Chapter 3: The Second Moment

The Probabilistic Method Summer 2020 Freie Universität Berlin

Chapter Overview

- Introduce the second moment method
- Survey applications in graph theory and number theory

§1 Concentration Inequalities

Chapter 3: The Second Moment The Probabilistic Method

§2 Thresholds

Chapter 3: The Second Mome The Probabilistic Method

§3 Subgraphs of G(n, p)

Chapter 3: The Second Momen The Probabilistic Method

§4 Prime Factors

Chapter 3: The Second Moment The Probabilistic Method

§5 Distinct Sums

Chapter 3: The Second Moment The Probabilistic Method

§1 Concentration Inequalities

Chapter 3: The Second Moment

The Probabilistic Method

What Does the Expectation Mean?

Basic fact

- $\{X \leq \mathbb{E}[X]\}$ and $\{X \geq \mathbb{E}[X]\}$ have positive probability
- Often want more quantitative information
 - What are these positive probabilities?
 - How much below/above the expectation can the random variable be?

Limit laws

- Law of large numbers
 - Average of independent trials will tend to the expectation
- Central limit theorem
 - Average will be normally distributed

Not always applicable

- We often only have a single instance, or lack independence
- Can still make use of more general bounds

Markov's Inequality

Theorem 3.1.1 (Markov's Inequality)

Let X be a non-negative random variable, and let a > 0. Then $\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}$.

Proof

• Let *f* be the density function for the distribution of *X*

•
$$\mathbb{E}[X] = \int_0^\infty x f(x) \, dx = \int_0^a x f(x) \, dx + \int_a^\infty x f(x) \, dx$$

 $\ge \int_a^\infty x f(x) \, dx \ge \int_a^\infty a f(x) \, dx = a \int_a^\infty f(x) \, dx = a \mathbb{P}(X \ge a)$

Moral: $\mathbb{E}[X]$ small $\Rightarrow X$ typically small

Chebyshev's Inequality

Converse? Does $\mathbb{E}[X]$ large $\Rightarrow X$ typically large?

- Not necessarily; e.g. $X = n^2$ with probability n^{-1} , 0 otherwise
- But such random variables have large variance...

```
Theorem 3.1.2 (Chebyshev's Inequality)
Let X be a random variable, and let a > 0. Then
\mathbb{P}(|X - \mathbb{E}[X]| \ge a) \le \frac{\operatorname{Var}(X)}{a^2}.
```

Proof

- $\{|X \mathbb{E}[X]| \ge a\} = \{(X \mathbb{E}[X])^2 \ge a^2\}$
- Let $Y = (X \mathbb{E}[X])^2$
- Then $\mathbb{E}[Y] = \operatorname{Var}(X)$
- Apply Markov's Inequality

Using Chebyshev

Moral

- $\mathbb{E}[X]$ large and Var(X) small $\Rightarrow X$ typically large
- Special case: showing X nonzero

Corollary 3.1.3 If $Var(X) = o(\mathbb{E}[X]^2)$, then $\mathbb{P}(X = 0) = o(1)$.

Proof

- $\{X = 0\} \subseteq \{|X \mathbb{E}[X]| \ge |\mathbb{E}[X]|\}$
- Chebyshev $\Rightarrow \mathbb{P}(|X \mathbb{E}[X]| \ge |\mathbb{E}[X]|) \le \frac{\operatorname{Var}(X)}{\mathbb{E}[X]^2} = o(1)$

• In fact, in this case $X = (1 + o(1))\mathbb{E}[X]$ with high probability

Typical application

Set-up

- E_i events, occurring with probability p_i
- $X_i = 1_{E_i}$ their indicator random variables
- $X = \sum_{i} X_{i}$ their sum, the number of occurring events

Goal

• Show that with high probability, some event occurs

Applying Chebyshev

• Need to show $Var(X) = o(\mathbb{E}[X]^2)$

Expand the variance

• $\operatorname{Var}(X) = \operatorname{Var}(\sum_{i} X_{i}) = \sum_{i} \operatorname{Var}(X_{i}) + \sum_{i \neq j} \operatorname{Cov}(X_{i}, X_{j})$

Some Simplification

Estimating the summands

- $\operatorname{Var}(X) = \operatorname{Var}(\sum_{i} X_{i}) = \sum_{i} \operatorname{Var}(X_{i}) + \sum_{i \neq j} \operatorname{Cov}(X_{i}, X_{j})$
- $\operatorname{Var}(X_i) = p_i(1-p_i) \le p_i$
 - $\therefore \sum_{i} \operatorname{Var}(X_{i}) \leq \sum_{i} p_{i} = \sum_{i} \mathbb{E}[X_{i}] = \mathbb{E}[X]$
- $\operatorname{Cov}(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
 - Cov(X, Y) = 0 if X and Y are independent
 - Otherwise $Cov(X_i, X_j) \leq \mathbb{E}[X_i X_j] = \mathbb{P}(E_i \wedge E_j)$

Corollary 3.1.4

Let $\{E_i\}$ be a sequence of events with probabilities p_i , and let X count the number of events that occur. Write $i \sim j$ if the events E_i and E_j are not independent, and let $\Delta = \sum_{i \sim j} \mathbb{P}(E_i \wedge E_j)$. If $\mathbb{E}[X] \to \infty$ and $\Delta = o(\mathbb{E}[X]^2)$, then P(X = 0) = o(1). Any questions?

§2 Thresholds

Chapter 3: The Second Moment

The Probabilistic Method

Monotone properties

Graph properties

- Say a graph ${\mathcal P}$ is monotone (increasing) if adding edges preserves ${\mathcal P}$
- e.g.: containing a subgraph $H \subseteq G$, having $\alpha(G) < k$, connectivity, ...

Lemma 3.2.1

If \mathcal{P} is a monotone increasing graph property, then $\mathbb{P}(G(n, p) \in \mathcal{P})$ is monotone increasing in p.

Proof (Coupling)

- Sampling G(n, p)
 - Assign to each pair of vertices $\{u, v\}$ an independent uniform $Y_{u,v} \sim \text{Unif}([0,1])$
 - Add edge $\{u, v\}$ to G iff $Y_{u,v} \le p$
 - Each edge appears independently with probability \boldsymbol{p}
- If $p \le p'$, then $G(n,p) \subseteq G(n,p') \Rightarrow$ if $G(n,p) \in \mathcal{P}$, then $G(n,p') \in \mathcal{P}$

Thresholds

Transitions

- A monotone property ${\mathcal P}$ is *nontrivial* if it is not satisfied by the edgeless graph, and is satisfied by the complete graph
 - $\Rightarrow \mathbb{P}(G(n,0) \in \mathcal{P}) = 0 \text{ and } \mathbb{P}(G(n,1) \in \mathcal{P}) = 1$
- Lemma 3.2.1 $\Rightarrow \mathbb{P}(G(n, p) \in \mathcal{P})$ increases from 0 to 1 as p does
- How quickly does this increase happen?

Definition 3.2.2 (Thresholds)

Given a nontrivial monotone graph property \mathcal{P} , $p_0(n)$ is a threshold for \mathcal{P} if

$$\mathbb{P}(G(n,p) \in \mathcal{P}) \to \begin{cases} 0 \text{ if } p \ll p_0(n), \\ 1 \text{ if } p \gg p_0(n). \end{cases}$$

A Cyclic Example

Proposition 3.2.3

The threshold for G(n, p) to contain a cycle is $p_0(n) = \frac{1}{n}$.

Proof (lower bound)

- Let X = # cycles in G(n, p)
- For $\ell \ge 3$, let $X_{\ell} = \#\{C_{\ell} \subseteq G(n,p)\}$ • $\Rightarrow X = \sum_{\ell=3}^{n} X_{\ell}$
- Linearity of expectation: $\mathbb{E}[X_\ell] \leq n^\ell p^\ell$
- $\Rightarrow \mathbb{E}[X] \leq \sum_{\ell=3}^{n} (np)^{\ell} < (np)^3 \sum_{\ell=0}^{\infty} (np)^{\ell} = \frac{(np)^3}{1-np}$ • $\Rightarrow \mathbb{E}[X] = o(1) \text{ if } p \ll \frac{1}{n}$
- Markov: $\mathbb{P}(G(n, p) \text{ has a cycle}) = \mathbb{P}(X \ge 1) \le \mathbb{E}[X] \to 0$

Cycles Continued

Proposition 3.2.3

The threshold for G(n, p) to contain a cycle is $p_0(n) = \frac{1}{n}$.

Proof (upper bound)

- Let $p = \frac{4}{n-1}$ and set Y = e(G(n, p))• Then $Y \sim Bin(\binom{n}{2}, p)$ • $\Rightarrow \mathbb{E}[Y] = \binom{n}{2}p = 2n$ • $\Rightarrow Var(Y) = \binom{n}{2}p(1-p) < 2n$ • $\therefore Var(Y) = o(\mathbb{E}[Y]^2)$
- Chebyshev: $\mathbb{P}(Y < n) \rightarrow 0$
- $\mathbb{P}(G(n,p) \text{ has a cycle}) \ge \mathbb{P}(e(G(n,p)) \ge n) \to 1$

Existence of Thresholds

Theorem 3.2.4 (Bollobás-Thomason, 1987)

Every nontrivial monotone graph property has a threshold.

Proof (upper bound)

- Let $p(n) = p_0$ be such that $\mathbb{P}(G(n, p_0) \in \mathcal{P}) = \frac{1}{2}$
- Let $G \sim G_1 \cup G_2 \cup \cdots \cup G_m$, where each $G_i \sim G(n, p_0)$ is independent
 - $\Rightarrow G \sim G(n, p)$ for $p \coloneqq 1 (1 p_0)^m \le mp_0$
- Property is monotone:
 - $\mathbb{P}(G \in \mathcal{P}) \ge \mathbb{P}(\bigcup_i \{G_i \in \mathcal{P}\}) = 1 \mathbb{P}(\cap_i \{G_i \notin \mathcal{P}\})$
- Graphs are independent:
 - $\mathbb{P}(\cap_i \{G_i \notin \mathcal{P}\}) = \prod_i \mathbb{P}(G_i \notin \mathcal{P})$
- Since $G_i \sim G(n, p_0)$, $\mathbb{P}(G_i \notin \mathcal{P}) = \frac{1}{2}$
- $\therefore \mathbb{P}(G \in \mathcal{P}) \ge 1 2^{-m} \to 1 \text{ if } m \to \infty \text{ (or if } p \gg p_0)$

Below the Threshold

Theorem 3.2.4 (Bollobás-Thomason, 1987)

Every nontrivial monotone graph property has a threshold.

Proof (lower bound)

- Let $G \sim G_1 \cup G_2 \cup \cdots \cup G_m$ as before, but with $G_i \sim G(n, p)$ for $p = \frac{p_0}{m}$
- $\Rightarrow G \sim G(n,q)$ for $q = 1 (1-p)^m \le mp = p_0$
- $\Rightarrow \mathbb{P}(G \notin \mathcal{P}) \geq \frac{1}{2}$
- As before, $\mathbb{P}(G \notin \mathcal{P}) \leq \mathbb{P}(G(n,p) \notin \mathcal{P})^m$
- $\Rightarrow \mathbb{P}(G(n,p) \notin \mathcal{P}) \ge \left(\frac{1}{2}\right)^{1/m}$
- $\Rightarrow \mathbb{P}(G(n,p) \in \mathcal{P}) \le 1 \left(\frac{1}{2}\right)^{1/m} \to 0 \text{ if } m \to \infty \text{ (or if } p \ll p_0)$

Closing Remarks

Random graph theory

• Fundamental problem: given a graph property $\mathcal P$, what is its threshold?

At the threshold

- We showed what happens for probabilities much smaller than the threshold, and much larger than the threshold
- What if $p = \Theta(p_0(n))$? Some properties have a much quicker transition

Definition 3.2.5 (Sharp thresholds)

We say $p_0(n)$ is a *sharp* threshold for \mathcal{P} if there are positive constants c_1, c_2 such that

$$\mathbb{P}(G(n,p) \in \mathcal{P}) \to \begin{cases} 0 \text{ if } p \leq c_1 p_0(n), \\ 1 \text{ if } p \geq c_2 p_0(n). \end{cases}$$

Any questions?

§3 Subgraphs of G(n, p)

Chapter 3: The Second Moment

The Probabilistic Method

Returning to Ramsey

```
Theorem 1.5.7

Given \ell, k, n \in \mathbb{N} and p \in [0,1], if

\binom{n}{\ell} p^{\binom{\ell}{2}} + \binom{n}{k} (1-p)^{\binom{k}{2}} < 1,

<u>then R(\ell, k) > n.</u>
```

Choosing parameters

- Want to choose *n* as large as possible
- Need to avoid large independent sets
 - \Rightarrow would like to make edge probability p large
- Limitation: need to avoid K_{ℓ}

Question: What is the threshold for $K_{\ell} \subseteq G(n, p)$?

A Lower Bound

Goal

- Let X count the number of K_{ℓ} in G(n, p)
- For which p do we have $\mathbb{P}(X \ge 1) = o(1)$?

First moment

•
$$\mathbb{E}[X] = \binom{n}{\ell} p^{\binom{\ell}{2}} = \Theta\left(n^{\ell} p^{\binom{\ell}{2}}\right)$$

• Markov's Inequality: $\mathbb{P}(X \ge 1) \le \mathbb{E}[X]$

Threshold bound

•
$$\mathbb{E}[X] = \Theta\left(n^{\ell}p^{\binom{\ell}{2}}\right) \ll 1$$

• $\Leftrightarrow p^{\binom{\ell}{2}} \ll n^{-\ell} \Leftrightarrow p \ll n^{-2/(\ell-1)}$
• $\Rightarrow p_0(n) \ge n^{-2/(\ell-1)}$

An Upper Bound

Goal

• For which p do we have $\mathbb{P}(X = 0) = o(1)$?

Corollary 3.1.4

Let $\{E_i\}$ be a sequence of events with probabilities p_i , and let X count the number of events that occur. Write $i \sim j$ if the events E_i and E_j are not independent, and let $\Delta = \sum_{i \sim j} \mathbb{P}(E_i \wedge E_j)$. If $\mathbb{E}[X] \to \infty$ and $\Delta = o(\mathbb{E}[X]^2)$, then P(X = 0) = o(1).

Our parameters

- Let $G \sim G(n, p)$ and, for $S \in {\binom{[n]}{\ell}}$, let $E_S = \{G[S] \cong K_\ell\}$
- $\mathbb{E}[X] = \binom{n}{\ell} p^{\binom{\ell}{2}} \to \infty \text{ for } p \gg n^{-2/(\ell-1)}$
- Suffices to show $\Delta = o(\mathbb{E}[X]^2)$

Clique Dependencies

Independent events

- E_i occurs \Leftrightarrow all edges in *i*th clique present
- Edges appear independently
- $\therefore |S \cap T| \le 1 \Rightarrow E_S, E_T$ independent

Dependent events

- Suppose $|S \cap T| = s \ge 2$
 - $\Rightarrow S \sim T$
- $E_S \wedge E_T$: G[S], G[T] both ℓ -cliques, sharing s vertices
- Number of prescribed edges: $2\binom{\ell}{2} \binom{s}{2}$
- $\Rightarrow \mathbb{P}(E_S \wedge E_T) = p^{2\binom{\ell}{2} \binom{s}{2}}$

Computing Δ

Recall

- $S \sim T \Leftrightarrow s \coloneqq |S \cap T| \ge 2$
- $\mathbb{P}(E_S \wedge E_T) = p^2 {\ell \choose 2} {s \choose 2}$

Substituting terms

$$\Delta = \sum_{S \sim T} \mathbb{P}(E_S \wedge E_T) = \sum_{|S \cap T| \ge 2} \mathbb{P}(E_S \wedge E_T)$$

= $\sum_S \sum_{T:|S \cap T| \ge 2} \mathbb{P}(E_S \wedge E_T)$
= $\sum_S \sum_{s=2}^{\ell-1} \sum_{T:|S \cap T| = s} \mathbb{P}(E_S \wedge E_T)$
= $\sum_S \sum_{s=2}^{\ell-1} \sum_{T:|S \cap T| = s} p^{2\binom{\ell}{2} - \binom{s}{2}}$

$$\Rightarrow \Delta = \binom{n}{\ell} \sum_{s=2}^{\ell-1} \binom{\ell}{s} \binom{n-\ell}{\ell-s} p^{2\binom{\ell}{2} - \binom{s}{2}}$$

Bounding Δ

Recall

•
$$\Delta = \binom{n}{\ell} \sum_{s=2}^{\ell-1} \binom{\ell}{s} \binom{n-\ell}{\ell-s} p^{2\binom{\ell}{2} - \binom{s}{2}}$$

Goal

• Show $\Delta = o(\mathbb{E}[X]^2)$

Estimates

•
$$\binom{\ell}{s} \leq 2^{\ell}$$

• $\binom{n-\ell}{\ell-s} \leq n^{\ell-s} = \Theta\left(\binom{n}{\ell}n^{-s}\right)$

Bound

$$\begin{aligned} \Delta &\leq \binom{n}{\ell} \sum_{s=2}^{\ell-1} 2^{\ell} \Theta\left(\binom{n}{\ell} n^{-s}\right) p^{2\binom{\ell}{2} - \binom{s}{2}} \\ &= \binom{n}{\ell}^2 p^{2\binom{\ell}{2}} \sum_{s=2}^{\ell-1} \Theta\left(n^{-s} p^{-\binom{s}{2}}\right) = \mathbb{E}[X]^2 \sum_{s=2}^{\ell-1} \Theta\left(n^{-s} p^{-\binom{s}{2}}\right) \end{aligned}$$

Completing the Calculation

Recall

•
$$\Delta = \mathbb{E}[X]^2 \sum_{s=2}^{\ell-1} \Theta\left(n^{-s} p^{-\binom{s}{2}}\right)$$

Substituting p

- $n^{-s}p^{-\binom{s}{2}} = (np^{(s-1)/2})^{-s}$
- We took $p \gg n^{-2/(\ell-1)}$
- $\bullet \Rightarrow n^{-s} p^{-\binom{s}{2}} \ll \left(n^{1-(s-1)/(\ell-1)}\right)^{-s}$
- For $2 \le s \le \ell 1$, this is o(1)
- $\Rightarrow \Delta = o(1)$

Theorem 3.3.1

For $\ell \geq 2$, the threshold for $\mathcal{K}_{\ell} \subseteq G(n,p)$ is $p_0(n) = n^{-2/(\ell-1)}$

An Incomplete Result

Problem

Given a graph *H*, what is the threshold $p_0^H(n)$ for $H \subseteq G(n, p)$?

Lower bound

- Let X be the number of copies of H in G(n, p)
- Markov: $\mathbb{E}[X] = o(1) \Rightarrow p_0(n) \gg p$

Expectation

- Number of possible copies
 - Specify vertices of H at most $n^{v(H)}$ possibilities
- Probability of appearance
 - Each edge of H must be present probability is $p^{e(H)}$
- $\bullet \Rightarrow \mathbb{E}[X] \le n^{\nu(H)} p^{e(H)}$

Conclusion: $p_0(n) \ge n^{-\nu(H)/e(H)}$

An Illustrated Example

Graph statistics

- Let *H* be *K*₄ with a pendant edge
- Statistics:
 - v(H) = 5
 - e(H) = 7
- $\Rightarrow p_0^H(n) \ge n^{-5/7}$

An issue

- $K_4 \subseteq H$
- \Rightarrow if $H \subseteq G(n, p)$, then $K_4 \subseteq G(n, p)$
- $\Rightarrow p_0^{K_4}(n) \le p_0^H(n)$
- But we showed $p_0^{K_4}(n) = n^{-2/3} \gg n^{-5/7}$

Monotonicity and Density

General lower bound

- $p_0^H(n) \ge \max \{p_0^F(n): F \subseteq H\}$
- Can substitute first moment bound
- $\Rightarrow p_0^H(n) \ge \max\left\{n^{-\nu(F)/e(F)}: F \subseteq H, e(F) \ge 1\right\}$

Definition 3.3.2 (Maximum density)

Given a graph *H*, define $d(H) = \frac{e(H)}{\nu(H)}$, and let $m(H) = \max \{d(F): F \subseteq H\}.$

Remarks

- We have $p_0^H(n) \ge n^{-1/m(H)}$
- Say *H* is *balanced* if d(H) = m(H)
- *H* is strictly balanced if d(F) < m(H) for all $F \subset H$

Expected Subgraph Counts

Boundless expectations

- Let X_H be the number of copies of H in G(n, p)
- Total # possible copies = $\Theta(n^{\nu(H)})$
- Probability of each copy: $p^{e(H)}$
- $\Rightarrow \mathbb{E}[X_H] = \Theta(n^{\nu(H)}p^{e(H)})$
- $\therefore \mathbb{E}[X_H] \to \infty$ when $p \gg n^{-\nu(H)/e(H)}$

Guaranteeing subgraph existence

- Goal: to show $\mathbb{P}(X_H = 0) = o(1)$ for $p \gg p_0^H(n)$
- Apply second moment: need to show $\Delta = o(\mathbb{E}[X_H]^2)$
- Edge-disjoint copies are independent

Dependent Subgraphs

Common subgraphs

- Let H_1 , H_2 be two copies of H sharing an edge
 - $E_{H_1} \wedge E_{H_2} = \{H_1 \cup H_2 \subseteq G(n, p)\}$
- Let $F \coloneqq H_1 \cap H_2$ be the common subgraph
 - $v(H_1 \cup H_2) = 2v(H) v(F)$
 - $e(H_1 \cup H_2) = 2e(H) e(F)$

Counting pairs

- Group dependent pairs (H_1, H_2) by common subgraphs $F = H_1 \cap H_2$
- At most $2^{e(H)}$ possible subgraphs F
- For each J, $O(n^{2\nu(H)-\nu(F)})$ pairs (H_1, H_2)
- For each such pair, $\mathbb{P}(E_{H_1} \wedge E_{H_2}) = p^{2e(H)-e(F)}$

Bounding Δ

Recall

$$\Delta = \sum_{i \sim j} \mathbb{P}\left(E_{H_i} \wedge E_{H_j}\right)$$

Group by common subgraph

$$\Delta = \sum_{i \sim j} \mathbb{P}\left(E_{H_i} \wedge E_{H_j}\right) = \sum_{F \subset H} \sum_{(i,j):H_i \cap H_j = F} \mathbb{P}\left(E_{H_i} \wedge E_{H_j}\right)$$

Substitute estimates

$$\Delta = \sum_{F \subset H} O\left(n^{2\nu(H) - \nu(F)} p^{2e(H) - e(F)}\right)$$

$$\Rightarrow \Delta = \left(n^{\nu(H)} p^{e(H)}\right)^2 \sum_{F \subset H} O\left(n^{-\nu(F)} p^{-e(F)}\right)$$

$$\Rightarrow \Delta = \mathbb{E}[X_H]^2 \sum_{F \subset H} O\left(n^{-\nu(F)} p^{-e(F)}\right)$$

A Complete Solution

Recall

• $\Delta = \mathbb{E}[X_H]^2 \sum_{F \subset H} O(n^{-\nu(F)} p^{-e(F)})$

Choice of p

- We have $p \gg n^{-1/m(H)}$
- $\Rightarrow p \gg n^{-\nu(F)/e(F)}$ for all nonempty $F \subset H$

•
$$\Rightarrow n^{-\nu(F)}p^{-e(F)} = o(1)$$

• $\Rightarrow \Delta = o(1)$

Theorem 3.3.3

Given a graph *H*, the threshold for $H \subseteq G(n, p)$ is $p_0^H(n) = n^{-1/m(H)}$, where

$$m(H) = \max\left\{\frac{e(F)}{v(F)}: F \subseteq H\right\}.$$

Any questions?

§4 Prime Factors

Chapter 3: The Second Moment

The Probabilistic Method

Time For Primes

Fun facts

- There are infinitely many primes (Euclid, -300)
- The primes contain arbitrarily long arithmetic progressions (Green–Tao, 2004)
- Infinitely many pairs of primes are at most 7000000 apart (Zhang, 2014)

Central problem

• How are the primes distributed in \mathbb{N} ?

Theorem 3.4.1 (Hadamard, De la Vallée Poussin, 1896) The number $\pi(n)$ of prime numbers in [n] satisfies $\pi(n) = (1 + o(1)) \frac{n}{\ln n}.$

Prime Factorisation

The funnest of facts

• Every natural number is the product of primes

Our goal

• To understand what these factorisations look like

Definition 3.4.2 Given $x \in \mathbb{N}$, let v(x) denote the number of *distinct* prime factors of x.

Examples

- v(19) = ?
- v(210) = ?
- $\nu(256) = ?$
- $\nu(2020) = ?$

The Average Case

Proposition 3.4.3

The average number of distinct prime factors of a number $x \in [n]$ is $\ln \ln n + O(1)$.

Proof

- Express v(x) in terms of indicator random variables:
 - $v(x) = \sum_{p \le n} 1_{\{p|x\}}$
- Exchange order of summation

•
$$\frac{1}{n} \sum_{x \in [n]} \nu(x) = \frac{1}{n} \sum_{p \le n} \sum_{x \in [n]} \mathbb{1}_{\{p \mid x\}}$$

• Count multiples

•
$$\sum_{x \in [n]} 1_{\{p|x\}} = \left\lfloor \frac{n}{p} \right\rfloor = \frac{n}{p} + O(1)$$

• $\Rightarrow \frac{1}{n} \sum_{x \in [n]} \nu(x) = \sum_{p \le n} \frac{1}{p} + O(1) = \ln \ln n + O(1)$

A Harmonic Digression

Theorem 3.4.4 (Mertens, 1874)
As
$$n \to \infty$$
, we have $\sum_{p \le n} \frac{1}{p} = \ln \ln n + O(1)$.

"Proof"

• Let
$$m = \pi(n) \sim \frac{n}{\ln n}$$

• $\sum_{p \le n} \frac{1}{p} = \sum_{k=1}^{m} \frac{1}{p_k}$

• Prime Number Theorem $\Rightarrow p_k \sim k \ln k$

•
$$\Rightarrow \sum_{p \le n} \frac{1}{p} \sim \sum_{k=2}^{m} \frac{1}{k \ln k}$$

• Approximate by an integral:

•
$$\sum_{k=2}^{m} \frac{1}{k \ln k} \sim \int_{x=2}^{m} \frac{1}{x \ln x} dx \sim \ln \ln m \sim \ln \ln n$$

The Typical Case

Variation in v(x), $x \in [n]$

- Minimum:
- Average: $\ln \ln n + O(1)$
- Maximum:
- $(1+o(1))\frac{\ln n}{\ln \ln n}$
- Product of first *m* primes $\sim \prod_{k=1}^{m} k \ln k \sim m! (\ln m)^m \leq n$ for $m \sim \frac{\ln n}{\ln \ln n}$

What can we say about the distribution of v(x)?

Theorem 3.4.5 (Hardy-Ramanujan, 1920) As $n \to \infty$, we have $v(x) = (1 + o(1)) \ln \ln n$ for all but o(n) integers $x \in [n]$.

The Probabilistic Approach

Theorem 3.4.5 (Hardy-Ramanujan, 1920) As $n \to \infty$, we have $v(x) = (1 + o(1)) \ln \ln n$ for all but o(n) integers $x \in [n]$.

Probabilistic proof (Turán, 1934)

- Choose $x \in [n]$ uniformly at random
- Interested in the random variable X = v(x)
- Proposition 3.4.3 $\Rightarrow \mathbb{E}[X] = \ln \ln n + O(1)$

Corollary 3.1.3' If $Var(X) = o(\mathbb{E}[X]^2)$, then $X = (1 + o(1))\mathbb{E}[X]$ with high probability.

Expressing the Variance

Recall

- $x \in [n]$ uniformly random
- X = v(x) number of distinct prime factors
- Goal: show $Var(X) = o(\mathbb{E}[X]^2)$

Indicator random variables

• For a prime p, let $X_p = 1_{\{p|x\}}$, Bernoulli random variable

•
$$\mathbb{P}(X_p = 1) = \frac{\lfloor n/p \rfloor}{n} \in \left(\frac{1}{p} - \frac{1}{n}, \frac{1}{p}\right]$$

• $X = \sum_{p \le n} X_p$

Our friend the variance

- $\operatorname{Var}(X) = \sum_{p} \operatorname{Var}(X_{p}) + \sum_{(p,q):p \neq q} \operatorname{Cov}(X_{p}, X_{q})$
- $\sum_{p} \operatorname{Var}(X_{p}) \leq \sum_{p} \mathbb{E}[X_{p}] = \mathbb{E}[X]$

Computing Covariances

Pairs $p \neq q$

•
$$\operatorname{Cov}(X_p, X_q) = \mathbb{E}[X_p X_q] - \mathbb{E}[X_p]\mathbb{E}[X_q]$$

•
$$\mathbb{E}[X_p] \ge \frac{1}{p} - \frac{1}{n'} \mathbb{E}[X_q] \ge \frac{1}{q} - \frac{1}{n}$$

•
$$\mathbb{E}[X_p X_q] = \mathbb{P}(pq|x) \le \frac{1}{pq}$$

• $\Rightarrow \operatorname{Cov}(X_p, X_q) \le \frac{1}{pq} - \left(\frac{1}{p} - \frac{1}{n}\right) \left(\frac{1}{q} - \frac{1}{n}\right) \le \frac{1}{n} \left(\frac{1}{p} + \frac{1}{q}\right)$

Bounding the sum

•
$$\Rightarrow \sum_{(p,q):p\neq q} \operatorname{Cov}(X_p, X_q) \leq \frac{1}{n} \sum_{(p,q):p\neq q} \left(\frac{1}{p} + \frac{1}{q}\right) \leq \frac{2\pi(n)}{n} \sum_{p\leq n} \frac{1}{p}$$

• $\pi(n) = (1 + o(1)) \frac{n}{\ln n}$ and $\sum_{p\leq n} \frac{1}{p} = \ln \ln n + O(1) = \mathbb{E}[X]$
• $\Rightarrow \sum_{(p,q):p\neq q} \operatorname{Cov}(X_p, X_q) = o(\mathbb{E}[X])$

A Final Flourish

The variance

• $\operatorname{Var}(X) = \sum_{p} \operatorname{Var}(X_{p}) + \sum_{p \neq q} \operatorname{Cov}(X_{p}, X_{q})$ • $\sum_{p} \operatorname{Var}(X_{p}) \leq \mathbb{E}[X]$ and $\sum_{p \neq q} \operatorname{Cov}(X_{p}, X_{q}) = o(\mathbb{E}[X])$ • $\Rightarrow \operatorname{Var}(X) = (1 + o(1))\mathbb{E}[X] = (1 + o(1)) \ln \ln n$

Applying Chebyshev

- $\mathbb{P}(|\nu(x) \ln \ln n| > \lambda \sqrt{\ln \ln n}) \le \frac{\operatorname{Var}(X)}{\lambda^2 \ln \ln n} = \frac{1}{\lambda^2} + o(1)$
- $\Rightarrow \mathbb{P}(\nu(x) \neq (1 + o(1)) \ln \ln n) = o(1)$
- x uniform in $[n] \Rightarrow o(n)$ such integers

Remark

• Most $x \in [n]$ satisfy $v(x) = \ln \ln n + O(\sqrt{\ln \ln n})$

Any questions?

§5 Distinct Sums

Chapter 3: The Second Moment

The Probabilistic Method

Mathemagic

An illusion

- You have a deck of cards, with each card bearing a number
- You invite your friend to select as many cards from the deck as they like
- They add the numbers and only tell you the sum
- The chosen cards are then shuffled back into the deck
- You then go through the deck, and magically pick out your friend's cards

The secret

- Cards labelled with powers of two: 1,2,4,8,16, ...
- Each number $x \in \mathbb{N}$ has a unique binary expansion, $x = \sum_{j} 2^{i_{j}}$
- \Rightarrow given the sum x, can recover the labels 2^{i_j} of the chosen cards

A Little Showmanship

Obstacles

- Mathematician friends will see through the illusion
- Non-mathematician friends may not be able to add well
 - Card labels shouldn't be larger than n
- Binary labels $\Rightarrow \log n$ cards
 - Small deck is not so impressive

Better decks

- Can we replace the binary labels?
- Suppose we have labels $S = \{s_1, s_2, \dots, s_k\}$
- Key property:
 - *distinct sums* no two subsets should have the same total
- Extremal problem
 - How large can a subset $S \subseteq [n]$ with distinct sums be?

The Greedy Magician

Greedy algorithm

- Start with $S = \emptyset$
- Go through elements in [n] one at a time
- Add to *S* if they preserve distinct sums property

Claim 3.5.1

The greedy algorithm returns the set of powers of two.

Proof

- After the first step, we have $S = \{1\}$
- Suppose we have $S = \{1, 2, ..., 2^r\}$ at some stage in the algorithm
- We can write every number up to $2^{r+1} 1$ as a sum of these elements
 - None of these added to *S*
- Next available number to be added: 2^{r+1}

The Extremal Function

Notation

• Let $f(n) = \max \{ |S| : S \subseteq [n] \text{ has distinct sums} \}$

Lower bound

- Binary set $\Rightarrow f(n) \ge \lfloor \log n \rfloor + 1$
- Is this best possible?

Counterexamples

- *S* = {11,17,20,22,23,24} has distinct sums
 - $\Rightarrow f(n) \ge \lfloor \log n \rfloor + 2 \text{ for } 24 \le n \le 31$
- If a set S has distinct sums, so does $S' = 2S \cup \{1\}$
 - Iterating \rightarrow infinite sequence of counterexamples

An Upper Bound

Proposition 3.5.2

```
As n \to \infty, we have f(n) \le \log n + \log \log n + 1.
```

Proof

- Let k = f(n) and let $S \subseteq [n]$ be a largest set with distinct sums
- For each $T \subseteq S$, we have $0 \leq \sum_{s \in T} s < kn$
- Distinct sums \Rightarrow each of these 2^k sums is distinct
- $\Rightarrow 2^k \le kn$
 - $\Rightarrow k \le \log n + \log k$
 - $\Rightarrow k \le \log n + \log(\log n + \log k)$
 - $\leq \log n + \log(2\log n)$
 - $= \log n + \log \log n + 1$

An Improved Upper Bound

Flawed argument

- Wasteful in estimating range of sums
- Max sum $\sim kn \Rightarrow$ all members of $S \sim n$
- In that case, few small numbers will be sums

Fix

- Try to find a smaller interval still containing many sums
- Chebyshev ⇒ sums may concentrate around the average

Theorem 3.5.3 As $n \to \infty$, $f(n) \le \log n + \frac{1}{2} \log \log n + O(1)$.

Probabilistic Framework

Random variables

- Let f(n) = k, let $S = \{s_1, s_2, \dots, s_k\} \subseteq [n]$ be a largest set with distinct sums
- Let X be a uniformly random sum from S
- $\Rightarrow X = \sum_{i=1}^{k} \varepsilon_i s_i$, where each ε_i is independent, uniform on $\{0,1\}$

Expectation

- Let $\mu \coloneqq \mathbb{E}[X] = \sum_{i=1}^{k} \mathbb{E}[\varepsilon_i s_i] = \frac{1}{2} \sum_{i=1}^{k} s_i$
- Actual value is unimportant

Variance

• Variables ε_i are independent

•
$$\Rightarrow \operatorname{Var}(X) = \operatorname{Var}\left(\sum_{i=1}^{k} \varepsilon_i s_i\right) = \sum_{i=1}^{k} \operatorname{Var}(\varepsilon_i) s_i^2 = \frac{1}{4} \sum_{i=1}^{k} s_i^2 \le \frac{1}{4} n^2 k$$

Concentrated Sums

Recall

•
$$\operatorname{Var}(X) \leq \frac{1}{4}n^2k$$

Applying Chebyshev

•
$$\mathbb{P}(|X - \mu| \ge n\sqrt{k}) \le \frac{\operatorname{Var}(X)}{n^2 k} \le \frac{1}{4}$$

• $\Rightarrow \mathbb{P}(|X - \mu| < n\sqrt{k}) \ge \frac{3}{4}$

Distinct sums

- Each value comes from at most one sum $\Rightarrow \mathbb{P}(X = x) \in \{0, 2^{-k}\}$
- $\therefore \mathbb{P}(|X \mu| < n\sqrt{k}) = \mathbb{P}(\mu n\sqrt{k} < X < \mu + n\sqrt{k}) \le 2n\sqrt{k} \cdot 2^{-k}$

Bounding k

•
$$2^k \le \frac{8}{3}n\sqrt{k} \Rightarrow k \le \log n + \frac{1}{2}\log k + \log \frac{8}{3} \le \log n + \frac{1}{2}\log\log n + O(1)$$

Any questions?