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What Does the Expectation Mean?

Basic fact
« {X < E[X]}and {X = E[X]} have positive probability
e Often want more quantitative information

 What are these positive probabilities?
* How much below/above the expectation can the random variable be?

Limit laws

e Law of large numbers
* Average of independent trials will tend to the expectation

e Central limit theorem
* Average will be normally distributed

Not always applicable

* We often only have a single instance, or lack independence
* Can still make use of more general bounds



Markov’s Inequality

Theorem 3.1.1 (Markov’s Ineq[JaIity)

Let X be a non-negative random variable, and let a > 0. Then
E[X]
P(X =>a) < ot

Proof
* Let f be the density function for the distribution of X

« E[X] = fooo xf(x) dx = foa xf(x) dx + faoo xf(x) dx
> faoo xf(x) dx > faoo af (x) dx = afaoof(x) dx = aP(X = a)

Moral: E[X] small = X typically small



Chebyshev’s Inequality

Converse? Does E[X] large = X typically large?
* Not necessarily; e.g. X = n? with probability n™!, 0 otherwise
* But such random variables have large variance...

Theorem 3.1.2 (Chebyshev’s Inequality)
Let X be a random variable, and leta > 0. Then

P(1X — E[X]| = @) < 22
a

Proof
 {IX — E[X]| = a} = {(X — E[X])* = a*}
e LetY = (X — E[X])?
e Then E[Y] = Var(X)
* Apply Markov’s Inequality



Using Chebyshev

Moral
« E[X] large and Var(X) small = X typically large
e Special case: showing X nonzero

!Corollary 3.1.3
'If Var(X) = o(E[X]?), then P(X = 0) = o(1).

Proof
- {X =0} c{|X — E[X]| = |E[X][}
+ Chebyshev = P(|X — E[X]| = |E[X]]) < Varg’f — o(1)

* |n fact, in this case X = (1 + 0(1))IE[X] with high probability



Typical application

Set-up
* E; events, occurring with probability p;
* X; = 1, their indicator random variables
* X = ),; X; their sum, the number of occurring events

Goal

e Show that with high probability, some event occurs

Applying Chebyshev
* Need to show Var(X) = o(E[X]?)

Expand the variance
» Var(X) = Var(Z; X;) = ¥; Var(X;) + X, Cov(X;, X))



Some Simplification

Estimating the summands
+ Var(X) = Var(Z; X;) = ¥; Var(X;) + X, Cov(X;, X))
* Var(X;) = p;(1 —p;) < p;
o &Y Var(Xy) < Yip = X ELX;] = E[X]
« Cov(X,Y) = E[XY] — E[X]E[Y]
* Cov(X,Y) =0if X and Y are independent
* Otherwise Cov(Xi,Xj) = IE[Xin] = P(Ei A Ej)

Corollary 3.1.4

Let {E;} be a sequence of events with probabilities p;, and let X count |
ilthe number of events that occur. Write i ~ j if the events E; and E; are 5‘

|
'not independent, and let A = Dt IP(Ei A Ej). If E[X] » o0 and
A = o(E[X]?), then P(X = 0) = 0(1).




Any questions?

E— — ——
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Monotone properties

Graph properties
e Say a graph P is monotone (increasing) if adding edges preserves P
 e.g.: containing a subgraph H € G, having a(G) < k, connectivity, ...

Lemma 3.2.1

[If P is a monotone increasing graph property, then P(G(n,p) € P) is
‘monotone increasing in p.

Proof (Coupling)
e Sampling G(n,p)
* Assign to each pair of vertices {u, v} an independent uniform Y, ,,~Unif([0,1])
* Add edge {u,v}to GiffY,, <p
* Each edge appears independently with probability p
e Ifp <p’,thenG(n,p) € G(n,p") =ifG(n,p) € P,then G(n,p’) € P

—————



Thresholds

Transitions

A monotone property P is nontrivial if it is not satisfied by the edgeless graph,
and is satisfied by the complete graph

e > P(G(n,0) EP)=0andP(G(n,1) e P) =1
* Lemma 3.2.1 = P(G(n,p) € P) increases from 0 to 1 as p does
 How quickly does this increase happen?

Definition 3.2.2 (Thresholds) -

Given a nontrivial monotone graph property P, po(n) is a threshold for
Pif |
|

0if p K po(n), l
P(G(n,p) € P) - {1 if p > po(n).

e s M .




A Cyclic Example

]Proposition 3.2.3
The threshold for G (n,p) to contain a cycle is py(n) = %

Proof (lower bound)
* Let X = # cyclesin G(n, p)
For £ > 3, let X, = #{C, S G(n,p)}
s =X =Y, 3Xp
Linearity of expectation: E[X,] < nfp{)

= E[X] < Zi_s(np)? < (np)* T2 (np)’ =
+ S E[X] = 0()ifp <=
Markov: P(G(n,p) hasacycle) = P(X > 1) < E[X] >0

(np)3
1-np




Cycles Continued

]Proposition 3.2.3
"The threshold for G (n,p) to contain a cycle is py(n) = %

Proof (upper bound)
e Let p = ﬁ andsetY = e(G(Tl, p))

* ThenY ~ Bin ((’;’),p)
+ = E[Y] = (Q)p = 2n
e = Var(Y) = (Z)p(l —p) < 2n
« ~ Var(Y) = o(E[Y]?)
* Chebyshev: P(Y <n) - 0
* P(G(n,p) has a cycle) > IP’(e(G(n, p)) > n) -1



Existence of Thresholds

{Theore?n 3.2.4 (BoIIE)bés-Thomason, 1987)

{

E’Every nontrivial monotone graph property has a threshold.

Proof (upper bound)
* Let p(n) = py be such that P(G(n,py) € P) = %

letG ~ G{ U G, U ---U G,,, where each G; ~ G(n, p,) is independent

e G ~Gn,p)forp:=1—(1—py)™ < mp,
Property is monotone:

e P(GeP)=PW;{G;eP}) =1-P(n; {G; € P})
Graphs are independent:

- P(n; {G; € P}) =I1;P(G; € P)
Since G; ~ G(n,py), P(G; & P) =
~P(GeP)=1—-2"">1ifm > oo(orifp > py)

N | =



Below the Threshold

{Theoren_ﬂ 3.2.4 (BoIIE)bés-T_womason, 1987)

{

iEvery nontrivial monotone graph property has a threshold.

Proof (lower bound)

let G ~ G, UG, U -+ U Gy, as before, but with G; ~ G(n,p) forp =
=>G~Gn,q)forq=1—(1—-p)™ <mp = py

>P(GEP) =~

As before, P(G ¢ P) < P(G(n,p) &€ P)™

S PG e?) = (2)"

1\1/m
:P(G(n,p)E?)Sl—(E) — 0ifm - oo (orif p K py)

Po
m



Closing Remarks

Random graph theory
 Fundamental problem: given a graph property P, what is its threshold?

At the threshold

* We showed what happens for probabilities much smaller than the threshold,
and much larger than the threshold

* Whatifp = G)(po(n))? Some properties have a much quicker transition

Definition 3.2.5 (Sharp threshokl_ds)

We say py(n) is a sharp threshold for P if there are positive constants
c1, Co such that

i

!

0ifp < c1po(n),
1ifp = c,pe(n).

P(G(n,p) € P) - {




Any questions?

E— — ——



§3 Subgraphs of G(n, p)

Chapter 3: The Second Moment
The Probabilistic Method



Returning to Ramsey

Theorem 1.5.7
Given %, k,n € Nandp € [0,1], if

B+ (a1

then R(¢, k) > n.

Choosing parameters

* Want to choose n as large as possible

* Need to avoid large independent sets
* = would like to make edge probability p large

* Limitation: need to avoid K,

Question: What is the threshold for K, € G(n, p)?



A Lower Bound

Goal

* Let X count the number of K, in G(n, p)
* For which p do we have P(X = 1) = 0(1)?

First moment

4

- Ex] = (p() = 0 (np(2)
* Markov’s Inequality: P(X > 1) < E|X]

Threshold bound
 E[X] =0 (n{)p(g)) & 1
° & p(g) K n_f S p K n—Z/(f—l)

* = po(n) = n~2/7D



An Upper Bound

Goal
 For which p dowe have P(X = 0) = 0(1)?

Corollary 3.1.4 ;

Let {E;} be a sequence of events with probabilities p;, and let X count |
'the number of events that occur. Write i ~ j if the events E; and E; are |
'not independent, and let A = Dt IP’(El- A Ej). If E[X] - oo and
A = 0o(E[X]?), then P(X = 0) = 0(1).

Our parameters
* letG ~ G(n,p) and, for S € ([';]), let E = {G[S] = K,}

?
« E[X] = (’;)p(Z) — oo forp >» n~2/(¢-1)
« Suffices to show A = o(E[X]?)



Cligue Dependencies

Independent events
* E; occurs & all edges in ith clique present
* Edges appear independently
 ~|SNT|<1= E, E; independent

Dependent events

e Suppose |[SNT| =s= 2
« >S~T
« Ec A E;: G|S], G[T] both f-cliques, sharing s vertices

 Number of prescribed edges: 2(5) — (;)
« > P(EsANEp) = pz(ﬁ)—(i)



Computing A

Recall
e S~Tos=|SNT| >2
e P(Es A Ey) = p2lz) ()

Substituting terms

A=2srP(EsAET) = Xisnri22 P(Es A E7)
= Xs 2r:|snr|=2 P(Es A ET)
— Zs Zﬁ;% ZT:|SnT|=S P(ES AN Er)

= s 223 S psnries )

= 8= () 2O (0



Bounding A
Recall

L A= ()R )G
Goal

* Show A = o(E[X]?)

Estimates
+ (P =2’
’ (?:ﬁ) <n‘~S=0 ((?)n‘s)
Bound
2= () zict2ie((ne)p* @
= (p*@) ptzt0 (nop=®) = EX12 xi23 0 (n—op=0)



Completing the Calculation

Recall

+ A=EX23¢30 (nop=())
Substituting p

- n~5p~() = (npG-1/2)7°

* We took p > n=2/(¢=1)

¢ = n~5p~ (&) « (n1-G-D/E-DY

*For2<s<{¥-—1,thisiso(1)
« = A=0(1)

]Theorem 3.3.1
'For £ > 2, the threshold for K, € G(n, p) is po(n) = n~2/(-1),

-




An Incomplete Result

!Prob em
'Given a graph H, what is the threshold Po 1(n) for H C G(n,p)?

Lower bound

* Let X be the number of copies of H in G(n,p)
* Markov: E[X] = 0(1) = py(n) > p

Expectation
 Number of possible copies
» Specify vertices of H — at most nv(H) possibilities
* Probability of appearance
* Each edge of H must be present — probability is p

» = E[X] < n?(H)pet)

Conclusion: py(n) = n=vH)/eH)

e(H)



An lllustrated Example

Graph statistics

* Let H be K, with a pendant edge

» Statistics:
c v(H)=5
e e(H)=7
e = pll(n) > n5/7

An issue
- K, CH
« > if H C G(n,p),thenK, € G(n,p)
+ = py*(n) < pff (n)
* But we showed pé{‘* (n) =n=2/3 » n=5/7



Monotonicity and Density

General lower bound
* pd(n) = max {p; (n): F S H}
e Can substitute first moment bound
+ = pll(n) = max {nvE/eE): F c H,e(F) > 1}

Definition 3.3.2 (Maximum density)

Given a graph H, define d(H) = BEZ; and let

m(H) = max {d(F):F € H).

Remarks
* We have p{'(n) > n
* Say H is balanced if d(H) = m(H)
 H is strictly balanced if d(F) < m(H) forall F c H

—1/m(H)



Expected Subgraph Counts

Boundless expectations
* Let Xy be the number of copies of H in G(n, p)

Total # possible copies = @(n”(H))
e(H)

Probability of each copy: p
= E[Xy] = 0(n?#Epet)
« E[Xy] = o0 when p > n~v(H)/e(H)

Guaranteeing subgraph existence

* Goal: to show P(Xy = 0) = o(1) for p > pf (n)
* Apply second moment: need to show A = o(E[Xy]?)
* Edge-disjoint copies are independent



Dependent Subgraphs

Common subgraphs

* Let H{, H, be two copies of H sharing an edge
* Ey NEy, ={H, UH; € G(n,p)}

e Let F := H; N H, be the common subgraph
« v(HL UH,) = 2v(H) — v(F)
« e(HLUH,) =2e(H) —e(F)

Counting pairs
* Group dependent pairs (Hy, H,) by common subgraphs F = H; N H,
e At most 2¢(1) possible subgraphs F
» For each J, 0(n2vU)~v(F)) pairs (Hy, Hy)
» For each such pair, P(Ey, A Ey,) = p2eU)=el®)



Bounding A

Recall
A=Y, ;P(Ey AEy,)

Group by common subgraph
A= ;P (EHi A EH]-) = LFcH X(i,j):HinH=F (EHi A EH,-)
Substitute estimates
A = ¥ pey O(n2VHD—v(E)p2e(t)—e(P)
S A= (nv(H)pe(H))z S pey 0(n~vP)p=e®)
= A = E[Xy]* Yrcn O(n_v(F)P_e(F))



A Complete Solution

Recall
A= IE[XH]Z LFCH O(n_v(F)p_e(F))
Choice of p

* We have p >» n~1/m#H)

e = p >» n vWE/eE) for all nonempty F c H
° n_v(F)p_e(F) — 0(1)
e =>A=0(1)

Theorem 3.3.3
Given a graph H, the threshold for H € G(n,p) is pi (n) = n~/mH),

where ")
e(F
v(F):FQH}.

i

!

m(H) = max {




Any questions?

E— — ——
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Time For Primes

Fun facts

e There are infinitely many primes (Euclid, -300)
* The primes contain arbitrarily long arithmetic progressions (Green—Tao, 2004)
* Infinitely many pairs of primes are at most 70000000 apart (Zhang, 2014)

Central problem

 How are the primes distributed in N?

Theorem 3.4.1 (Hadamard, De la Vallée Poussin, 1896)

The number (n) of prime numbers in [n] satisfies

n(n) = (1 + 0(1))

Inn’




Prime Factorisation

The funnest of facts
e Every natural number is the product of primes

Our goal

 To understand what these factorisations look like

lDeflnltlon 3.4.2
'Given x € N, let v(x) denote the number of d/stmct prime factors of x.

Examples
* v(19) =
e v(210) = ?
e« v(256) = ?

. 1(2020) =



The Average Case

Proposition 3.4.3

The average number of distinct prime factors of a number x € [n] is
Inlnn + 0(1).

e B— -

Proof
* Express v(x) in terms of indicator random variables:
* v(x) = 2pen lipiny

* Exchange order of summation

1 1
~ er[n] v(x) = - Dipsn er[n] Lipixy

e Count multiples
* er[n] Lpig = E‘ - g +0(1)
1 1
= sze[n]v(x) — Zpsn; + 0(1) =Inlnn + 0(1)



A Harmonic Digression

Theorem 3.4.4 (I\/Iertens 1874)

Asn — oo, we have Zp<np Inlnn + 0(1).

“Proof”
n
Letm = w(n) ~ H
y ZpSn; — Zk:

* Prime Number Theorem = p;,, ~ klnk

1 m 1
) : —_ A~ -
ZpSnp k=2 klnk

* Approximate by an integral:

m 1 m

' ~Inlnm ~Inlnn
k—zklnk xX= 2xlnxdx




The Typical Case

Variation in v(x), x € |n]

* Minimum: 1
* Average: Inlnn + 0(1)
. Inn
Maximum: (1 + 0(1)) ——
* Product of first m primes ~ [[}=; kInk ~ m!(Inm)™ < nform ~ In7n

Inlnn

What can we say about the distribution of v(x)?

Theorem 3.4.5 (Haray-Ramanujan, 1920)

Asn — oo, we have v(x) = (1 + 0(1)) In In n for all but o(n) integers
x € |n].




The Probabilistic Approach
Theorem 3.4.5 (Hardy—Ramanljjan, 1920)

Asn - o, we have v(x) = (1 + 0(1)) Inlnn for all but o(n) integers |
x € [n].

Probabilistic proof (Turan, 1934)
* Choose x € [n] uniformly at random
* Interested in the random variable X = v(x)
* Proposition 3.4.3 = E[X] =Inlnn + 0(1)

]Corollary 3.1.3
'If Var(X) = o(E[X]?), then X = (1 + 0(1))IE[X] with high probability. |




Expressing the Variance

Recall
e x € [n] uniformly random
* X = v(x) number of distinct prime factors
 Goal: show Var(X) = o(E[X]?)

Indicator random variables
* For aprime p, let X;, = 1¢,|53, Bernoulli random variable

. _ 1\ _ In/pl 1 11

P(X,=1)="2e (s,
* X = ZpsnXp

Our friend the variance

* Var(X) = )., Var(Xp) + 2 p.q):p%q Cov(Xp,Xq)
« ¥, Var(X,) < X, E|X, | = E[X]




Computing Covariances

Pairs p # q
* COV(Xp'Xq) — IE_XPXCI] ~ IE[XP]IE[XCI]

* E[X, ] 2%_%rIE:Xq] 23_%
 E[X,X,] = Ppqlx) < —

1 1 1 1 1 1/1 1
+ = Cov(Xp X) < o= (G-2) G2 s G +3)

Bounding the sum

1 1,1 21(n) 1
* 2 Lpgnrg COV(XP’XCI) = ;Z(p,q):piq (; T 5) ==, Zpsn;

e T(n) = (1 + 0(1))% and Zpsn% =Inlnn+ 0(1) = E[X]
* 2 Y a)meq COV(Xp, Xg) = o(E[X])




A Final Flourish

The variance
* Var(X) = ¥, Var(X,) + Xp»4 Cov(X,, X;)
« YpVar(X,) <E[X] and  X,.,Cov(X, X,) = o(E[X])
« = Var(X) = (1 + 0(1))IE[X] = (1 + 0(1))1n Inn

Applying Chebyshev
Varx)

* P(Jv(x) —Inlnn| > AvInlnn) < A2Inlnn

¢ = P(v(x) = (1 + 0(1)) InIn n) =0(1)
* x uniform in [n] = o(n) such integers

1
=/1—2+0(1)

Remark
* Most x € |n] satisfy v(x) =Inlnn + 0(\/ln In n)



Any questions?

E— — ——
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Mathemagic

An illusion
* You have a deck of cards, with each card bearing a number
* You invite your friend to select as many cards from the deck as they like

* They add the numbers and only tell you the sum
* The chosen cards are then shuffled back into the deck
* You then go through the deck, and magically pick out your friend’s cards

The secret

* Cards labelled with powers of two: 1,2,4,8,16, ...
 Each number x € N has a unique binary expansion, x = Zj 24
* = given the sum x, can recover the labels 24 of the chosen cards



A Little Showmanship

Obstacles

 Mathematician friends will see through the illusion

* Non-mathematician friends may not be able to add well
e Card labels shouldn’t be larger than n

* Binary labels = logn cards
* Small deck is not so impressive

Better decks

* Can we replace the binary labels?
» Suppose we have labels S = {s{, s5, ..., S}
* Key property:
* distinct sums — no two subsets should have the same total

e Extremal problem
* How large can a subset S € [n] with distinct sums be?



The Greedy Magician

Greedy algorithm
e StartwithS =0
* Go through elements in [n] one at a time
 Add to S if they preserve distinct sums property

Claim 3.5.1
The greedy algorithm returns the set of powers of two.

S

Proof
* After the first step, we have S = {1}
* Suppose we have S = {1,2, ..., 2"} at some stage in the algorithm

* We can write every number up to 2"*1 — 1 as a sum of these elements
* None of these added to §

« Next available number to be added: 27*1 u



The Extremal Function

Notation
* Let f(n) = max {|S|:S € [n] has distinct sums}

Lower bound

 Binaryset= f(n) = |logn| + 1
* |s this best possible?

Counterexamples

« § ={11,17,20,22,23,24} has distinct sums
* = f(n) = |logn|+ 2for24 <n < 31

* If a set S has distinct sums, so does S’ = 25 U {1}
* |terating — infinite sequence of counterexamples



An Upper Bound

lProposition 3.5.2
'Asn — o, we have f(n) < logn + loglogn + 1.

e

Proof
* Letk = f(n)andletS C [n] be a largest set with distinct sums
* ForeachT € S,wehave 0 < ) .crs < kn
» Distinct sums = each of these 2% sums is distinct
e = 2K < kn
= k <logn +logk
= k < logn + log(logn + log k)
< logn + log(2logn)
= logn + loglogn + 1



An Improved Upper Bound

Flawed argument
* Wasteful in estimating range of sums
e Max sum ~ kn = all members of S ~ n
* In that case, few small numbers will be sums

Fix
* Try to find a smaller interval still containing many sums
e Chebyshev = sums may concentrate around the average

Theorem 3.5.3
Asn = oo, f(n) < logn + %1081%’" +0(1).




Probabilistic Framework

Random variables
e let f(n) =k, letS = {s4,5s,,...,S} € [n] be a largest set with distinct sums
* Let X be a uniformly random sum from S
e = X =YX &5, where each ¢; is independent, uniform on {0,1}

Expectation

1
» Letu = E[X] = X}, Elg;s;] = 525":1 S
e Actual value is unimportant

Variance

* Variables ¢; are independent
« = Var(X) = Var(X, gs;) = X5, Var(g)s? = iZ{-‘zl st < %nzk



Concentrated Sums

Recall
e Var(X) < %nzk

Applying Chebyshev
« P(IX — ul = nvk) <~
. :>IP(|X—,u| <n\/E)2%

<1
4

Distinct sums
e Each value comes from at most one sum = P(X = x) € {0,27%}

» 2 P(IX —pl <nvk) =P(u—nvk <X <p+nvk) < 2nvk-27F
Bounding k
e 2k < gn\/z = k < logn +%logk + logg < logn +%loglogn + 0(1) |



Any questions?

E— — ——



