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Asymmetric Ramsey Bounds

Definition 1.5.4 (Asymmetric ha;\msey numbers)

Given £,k € N, R(4, k) is the minimum n for which any n-vertex graph |
‘contains either a clique on € vertices or an independent set on k
vertices.

Obtained lower bounds by considering the random graph G(n, p)

Corollary 1.5.8

For fixed £ € N and k — oo, we have
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Triangle-free Graphs

Corollary 1.5.8

For fixed £ € N and k — oo, we have
-1

ol (=) " = R(¢,k) = 0(k*"1)
2Ink B '

Thecasef = 3

: k
* General lower bound gives () (ﬁ)
 R(3,k) = kis utterly trivial
« Complete bipartite graph gives R(3,k) = 2k — 1
e Can improve lower bound by more careful computation



Sharper Analysis

Theorem 1.5.7 (£ = 3)
Given k,n € Nand p € [0,1], if

B (a-p
then R(3,k) > n.

Better estimates

3
- (Dp* ~ T2

e (1) ~ 2
—pkz

C (1—p)(12() ~ e 2

= R(3,k) > ck forc = 1.298




Can We Go Further?

What happens for larger n?

(n) ( ) kln—
* (1- P)( ) Zp(lzc) > Pk’
* > needp = () (k‘l In %), otherwise (Z)(l — p)(lzc) grows exponentially

* But then (3)p* = 0((np)®) = © ((%111%)3)

e Biggerthan 1 if n > Ck for some constant C

Lemma 2.1.1
There is some constant C such that, if n > Ck, then

D+ (a-nl>




Reinterpreting the Proof

Proof we saw
n n ()
 P({G(n,p) not Ramsey}) < (3)p3 + (k)(l — p)\2
* |f this is less than 1, we get a Ramsey graph with positive probability

* |f this is more than 1, we get no useful information

Linearity of expectation

- (’;)p3: expected number of triangles in G(n, p)

k
(7}:)(1 _ p)(z): expected number of independent sets of size k in G(n, p)
k
> M2+ (- p)(Z) is the expected number of bad subgraphs
If this is less than 1, then with positive probability we have no bad subgraphs

= we get a Ramsey graph



Shades of Grey

Great expectations

* What does E[# bad subgraphs] = 1 mean?

* Do we have to have bad subgraphs?
* Not necessarily; see Chapter 3 for details

* Gives some guarantee of goodness

4
* There is a graph with at most (g)p3 + (7,:)(1 — p)(z) bad subgraphs
* If this is small, perhaps we can fix it

Method of Alterations
Goal: existence of an object with property P

'1. Show random object is with positive probability close to having P
2. Make deterministic changes to the random object to achieve P




Graph Surgery

Given
* Graph with few triangles/large independent sets
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Graph Surgery

Given
* Graph with few triangles/large independent sets

Goal
e Edit graph to obtain a Ramsey graph
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ldea: remove an edge from each triangle




Graph Surgery

Given
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Goal
e Edit graph to obtain a Ramsey graph
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Graph Surgery

Given
* Graph with few triangles/large independent sets

Goal
e Edit graph to obtain a Ramsey graph

/
N

ldea: remove an edge from each triangle

Problem: creates new independent sets



Graph Surgery

Given
* Graph with few triangles/large independent sets

Goal
e Edit graph to obtain a Ramsey graph

S
<>

Solution: remove a vertex from each triangle/independent set




Graph Surgery

Given
* Graph with few triangles/large independent sets

Goal
e Edit graph to obtain a Ramsey graph

Solution: remove a vertex from each triangle/independent set
Result: a Ramsey graph, albeit on fewer vertices



An Altered Theorem

Theorem 2.1.2
Foreveryn,f,k € Nandp € [0,1], we have

R(E,K) > n — (Z) »(z) (’;) 1—p) &),

Proof
* letG ~ G(n,p)

k
2

U= (?)p@) + (7)1 - p)( ) is the expected number of K, and K,,

= there is an n-vertex graph with at most u bad subgraphs

Delete one vertex from each bad subgraph

Obtain a Ramsey subgraph on at least n — u vertices



R(3,k): ANew Bound

Theorem 2.1.2 (£ = 3)

Foreveryn,k € Nand p € [0,1], we have
k
2

R(3,K) > — (Z)p?’ _ (Z) 1—p) &),

Goal
* Choose n, p to maximisen — (g)p?’ = (Z)(l — p)(lzc)

Choosing p
* Small p makes the second term small

* Recall: need p = () (k‘1 In %), otherwise third term exponentially large

* When p is this large, third term exponentially small — insignificant



R(3,k): ANew Bound

Recall
* Maximisingn — (3)p> — (7)1 — p)(';‘)

« Takep = © (k‘l ln%)

Choosing n

3
* Want to maximisen — © ((% In %) )

3
e At maximum: (gln%) = 0(n)
3

omes ((—)) o))

w



Where We Stand

Corollary 2.1.3

As k — oo, we have

3
2

k
R(3,k) = Q (H) .

Lower bound
e Superlinear lower bound
e Beats Turan

Upper bound

e Erd8s-Szekeres: R(3,k) = 0(k?)
e Can we narrow the gap? Stay tuned!




Any questions?

E— — ——
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BER: A Modern Tragicomedy

Sep 2006  Berlin-Brandenburg Airport to open Oct 2011
Jun 2010  Opening postponed to Jun 2012
May 2012  Fire detection systems do not work!

Solution
* Hire people to stand around the airport looking for signs of fire

Problem
* Already overbudget
= want to hire as few people as possible



Combinatorics to the Rescue

The airport is a graph
* Vertices: areas where fire could break out
* Edges: lines of sight between areas

\/\/\/\/\

YAV VAV VA

Objective
* Find a set of vertices that “see” all other vertices



Combinatorics to the Rescue

The airport is a graph
* Vertices: areas where fire could break out
* Edges: lines of sight between areas
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Objective
* Find a set of vertices that “see” all other vertices
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Combinatorics to the Rescue

The airport is a graph
* Vertices: areas where fire could break out
* Edges: lines of sight between areas

WAL VANV
ACHASA

Objective
* Find a set of vertices that “see” all other vertices




Combinatorics to the Rescue

The airport is a graph
* Vertices: areas where fire could break out
* Edges: lines of sight between areas

AVANVAVAN
AVAVAYS

Objective
* Find a set of vertices that “see” all other vertices

Ny
AVa




Small Dominating Sets

Definition 2.2.1

Given agraph G = (V,E), asetS C V of vertices is a dominating set if,
foreveryv € V' \ S, there issome s € S with {s,v} € E.

Extremal problem
* How large can the smallest dominating set of an n-vertex graph G be?

Answer

*n(!)
* |solated vertices must be in any dominating set

Avoiding trivialities
 What if we require G to have minimum degree 67



Do Random Sets Dominate?

Problem

Given G on n vertices with 6 (G) = §, how large can its smallest
‘dominating set be?

Random set
e letS € V be arandom set
* v € S with probability p, independently

Undominated vertices
* For u € V, define the event E,;, = {u not dominated by S}

* For E,, to hold, need:
*UES
e v & S for all neighbours v of u

« = P(E,) = (1 — p)d@+1



Calculations Continued

Failure probability
* {S not dominating} = U,y E,

P(Uyey Ey) < Yoy P(E) = Yoy (1 — p)dw+1
Duey(l — p)d(u)“ <n(l-p)°*tl< ne-p6+1)

T ?Trll, then IP(S not dominating) < 1

* = S is dominating with positive probability

Size of the dominating set
* |S| ~ Bin(n,p)
* = E[|S|] =np =

ninn
o0+1

* = with positive probability, |S| <

ninn
o+1




Putting Things Together

Concurrence of events
* Want events {S is dominating} and {S is small} to hold simultaneously

* Suffices to have IP(S not dominating), IP(S large) < %

Non-domination

« P(S not dominating) < ne P®+1) = %ifp _In2n

6+1

Large sets
 Binomial distribution = P(|S| > (n + 1)p) < %

Proposition 2.2.3
Let G be an n-vertex graph with §(G) = § = In 2n. Then G has a

‘dominating set S € V(G) with |S]| < (n+;)+11n =L




Altering Our Approach

Reduced requirements

* Need large probability p for the random set S to be dominating
* What if we instead only want it to be close to dominating?
e Set S should dominate most vertices of G

Undominated vertices

* Given a graph G, set of vertices T € V()
e LetU(T) ={veV\T:N(w)NT = @} be the vertices not dominated by T

Observation
'Forany T € V, the set T U U(T) is a dominating set.

e




Altering Our Results

Theorem 2.2.4

Let G be an n-vertex graph with §(G) = 6, and letp € [0,1]. Then G
has a dominating set S € IV (G) with |S]| < np + ne P0+1)

Proof
* Let T be a random set of vertices, chosen independently with probability p
« > E[|T|] =np

Recall: P(u not dominated by T) = (1 — p)3(W+1 < ¢=P(0+1)

Linearity of expectation = E[|U(T)|] < ne P(+D

LetS =T U U(T)

* Sis adominating set

E[ISI] = E[IT U U(T)I] = E[IT|] + E[JU(T)|] < np + ne~P6+D
* = existence of a dominating set of at most this size



Running the Numbers

Goal
* Minimise np + ne P+ = n(p + ¢ PO+D)

A little calculus
 Let f(p) = p + e"P+D
* f'(p) = 1= (8 + 1) PC+D

" / . _ ln(6+1)
f'(po) —10(5‘:’ )Po = 511
n(o+1)+1
* f(po) = 51

Corollary 2.2.5

Let G be an n-vertex graph with §(G) = &. Then G has a dominating |

'set S € V(G) with |S| < (ln(?:l)ﬂ) n




BER: Epilogue

May 2012 Firewatch plan rejected, opening set for Mar 2013
Sep 2012 Opening postponed further to Oct 2013
2013-2019 Series of delays, no new opening date set

Apr 2020 Building authority approval! Opening 31 Oct 2020
Total delays 3072 days (and counting?)

Original budget  €2.3 billion
Actual cost €7.3 billion (and counting?)



Any questions?

E— — ——
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Turan Numbers

Definition 2.3.1

Given a graph H and n € N, the Turdn number ex(n, H) is the
‘'maximum number of edges in an H-free n-vertex graph.

Theorem 1.5.6 (Turan, 1941) :
_ 1 n
‘Forf = 2,ex(n,K,) = (1 -+ 0(1)) (2)

Theorem 2.3.2 (Erdc’Ss—Stone—Si;rﬁnonovits, 1966)

—_ _ 1 n
'For any graph H, ex(n, H) = (1 a1t 0(1)> (2)




Bipartite Turan Numbers

Theorem 2.3.2 (Erd()'s—Stone-Si;rﬁnonovits, 1966)

—_— . 1 n
'For any graph H, ex(n, H) = (1 pEw + 0(1)) (2)

 Determines ex(n, H) asymptotically when y(H) = 3
* H bipartite: only shows ex(n, H) = o(n?)

Theorem 2.3.3 (K6véri-Sés-Turé~n, 1954)
If H is bipartite with at most t vertices in one part, then

ex(n, H) = 0(n?71/%).




Tightness of K&vari-Sos-Turan

Theorem 2.3.3 (Kc’Svéri—Sés—TurEén, 1954)

If H is bipartite with at most t vertices in one part, then

ex(n, H) = 0(n?~1/t).

Complete bipartite graphs
* Tight for H = K, ; when s > (t — 1)! [Alon-Rényai-Szabd, 1999]

Even cycles

e Far from tight for cycles
e ex(n, Cp) = 0(n'+1/%) [Bondy-Simonovits, 1974]

General graphs

e Can we find a sharper general bound?



Dependent Random Choice

Embedding H

* Need to show any sufficiently dense graph G must contain a copy of H
* We know nothing about G apart from its density
* This is enough to extract some structure

Lemma 2.3.4 (Dependent Random Choice)

Let a,d, m,n,t € N. Let G be an n-vertex graph with average degree d.
If there is some s € N with

! > n\ /m\>s -
= ()(5) =e

then G contains a subset A of at least a vertices, any t of which have
more than m common neighbours.

—— e, —




A Turannical Application

Theorem 2.3.5 (AIon—KriveIeviéﬁ—Sudakov, 2003)
Let H be a bipartite graph with maximum degree t in one part. Then

ex(n, H) = 0(n?~1/t).

K&vari-Sos-Turan
* Immediate consequence of the above theorem
e Same examples show bound can be tight

Wider class of graphs
* Gives reasonable bounds for graphs of arbitrary order

* e.g. even subdivisions F,; of a graph F
* Each edge of F replaced by an even path

e Can apply Theorem 2.3.5 with t = 2 = ex(n, Fyy,) = 0(n3/?)



Setting Up the Proof

Theorem 2.3.5 (AIon—KriveIeviéﬁ—Sudakov, 2003)
Let H be a bipartite graph with maximum degree t in one part. Then

ex(n, H) = 0(n?~1/t).

"f.

Given
* Bipartite H with vertex classes U U W
e Maximum degreein W is t

Objective

* Given n-vertex graph G with e(G) = Q(n?=1/t)
* Need toshow H € G



Applying Dependent Random Choice

Lemma 2.3.4 (Dependent Random Choice)

Let a,d, m,n,t € N. Let G be an n-vertex graph with average degree d. If
there is some s € N with

d> n\ /m\?3
() G) ze

then G contains a subset A of at least a vertices, any t of which have more
than m common neighbours.

ldea

Embed U in A arbitrarily
Each w € W has at most t neighbours in U

Corresponding set of t vertices in A has at
least m common neighbours in G

May have used some on earlier vertices, but
ifm = v(H), one is free to embed w

= can embed W one vertex at a time



A Little Arithmetic

Target
. nf: — (?) (%)S = a where
*a=|U|<v(H)=:h
*m=~h

e d = Cyn'~1/t for some constant Cy we can choose
* we can chooses € N

Simplify

+ (M) <nt
Sufficient to have C5nl=5/t — hSnt=S > h
= needtotakes =t¢

Sufficient to have C5 > ht + h
Satisfied by taking C; = 21/th completing the proof



Proving Dependent Random Choice

Lemma 2.3.4 (Dependent Random Choice)

Leta,d, m,n,t € N. Let G be an n-vertex graph with average degree d
If there is some s € N with

=-()E) =
ns—1 t)\n) =

then G contains a subset A of at least a vertices, any t of which have at
least m common neighbours.

——

Does a random set work for A?
* No - G could be bipartite
* Then a random set will intersect both parts
e Subsets meeting both parts have no common neighbours



An Indirect Selection

ldea
 We choose a small random set S of vertices
* Let their common neighbourhood B be our candidate for A

Intuition
* (¢ has large average degree d
= S should have many common neighbours

* If a set of vertices has few neighbours, unlikely that S was chosen from them
* = will not see these t vertices in B

* Can expect t-subsets of B to have large common neighbourhood



Fleshing Out the Details

Choosing S
» Sample s vertices from V(G), independently (with repetition!)
* Let S be the set of vertices selected

Common neighbourhood B

letB={veV(G):Vs €S {v,s}eEG)}
For v € B, all vertices in S had to be neighbours of v

- P(v EB) = (d;”))s
= E[IBI] = £, (22) = n= %, d(v)*

n
x — x5 is a convex function

=S E[|B]] =n"%),d(v)S =nt"s (Z” d(v))s —

n




Fixing the Set

Bad subsets

* Let T be a set of t vertices with at most m common neighbours
* Tohave T € B, need to select S from these common neighbours

> P eB) < (2)

S
* Linearity of expectation = E|[# bad subsets] < (?) (%)

Alteration

e Remove one vertex from each bad subset

* Let A be the remaining set
e Every t-subset of A has more than m common neighbours

 E[|A|] = E[|B|] — E[# bad subsets] 2~ (n) ( )

e = there exists such a set 4 of size at least a




Any questions?

E— — ——



