
σ𝑣 𝑑 𝑣

𝑛

𝑠
=

𝑑𝑠

𝑛𝑠−1



Fixing the Set
Bad subsets

• Let 𝑇 be a set of 𝑡 vertices with at most 𝑚 common neighbours

• To have 𝑇 ⊆ 𝐵, need to select 𝑆 from these common neighbours

• ⇒ ℙ 𝑇 ⊆ 𝐵 ≤
𝑚

𝑛

𝑠

• Linearity of expectation ⇒ 𝔼 # bad subsets ≤ 𝑛
𝑡

𝑚

𝑛

𝑠

Alteration

• Remove one vertex from each bad subset

• Let 𝐴 be the remaining set
• Every 𝑡-subset of 𝐴 has more than 𝑚 common neighbours

• 𝔼 𝐴 ≥ 𝔼 𝐵 − 𝔼 # bad subsets ≥
𝑑𝑠

𝑛𝑠−1
− 𝑛

𝑡

𝑚

𝑛

𝑠
≥ 𝑎

• ⇒ there exists such a set 𝐴 of size at least 𝑎 ∎



Any questions?


