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Chapter Overview
• Introduce the second moment method

• Survey applications in graph theory and number theory
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What Does the Expectation Mean?
Basic fact

• 𝑋 ≤ 𝔼 𝑋 and {𝑋 ≥ 𝔼 𝑋 } have positive probability

• Often want more quantitative information
• What are these positive probabilities?

• How much below/above the expectation can the random variable be?

Limit laws
• Law of large numbers

• Average of independent trials will tend to the expectation

• Central limit theorem
• Average will be normally distributed

Not always applicable
• We often only have a single instance, or lack independence

• Can still make use of more general bounds



Markov’s Inequality

Proof
• Let 𝑓 be the density function for the distribution of 𝑋

• 𝔼 𝑋 = 0
∞
𝑥𝑓 𝑥 ⅆ𝑥 = 0

𝑎
𝑥𝑓 𝑥 ⅆ𝑥 + 𝑎

∞
𝑥𝑓 𝑥 ⅆ𝑥

≥ 𝑎
∞
𝑥𝑓 𝑥 ⅆ𝑥 ≥ 𝑎

∞
𝑎𝑓 𝑥 ⅆ𝑥 = 𝑎 𝑎

∞
𝑓 𝑥 ⅆ𝑥 = 𝑎ℙ(𝑋 ≥ 𝑎) ∎

Moral: 𝔼 𝑋 small ⇒ 𝑋 typically small

Theorem 3.1.1 (Markov’s Inequality)

Let 𝑋 be a non-negative random variable, and let 𝑎 > 0. Then

ℙ 𝑋 ≥ 𝑎 ≤
𝔼 𝑋

𝑎
.



Theorem 3.1.2 (Chebyshev’s Inequality)

Let 𝑋 be a random variable, and let 𝑎 > 0. Then

ℙ 𝑋 − 𝔼 𝑋 ≥ 𝑎 ≤
Var 𝑋

𝑎2
.

Chebyshev’s Inequality
Converse? Does 𝔼 𝑋 large ⇒ 𝑋 typically large?

• Not necessarily; e.g. 𝑋 = 𝑛2 with probability 𝑛−1, 0 otherwise

• But such random variables have large variance…

Proof
• 𝑋 − 𝔼 𝑋 ≥ 𝑎 = 𝑋 − 𝔼 𝑋 2 ≥ 𝑎2

• Let 𝑌 = 𝑋 − 𝔼 𝑋 2

• Then 𝔼 𝑌 = Var 𝑋

• Apply Markov’s Inequality ∎



Corollary 3.1.3

If Var 𝑋 = 𝑜 𝔼 𝑋 2 , then ℙ 𝑋 = 0 = 𝑜 1 .

Using Chebyshev
Moral

• 𝔼 𝑋 large and Var 𝑋 small ⇒𝑋 typically large

• Special case: showing 𝑋 nonzero

Proof
• 𝑋 = 0 ⊆ 𝑋 − 𝔼 𝑋 ≥ 𝔼 𝑋

• Chebyshev ⇒ ℙ 𝑋 − 𝔼 𝑋 ≥ 𝔼 𝑋 ≤
Var 𝑋

𝔼 𝑋 2 = 𝑜(1) ∎

• In fact, in this case 𝑋 = 1 + 𝑜 1 𝔼[𝑋] with high probability



Typical application
Set-up

• 𝐸𝑖 events, occurring with probability 𝑝𝑖
• 𝑋𝑖 = 1𝐸𝑖 their indicator random variables

• 𝑋 = σ𝑖𝑋𝑖 their sum, the number of occurring events

Goal

• Show that with high probability, some event occurs

Applying Chebyshev

• Need to show Var 𝑋 = 𝑜 𝔼 𝑋 2

Expand the variance

• Var 𝑋 = Var σ𝑖𝑋𝑖 = σ𝑖 Var(𝑋𝑖) + σ𝑖≠𝑗 Cov(𝑋𝑖 , 𝑋𝑗)



Corollary 3.1.4

Let 𝐸𝑖 be a sequence of events with probabilities 𝑝𝑖, and let 𝑋 count 
the number of events that occur. Write 𝑖 ∼ 𝑗 if the events 𝐸𝑖 and 𝐸𝑗 are 
not independent, and let Δ = σ𝑖∼𝑗ℙ 𝐸𝑖 ∧ 𝐸𝑗 . If 𝔼 𝑋 → ∞ and       
Δ = 𝑜 𝔼 𝑋 2 , then 𝑃 𝑋 = 0 = 𝑜 1 .

Some Simplification
Estimating the summands

• Var 𝑋 = Var σ𝑖𝑋𝑖 = σ𝑖 Var(𝑋𝑖) + σ𝑖≠𝑗 Cov(𝑋𝑖 , 𝑋𝑗)

• Var 𝑋𝑖 = 𝑝𝑖 1 − 𝑝𝑖 ≤ 𝑝𝑖
• ∴ σ𝑖 Var(𝑋𝑖) ≤ σ𝑖 𝑝𝑖 = σ𝑖 𝔼 𝑋𝑖 = 𝔼[𝑋]

• Cov 𝑋, 𝑌 = 𝔼 𝑋𝑌 − 𝔼 𝑋 𝔼 𝑌
• Cov 𝑋, 𝑌 = 0 if 𝑋 and 𝑌 are independent

• Otherwise Cov 𝑋𝑖 , 𝑋𝑗 ≤ 𝔼 𝑋𝑖𝑋𝑗 = ℙ 𝐸𝑖 ∧ 𝐸𝑗



Any questions?
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Lemma 3.2.1

If 𝒫 is a monotone increasing graph property, then ℙ 𝐺 𝑛, 𝑝 ∈ 𝒫 is 
monotone increasing in 𝑝.

Monotone properties
Graph properties

• Say a graph 𝒫 is monotone (increasing) if adding edges preserves 𝒫

• e.g.: containing a subgraph 𝐻 ⊆ 𝐺, having 𝛼 𝐺 < 𝑘, connectivity, …

Proof (Coupling)
• Sampling 𝐺 𝑛, 𝑝

• Assign to each pair of vertices 𝑢, 𝑣 an independent uniform 𝑌𝑢,𝑣~Unif 0,1
• Add edge 𝑢, 𝑣 to 𝐺 iff 𝑌𝑢,𝑣 ≤ 𝑝
• Each edge appears independently with probability 𝑝

• If 𝑝 ≤ 𝑝′, then 𝐺 𝑛, 𝑝 ⊆ 𝐺 𝑛, 𝑝′ ⇒ if 𝐺 𝑛, 𝑝 ∈ 𝒫, then 𝐺 𝑛, 𝑝′ ∈ 𝒫 ∎



Definition 3.2.2 (Thresholds)

Given a nontrivial monotone graph property 𝒫, 𝑝0(𝑛) is a threshold for 
𝒫 if

ℙ 𝐺 𝑛, 𝑝 ∈ 𝒫 → ቊ
0 if p ≪ 𝑝0 𝑛 ,

1 if 𝑝 ≫ 𝑝0 𝑛 .

Thresholds
Transitions

• A monotone property 𝒫 is nontrivial if it is not satisfied by the edgeless graph, 
and is satisfied by the complete graph
• ⇒ ℙ 𝐺 𝑛, 0 ∈ 𝒫 = 0 and ℙ 𝐺 𝑛, 1 ∈ 𝒫 = 1

• Lemma 3.2.1 ⇒ℙ 𝐺 𝑛, 𝑝 ∈ 𝒫 increases from 0 to 1 as 𝑝 does

• How quickly does this increase happen?



Proposition 3.2.3

The threshold for 𝐺(𝑛, 𝑝) to contain a cycle is 𝑝0 𝑛 =
1

𝑛
.

A Cyclic Example

Proof (lower bound)
• Let 𝑋 = # cycles in 𝐺(𝑛, 𝑝)

• For ℓ ≥ 3, let 𝑋ℓ = # 𝐶ℓ ⊆ 𝐺 𝑛, 𝑝
• ⇒ 𝑋 = σℓ=3

𝑛 𝑋ℓ

• Linearity of expectation: 𝔼 𝑋ℓ ≤ 𝑛ℓ𝑝ℓ

• ⇒ 𝔼 𝑋 ≤ σℓ=3
𝑛 𝑛𝑝 ℓ < 𝑛𝑝 3σℓ=0

∞ 𝑛𝑝 ℓ =
𝑛𝑝 3

1−𝑛𝑝

• ⇒ 𝔼 𝑋 = 𝑜(1) if 𝑝 ≪
1

𝑛

• Markov: ℙ 𝐺 𝑛, 𝑝 has a cycle = ℙ 𝑋 ≥ 1 ≤ 𝔼 𝑋 → 0 ∎



Proposition 3.2.3

The threshold for 𝐺(𝑛, 𝑝) to contain a cycle is 𝑝0 𝑛 =
1

𝑛
.

Cycles Continued

Proof (upper bound)

• Let 𝑝 =
4

𝑛−1
and set 𝑌 = 𝑒 𝐺 𝑛, 𝑝

• Then 𝑌 ∼ Bin 𝑛
2
, 𝑝

• ⇒ 𝔼 𝑌 = 𝑛
2
𝑝 = 2𝑛

• ⇒ Var 𝑌 = 𝑛
2
𝑝 1 − 𝑝 < 2𝑛

• ∴ Var 𝑌 = 𝑜 𝔼 𝑌 2

• Chebyshev: ℙ 𝑌 < 𝑛 → 0

• ℙ 𝐺 𝑛, 𝑝 has a cycle ≥ ℙ 𝑒 𝐺 𝑛, 𝑝 ≥ 𝑛 → 1 ∎



Existence of Thresholds

Proof (upper bound)

• Let 𝑝 𝑛 = 𝑝0 be such that ℙ 𝐺 𝑛, 𝑝0 ∈ 𝒫 =
1

2

• Let 𝐺 ∼ 𝐺1 ∪ 𝐺2 ∪⋯∪ 𝐺𝑚, where each 𝐺𝑖 ∼ 𝐺 𝑛, 𝑝0 is independent
• ⇒ 𝐺 ∼ 𝐺 𝑛, 𝑝 for 𝑝 ≔ 1 − 1 − 𝑝0

𝑚 ≤ 𝑚𝑝0

• Property is monotone:
• ℙ 𝐺 ∈ 𝒫 ≥ ℙ ∪𝑖 𝐺𝑖 ∈ 𝒫 = 1 − ℙ ∩𝑖 𝐺𝑖 ∉ 𝒫

• Graphs are independent:
• ℙ ∩𝑖 𝐺𝑖 ∉ 𝒫 = ς𝑖ℙ 𝐺𝑖 ∉ 𝒫

• Since 𝐺𝑖 ∼ 𝐺(𝑛, 𝑝0), ℙ 𝐺𝑖 ∉ 𝒫 =
1

2

• ∴ ℙ 𝐺 ∈ 𝒫 ≥ 1 − 2−𝑚 → 1 if 𝑚 → ∞ (or if 𝑝 ≫ 𝑝0) ∎

Theorem 3.2.4 (Bollobás-Thomason, 1987)

Every nontrivial monotone graph property has a threshold.



Below the Threshold

Proof (lower bound)

• Let 𝐺 ∼ 𝐺1 ∪ 𝐺2 ∪⋯∪ 𝐺𝑚 as before, but with 𝐺𝑖 ∼ 𝐺 𝑛, 𝑝 for 𝑝 =
𝑝0

𝑚

• ⇒ 𝐺 ∼ 𝐺(𝑛, 𝑞) for 𝑞 = 1 − 1 − 𝑝 𝑚 ≤ 𝑚𝑝 = 𝑝0

• ⇒ ℙ 𝐺 ∉ 𝒫 ≥
1

2

• As before, ℙ 𝐺 ∉ 𝒫 ≤ ℙ 𝐺 𝑛, 𝑝 ∉ 𝒫 𝑚

• ⇒ ℙ 𝐺 𝑛, 𝑝 ∉ 𝒫 ≥
1

2

1/m

• ⇒ ℙ 𝐺 𝑛, 𝑝 ∈ 𝒫 ≤ 1 −
1

2

1/𝑚
→ 0 if 𝑚 → ∞ (or if 𝑝 ≪ 𝑝0) ∎

Theorem 3.2.4 (Bollobás-Thomason, 1987)

Every nontrivial monotone graph property has a threshold.



Definition 3.2.5 (Sharp thresholds)

We say 𝑝0(𝑛) is a sharp threshold for 𝒫 if there are positive constants 
𝑐1, 𝑐2 such that

ℙ 𝐺 𝑛, 𝑝 ∈ 𝒫 → ቊ
0 if 𝑝 ≤ 𝑐1𝑝0 𝑛 ,

1 if 𝑝 ≥ 𝑐2𝑝0 𝑛 .

Closing Remarks
Random graph theory

• Fundamental problem: given a graph property 𝒫, what is its threshold?

At the threshold
• We showed what happens for probabilities much smaller than the threshold, 

and much larger than the threshold

• What if 𝑝 = Θ 𝑝0 𝑛 ? Some properties have a much quicker transition



Any questions?
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Returning to Ramsey

Choosing parameters
• Want to choose 𝑛 as large as possible

• Need to avoid large independent sets
• ⇒ would like to make edge probability 𝑝 large

• Limitation: need to avoid 𝐾ℓ

Question: What is the threshold for Kℓ ⊆ 𝐺(𝑛, 𝑝)?

Theorem 1.5.7

Given ℓ, 𝑘, 𝑛 ∈ ℕ and 𝑝 ∈ 0,1 , if
𝑛

ℓ
𝑝

ℓ
2 +

𝑛

𝑘
1 − 𝑝

𝑘
2 < 1,

then 𝑅 ℓ, 𝑘 > 𝑛.



A Lower Bound
Goal

• Let 𝑋 count the number of 𝐾ℓ in 𝐺(𝑛, 𝑝)

• For which 𝑝 do we have ℙ 𝑋 ≥ 1 = 𝑜(1)?

First moment

• 𝔼 𝑋 = 𝑛
ℓ
𝑝

ℓ
2 = Θ 𝑛ℓ𝑝

ℓ
2

• Markov’s Inequality: ℙ 𝑋 ≥ 1 ≤ 𝔼 𝑋

Threshold bound

• 𝔼 𝑋 = Θ 𝑛ℓ𝑝
ℓ
2 ≪ 1

• ⇔ 𝑝
ℓ
2 ≪ 𝑛−ℓ ⇔ 𝑝 ≪ 𝑛−2/(ℓ−1)

• ⇒ 𝑝0(𝑛) ≥ 𝑛−2/(ℓ−1)



Corollary 3.1.4

Let 𝐸𝑖 be a sequence of events with probabilities 𝑝𝑖, and let 𝑋 count 
the number of events that occur. Write 𝑖 ∼ 𝑗 if the events 𝐸𝑖 and 𝐸𝑗 are 
not independent, and let Δ = σ𝑖∼𝑗ℙ 𝐸𝑖 ∧ 𝐸𝑗 . If 𝔼 𝑋 → ∞ and       
Δ = 𝑜 𝔼 𝑋 2 , then 𝑃 𝑋 = 0 = 𝑜 1 .

An Upper Bound
Goal

• For which 𝑝 do we have ℙ 𝑋 = 0 = 𝑜 1 ?

Our parameters

• Let 𝐺 ∼ 𝐺(𝑛, 𝑝) and, for 𝑆 ∈ 𝑛
ℓ

, let 𝐸𝑆 = 𝐺 𝑆 ≅ 𝐾ℓ

• 𝔼 𝑋 = 𝑛
ℓ
𝑝

ℓ
2 → ∞ for 𝑝 ≫ 𝑛−2/(ℓ−1)

• Suffices to show Δ = 𝑜 𝔼 𝑋 2



Clique Dependencies

Independent events
• 𝐸𝑖 occurs ⇔ all edges in 𝑖th clique present

• Edges appear independently

• ∴ 𝑆 ∩ 𝑇 ≤ 1 ⇒ 𝐸𝑆, 𝐸𝑇 independent

Dependent events

• Suppose 𝑆 ∩ 𝑇 = 𝑠 ≥ 2
• ⇒ 𝑆 ∼ 𝑇

• 𝐸𝑆 ∧ 𝐸𝑇: 𝐺 𝑆 , 𝐺[𝑇] both ℓ-cliques, sharing 𝑠 vertices

• Number of prescribed edges: 2 ℓ
2
− 𝑠

2

• ⇒ ℙ 𝐸𝑆 ∧ 𝐸𝑇 = 𝑝
2 ℓ

2 − 𝑠
2



Computing Δ
Recall

• 𝑆 ∼ 𝑇 ⇔ 𝑠 ≔ 𝑆 ∩ 𝑇 ≥ 2

• ℙ 𝐸𝑆 ∧ 𝐸𝑇 = 𝑝
2 ℓ

2 − s
2

Substituting terms

Δ = σ𝑆∼𝑇ℙ 𝐸𝑆 ∧ 𝐸𝑇 = σ 𝑆∩𝑇 ≥2ℙ 𝐸𝑆 ∧ 𝐸𝑇
= σ𝑆σ𝑇: 𝑆∩𝑇 ≥2ℙ 𝐸𝑆 ∧ 𝐸𝑇

= σ𝑆σ𝑠=2
ℓ−1σ𝑇: 𝑆∩𝑇 =𝑠ℙ 𝐸𝑆 ∧ 𝐸𝑇

= σ𝑆σ𝑠=2
ℓ−1σ𝑇: 𝑆∩𝑇 =𝑠 𝑝

2 ℓ
2 − 𝑠

2

⇒ Δ = 𝑛
ℓ
σ𝑠=2
ℓ−1 ℓ

𝑠
𝑛−ℓ
ℓ−𝑠

𝑝
2 ℓ

2 − 𝑠
2



Bounding Δ
Recall

• Δ = 𝑛
ℓ
σ𝑠=2
ℓ−1 ℓ

𝑠
𝑛−ℓ
ℓ−𝑠

𝑝
2 ℓ

2 − 𝑠
2

Goal
• Show Δ = 𝑜 𝔼 𝑋 2

Estimates

• ℓ
𝑠
≤ 2ℓ

• 𝑛−ℓ
ℓ−𝑠

≤ 𝑛ℓ−𝑠 = Θ 𝑛
ℓ
𝑛−𝑠

Bound

Δ ≤ 𝑛
ℓ
σ𝑠=2
ℓ−12ℓΘ 𝑛

ℓ
𝑛−𝑠 𝑝

2 ℓ
2 − 𝑠

2

= 𝑛
ℓ

2
𝑝
2 ℓ

2 σ𝑠=2
ℓ−1Θ 𝑛−𝑠𝑝−

𝑠
2 = 𝔼 𝑋 2σ𝑠=2

ℓ−1Θ 𝑛−𝑠𝑝−
𝑠
2



Theorem 3.3.1

For ℓ ≥ 2, the threshold for Kℓ ⊆ 𝐺(𝑛, 𝑝) is 𝑝0 𝑛 = 𝑛−2/(ℓ−1).

Completing the Calculation
Recall

• Δ = 𝔼 𝑋 2σ𝑠=2
ℓ−1Θ 𝑛−𝑠𝑝−

𝑠
2

Substituting 𝑝

• 𝑛−𝑠𝑝−
𝑠
2 = 𝑛𝑝 𝑠−1 /2 −𝑠

• We took 𝑝 ≫ 𝑛−2/(ℓ−1)

• ⇒ 𝑛−𝑠𝑝−
𝑠
2 ≪ n1−(s−1)/(ℓ−1)

−s

• For 2 ≤ 𝑠 ≤ ℓ − 1, this is 𝑜(1)

• ⇒ Δ = 𝑜 1



An Incomplete Result

Lower bound
• Let 𝑋 be the number of copies of 𝐻 in 𝐺 𝑛, 𝑝

• Markov: 𝔼 𝑋 = 𝑜 1 ⇒ 𝑝0 𝑛 ≫ 𝑝

Expectation
• Number of possible copies

• Specify vertices of 𝐻 – at most 𝑛𝑣 𝐻 possibilities

• Probability of appearance
• Each edge of 𝐻 must be present – probability is 𝑝𝑒 𝐻

• ⇒ 𝔼 𝑋 ≤ 𝑛𝑣 𝐻 𝑝𝑒 𝐻

Conclusion: 𝑝0 𝑛 ≥ 𝑛−𝑣 𝐻 /𝑒(𝐻)

Problem

Given a graph 𝐻, what is the threshold 𝑝0
𝐻(𝑛) for 𝐻 ⊆ 𝐺 𝑛, 𝑝 ?



An Illustrated Example

Graph statistics

• Let 𝐻 be 𝐾4 with a pendant edge

• Statistics:
• 𝑣 𝐻 = 5

• 𝑒 𝐻 = 7

• ⇒ 𝑝0
𝐻 𝑛 ≥ 𝑛−5/7

An issue

• 𝐾4 ⊆ 𝐻

• ⇒ if 𝐻 ⊆ 𝐺(𝑛, 𝑝), then 𝐾4 ⊆ 𝐺 𝑛, 𝑝

• ⇒ 𝑝0
𝐾4 𝑛 ≤ 𝑝0

𝐻 𝑛

• But we showed 𝑝0
𝐾4 𝑛 = 𝑛−2/3 ≫ 𝑛−5/7



Definition 3.3.2 (Maximum density)

Given a graph 𝐻, define d 𝐻 =
𝑒 𝐻

𝑣 𝐻
, and let 

𝑚 𝐻 = max {ⅆ 𝐹 : 𝐹 ⊆ 𝐻}.

Monotonicity and Density
General lower bound

• 𝑝0
𝐻 𝑛 ≥ max 𝑝0

𝐹 𝑛 : 𝐹 ⊆ 𝐻

• Can substitute first moment bound

• ⇒ 𝑝0
𝐻 𝑛 ≥ max 𝑛−𝑣 𝐹 /𝑒(𝐹): 𝐹 ⊆ 𝐻, 𝑒 𝐹 ≥ 1

Remarks
• We have 𝑝0

𝐻 𝑛 ≥ 𝑛−1/𝑚(𝐻)

• Say 𝐻 is balanced if d 𝐻 = 𝑚 𝐻

• 𝐻 is strictly balanced if ⅆ 𝐹 < 𝑚(𝐻) for all 𝐹 ⊂ 𝐻



Expected Subgraph Counts

Boundless expectations
• Let 𝑋𝐻 be the number of copies of 𝐻 in 𝐺(𝑛, 𝑝)

• Total # possible copies = Θ 𝑛𝑣 𝐻

• Probability of each copy: 𝑝𝑒 𝐻

• ⇒ 𝔼 𝑋𝐻 = Θ 𝑛𝑣 𝐻 𝑝𝑒 𝐻

• ∴ 𝔼 𝑋𝐻 → ∞ when 𝑝 ≫ 𝑛−𝑣 𝐻 /𝑒 𝐻

Guaranteeing subgraph existence

• Goal: to show ℙ 𝑋𝐻 = 0 = 𝑜(1) for 𝑝 ≫ 𝑝0
𝐻(𝑛)

• Apply second moment: need to show Δ = o 𝔼 𝑋𝐻
2

• Edge-disjoint copies are independent



Dependent Subgraphs

Common subgraphs
• Let 𝐻1, 𝐻2 be two copies of 𝐻 sharing an edge

• 𝐸𝐻1 ∧ 𝐸𝐻2 = 𝐻1 ∪ 𝐻2 ⊆ 𝐺 𝑛, 𝑝

• Let 𝐹 ≔ 𝐻1 ∩ 𝐻2 be the common subgraph
• 𝑣 𝐻1 ∪ 𝐻2 = 2𝑣 𝐻 − 𝑣 𝐹

• 𝑒 𝐻1 ∪ 𝐻2 = 2𝑒 𝐻 − 𝑒 𝐹

Counting pairs

• Group dependent pairs 𝐻1, 𝐻2 by common subgraphs 𝐹 = 𝐻1 ∩ 𝐻2
• At most 2𝑒 𝐻 possible subgraphs 𝐹

• For each 𝐽, O 𝑛2𝑣 𝐻 −𝑣 𝐹 pairs (𝐻1, H2)

• For each such pair, ℙ 𝐸𝐻1 ∧ 𝐸𝐻2 = 𝑝2𝑒 𝐻 −𝑒 𝐹



Bounding Δ

Recall

Δ = σ𝑖∼𝑗ℙ 𝐸𝐻𝑖
∧ 𝐸𝐻𝑗

Group by common subgraph

Δ = σ𝑖∼𝑗ℙ 𝐸𝐻𝑖
∧ 𝐸𝐻𝑗

= σ𝐹⊂𝐻σ 𝑖,𝑗 :𝐻𝑖∩𝐻𝑗=𝐹
ℙ 𝐸𝐻𝑖

∧ 𝐸𝐻𝑗

Substitute estimates

Δ = σ𝐹⊂𝐻𝑂 𝑛2𝑣 𝐻 −𝑣 𝐹 𝑝2𝑒 𝐻 −𝑒 𝐹

⇒ Δ = 𝑛𝑣 𝐻 𝑝𝑒 𝐻 2
σ𝐹⊂𝐻𝑂 𝑛−𝑣 𝐹 𝑝−𝑒 𝐹

⇒ Δ = 𝔼 𝑋𝐻
2σ𝐹⊂𝐻𝑂 𝑛−𝑣 𝐹 𝑝−𝑒 𝐹



Theorem 3.3.3

Given a graph 𝐻, the threshold for 𝐻 ⊆ 𝐺(𝑛, 𝑝) is 𝑝0
𝐻 𝑛 = 𝑛−1/𝑚(𝐻), 

where

𝑚 𝐻 = max
𝑒 𝐹

𝑣 𝐹
: 𝐹 ⊆ 𝐻 .

A Complete Solution
Recall

• Δ = 𝔼 𝑋𝐻
2σ𝐹⊂𝐻𝑂 𝑛−𝑣 𝐹 𝑝−𝑒 𝐹

Choice of 𝑝
• We have 𝑝 ≫ 𝑛−1/𝑚(𝐻)

• ⇒ 𝑝 ≫ 𝑛−𝑣 𝐹 /𝑒(𝐹) for all nonempty 𝐹 ⊂ 𝐻

• ⇒ 𝑛−𝑣 𝐹 𝑝−𝑒 𝐹 = 𝑜(1)

• ⇒ Δ = 𝑜(1)



Any questions?



§4 Prime Factors
Chapter 3: The Second Moment

The Probabilistic Method



Theorem 3.4.1 (Hadamard, De la Vallée Poussin, 1896)

The number 𝜋(𝑛) of prime numbers in [𝑛] satisfies

𝜋 𝑛 = 1 + 𝑜 1
𝑛

ln 𝑛
.

Time For Primes

Fun facts
• There are infinitely many primes (Euclid, -300)

• The primes contain arbitrarily long arithmetic progressions (Green–Tao, 2004)

• Infinitely many pairs of primes are at most 70000000 apart (Zhang, 2014)

Central problem

• How are the primes distributed in ℕ?



Definition 3.4.2

Given 𝑥 ∈ ℕ, let 𝜈 𝑥 denote the number of distinct prime factors of 𝑥.

Prime Factorisation

The funnest of facts
• Every natural number is the product of primes

Our goal
• To understand what these factorisations look like

Examples
• 𝜈 19 = ?

• 𝜈 210 = ?

• 𝜈 256 = ?

• 𝜈 2020 = ?



The Average Case

Proof
• Express 𝜈(𝑥) in terms of indicator random variables:

• 𝜈 𝑥 = σ𝑝≤𝑛 1{𝑝|𝑥}

• Exchange order of summation

•
1

𝑛
σ𝑥∈ 𝑛 𝜈 𝑥 =

1

𝑛
σ𝑝≤𝑛σ𝑥∈ 𝑛 1{𝑝|𝑥}

• Count multiples

• σ𝑥∈ 𝑛 1{𝑝|𝑥} =
𝑛

𝑝
=

n

p
+ O 1

• ⇒
1

𝑛
σ𝑥∈ 𝑛 𝜈 𝑥 = σ𝑝≤𝑛

1

𝑝
+ 𝑂 1 = ln ln 𝑛 + 𝑂(1) ∎

Proposition 3.4.3

The average number of distinct prime factors of a number 𝑥 ∈ [𝑛] is 
ln ln 𝑛 + 𝑂(1).



A Harmonic Digression

“Proof”

• Let 𝑚 = 𝜋 𝑛 ∼
𝑛

ln 𝑛

• σ𝑝≤𝑛
1

𝑝
= σ𝑘=1

𝑚 1

𝑝𝑘

• Prime Number Theorem ⇒ 𝑝𝑘 ∼ 𝑘 ln 𝑘

• ⇒ σ𝑝≤𝑛
1

𝑝
∼ σ𝑘=2

𝑚 1

𝑘 ln 𝑘

• Approximate by an integral:

• σ𝑘=2
𝑚 1

𝑘 ln 𝑘
∼ 𝑥=2

𝑚 1

𝑥 ln 𝑥
ⅆ𝑥 ∼ ln ln𝑚 ∼ ln ln 𝑛 ∎

Theorem 3.4.4 (Mertens, 1874)

As 𝑛 → ∞, we have σ𝑝≤𝑛
1

𝑝
= ln ln 𝑛 + 𝑂 1 .



Theorem 3.4.5 (Hardy-Ramanujan, 1920)

As 𝑛 → ∞, we have 𝜈 𝑥 = 1 + 𝑜 1 ln ln 𝑛 for all but 𝑜 𝑛 integers 
𝑥 ∈ 𝑛 .

The Typical Case
Variation in 𝜈(𝑥), 𝑥 ∈ 𝑛

• Minimum: 1

• Average: ln ln 𝑛 + 𝑂 1

• Maximum: 1 + 𝑜 1
ln 𝑛

ln ln 𝑛

• Product of first 𝑚 primes ∼ ς𝑘=1
𝑚 𝑘 ln 𝑘 ∼ 𝑚! ln𝑚 𝑚 ≤ 𝑛 for 𝑚 ∼

ln 𝑛

ln ln 𝑛

What can we say about the distribution of 𝜈 𝑥 ?



Theorem 3.4.5 (Hardy-Ramanujan, 1920)

As 𝑛 → ∞, we have 𝜈 𝑥 = 1 + 𝑜 1 ln ln 𝑛 for all but 𝑜 𝑛 integers 
𝑥 ∈ 𝑛 .

The Probabilistic Approach

Probabilistic proof (Turán, 1934)
• Choose 𝑥 ∈ 𝑛 uniformly at random

• Interested in the random variable 𝑋 = 𝜈 𝑥

• Proposition 3.4.3 ⇒ 𝔼 𝑋 = ln ln 𝑛 + 𝑂 1

Corollary 3.1.3’

If Var 𝑋 = 𝑜 𝔼 𝑋 2 , then 𝑋 = 1 + 𝑜 1 𝔼 𝑋 with high probability.



Expressing the Variance
Recall

• 𝑥 ∈ 𝑛 uniformly random

• 𝑋 = 𝜈(𝑥) number of distinct prime factors

• Goal: show Var 𝑋 = 𝑜 𝔼 𝑋 2

Indicator random variables
• For a prime 𝑝, let 𝑋𝑝 = 1{𝑝|𝑥}, Bernoulli random variable

• ℙ 𝑋𝑝 = 1 =
𝑛/𝑝

n
∈

1

𝑝
−

1

𝑛
,
1

𝑝

• 𝑋 = σ𝑝≤𝑛𝑋𝑝

Our friend the variance

• Var 𝑋 = σ𝑝Var 𝑋𝑝 +σ 𝑝,𝑞 :𝑝≠𝑞 Cov 𝑋𝑝, 𝑋𝑞

• σ𝑝Var 𝑋𝑝 ≤ σ𝑝𝔼 𝑋𝑝 = 𝔼 𝑋



Computing Covariances
Pairs 𝑝 ≠ 𝑞

• Cov 𝑋𝑝, 𝑋𝑞 = 𝔼 𝑋𝑝𝑋𝑞 − 𝔼 𝑋𝑝 𝔼 𝑋𝑞

• 𝔼 𝑋𝑝 ≥
1

𝑝
−

1

𝑛
, 𝔼 𝑋𝑞 ≥

1

𝑞
−

1

n

• 𝔼 𝑋𝑝𝑋𝑞 = ℙ 𝑝𝑞 𝑥 ≤
1

𝑝𝑞

• ⇒ Cov 𝑋𝑝, 𝑋𝑞 ≤
1

𝑝𝑞
−

1

𝑝
−

1

𝑛

1

𝑞
−

1

𝑛
≤

1

𝑛

1

𝑝
+

1

𝑞

Bounding the sum

• ⇒ σ 𝑝,𝑞 :𝑝≠𝑞 Cov 𝑋𝑝, 𝑋𝑞 ≤
1

𝑛
σ 𝑝,𝑞 :𝑝≠𝑞

1

𝑝
+

1

𝑞
≤

2𝜋 𝑛

𝑛
σ𝑝≤𝑛

1

𝑝

• 𝜋 𝑛 = 1 + 𝑜 1
𝑛

ln 𝑛
and σ𝑝≤𝑛

1

𝑝
= ln ln 𝑛 + 𝑂 1 = 𝔼 𝑋

• ⇒ σ 𝑝,𝑞 :𝑝≠𝑞 Cov 𝑋𝑝, 𝑋𝑞 = 𝑜 𝔼 𝑋



A Final Flourish
The variance

• Var 𝑋 = σ𝑝Var 𝑋𝑝 +σ𝑝≠𝑞 Cov 𝑋𝑝, 𝑋𝑞
• σ𝑝Var 𝑋𝑝 ≤ 𝔼 𝑋 and σ𝑝≠𝑞 Cov 𝑋𝑝, 𝑋𝑞 = 𝑜 𝔼 𝑋

• ⇒ Var 𝑋 = 1 + 𝑜 1 𝔼 𝑋 = 1 + 𝑜 1 ln ln 𝑛

Applying Chebyshev

• ℙ 𝜈 𝑥 − ln ln 𝑛 > 𝜆 ln ln 𝑛 ≤
Var 𝑋

𝜆2 ln ln 𝑛
=

1

𝜆2
+ 𝑜(1)

• ⇒ ℙ 𝜈 𝑥 ≠ 1 + 𝑜 1 ln ln 𝑛 = 𝑜 1

• 𝑥 uniform in [𝑛] ⇒ 𝑜(𝑛) such integers ∎

Remark

• Most 𝑥 ∈ 𝑛 satisfy 𝜈 𝑥 = ln ln 𝑛 + 𝑂 ln ln 𝑛



Any questions?



§5 Distinct Sums
Chapter 3: The Second Moment

The Probabilistic Method



Mathemagic

An illusion
• You have a deck of cards, with each card bearing a number

• You invite your friend to select as many cards from the deck as they like

• They add the numbers and only tell you the sum

• The chosen cards are then shuffled back into the deck

• You then go through the deck, and magically pick out your friend’s cards

The secret

• Cards labelled with powers of two: 1,2,4,8,16,…

• Each number 𝑥 ∈ ℕ has a unique binary expansion, 𝑥 = σ𝑗 2
𝑖𝑗

• ⇒ given the sum 𝑥, can recover the labels 2𝑖𝑗 of the chosen cards



A Little Showmanship
Obstacles

• Mathematician friends will see through the illusion

• Non-mathematician friends may not be able to add well
• Card labels shouldn’t be larger than 𝑛

• Binary labels ⇒ log 𝑛 cards
• Small deck is not so impressive

Better decks

• Can we replace the binary labels?

• Suppose we have labels 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑘
• Key property:

• distinct sums – no two subsets should have the same total

• Extremal problem
• How large can a subset 𝑆 ⊆ [𝑛] with distinct sums be?



Claim 3.5.1

The greedy algorithm returns the set of powers of two.

The Greedy Magician
Greedy algorithm

• Start with 𝑆 = ∅

• Go through elements in 𝑛 one at a time

• Add to 𝑆 if they preserve distinct sums property

Proof
• After the first step, we have 𝑆 = 1
• Suppose we have 𝑆 = 1,2,… , 2𝑟 at some stage in the algorithm
• We can write every number up to 2𝑟+1 − 1 as a sum of these elements

• None of these added to 𝑆

• Next available number to be added: 2𝑟+1 ∎



The Extremal Function

Notation
• Let 𝑓 𝑛 = max 𝑆 : 𝑆 ⊆ 𝑛 has distinct sums

Lower bound

• Binary set ⇒ 𝑓 𝑛 ≥ log 𝑛 + 1

• Is this best possible?

Counterexamples

• 𝑆 = {11,17,20,22,23,24} has distinct sums
• ⇒ 𝑓 𝑛 ≥ log𝑛 + 2 for 24 ≤ 𝑛 ≤ 31

• If a set 𝑆 has distinct sums, so does 𝑆′ = 2𝑆 ∪ {1}
• Iterating → infinite sequence of counterexamples



An Upper Bound

Proof
• Let 𝑘 = 𝑓(𝑛) and let 𝑆 ⊆ [𝑛] be a largest set with distinct sums

• For each 𝑇 ⊆ 𝑆, we have 0 ≤ σ𝑠∈𝑇 𝑠 < 𝑘𝑛

• Distinct sums ⇒ each of these 2𝑘 sums is distinct

• ⇒ 2k ≤ 𝑘𝑛

⇒ 𝑘 ≤ log 𝑛 + log 𝑘

⇒ 𝑘 ≤ log 𝑛 + log log 𝑛 + log 𝑘

≤ log 𝑛 + log 2 log 𝑛

= log 𝑛 + log log 𝑛 + 1 ∎

Proposition 3.5.2

As 𝑛 → ∞, we have 𝑓 𝑛 ≤ log 𝑛 + log log 𝑛 + 1.



Theorem 3.5.3

As 𝑛 → ∞, 𝑓 𝑛 ≤ log 𝑛 +
1

2
log log 𝑛 + 𝑂(1).

An Improved Upper Bound

Flawed argument
• Wasteful in estimating range of sums

• Max sum ∼ 𝑘𝑛 ⇒ all members of 𝑆 ∼ 𝑛

• In that case, few small numbers will be sums

Fix

• Try to find a smaller interval still containing many sums

• Chebyshev ⇒ sums may concentrate around the average



Probabilistic Framework
Random variables

• Let 𝑓 𝑛 = 𝑘, let 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑘 ⊆ [𝑛] be a largest set with distinct sums

• Let 𝑋 be a uniformly random sum from 𝑆

• ⇒ 𝑋 = σ𝑖=1
𝑘 𝜀𝑖𝑠𝑖, where each 𝜀𝑖 is independent, uniform on 0,1

Expectation

• Let 𝜇 ≔ 𝔼 𝑋 = σ𝑖=1
𝑘 𝔼 𝜀𝑖𝑠𝑖 =

1

2
σ𝑖=1
𝑘 𝑠𝑖

• Actual value is unimportant

Variance

• Variables 𝜀𝑖 are independent

• ⇒ Var 𝑋 = Var σ𝑖=1
𝑘 𝜀𝑖𝑠𝑖 = σ𝑖=1

𝑘 Var 𝜀𝑖 𝑠𝑖
2 =

1

4
σ𝑖=1
𝑘 𝑠𝑖

2 ≤
1

4
𝑛2𝑘



Concentrated Sums
Recall

• Var 𝑋 ≤
1

4
𝑛2𝑘

Applying Chebyshev

• ℙ 𝑋 − 𝜇 ≥ 𝑛 𝑘 ≤
Var 𝑋

𝑛2𝑘
≤

1

4

• ⇒ ℙ 𝑋 − 𝜇 < 𝑛 𝑘 ≥
3

4

Distinct sums
• Each value comes from at most one sum ⇒ ℙ 𝑋 = 𝑥 ∈ 0, 2−𝑘

• ∴ ℙ 𝑋 − 𝜇 < 𝑛 𝑘 = ℙ 𝜇 − 𝑛 𝑘 < 𝑋 < 𝜇 + 𝑛 𝑘 ≤ 2𝑛 𝑘 ⋅ 2−𝑘

Bounding 𝑘

• 2𝑘 ≤
8

3
𝑛 𝑘 ⇒ 𝑘 ≤ log 𝑛 +

1

2
log 𝑘 + log

8

3
≤ log 𝑛 +

1

2
log log 𝑛 + 𝑂(1) ∎



Any questions?


