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Chapter Overview

* Introduce the Lovasz Local Lemma and some variants
* Survey some applications, including to R(3, k)
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Avoiding Bad Events

Second moment set-up
* Have a collection of good events Ey, E>, ..., E,
* e.g.: E; = {ith copy of H appearsin G(n,p)}
* Goal: show that with positive probability, at least one event occurs
 Usually show this happens with probability 1 — o(1)

Opposite situation

* Have a collection of bad events E4, E>, ..., E,,,
* e.g.: E; = {ith clause in k—SAT formula not satisfied}
* Goal: show that with positive probability, none of these events occur
c ie.P(N;Ef) >0
* Union bound: P(N; Ef) =1 —-P(U; E;) =1 —),;P(E;)
* Tight when events E; are disjoint
* In general, need either m or P(E;) to be small enough for effective bounds



Independence to the Rescue

Independent events
* If the events E, E,, ..., E,,, are mutually independent, we are in business

* P(n; EY) = [1; P(ES) = [1;(1 — P(EY))
* Might tend to zero, but is still positive (provided P(E;) < 1 for all i)
* Doesn’t matter how many bad events there are, or how likely they are

A real-world example

* Work for the Bundesdruckerei
* Job: printing m passports
* Bad event: E; = {misprint in the ith passport}
» Say P(E;) = %for each i
1

. P(N; EF) = (E)m > 0

* = itis possible to have a successful day



The Struggle for Independence

Do we need independence?
* |In practice, true independence of events is rare

* Could hope to replace it with something weaker
* Most events being independent? Pairwise independence?

We might

* Bundesdruckerei example: suppose our passport printer is odd
* Never makes an even number of misprints

* Same marginal distributions
 P(E;) = %for all i

* Almost complete independence
 Any m — 1 of the m events are mutually independent

* However, P(N; E{) < P(# misprints even) = 0



Lovasz to the Rescue

The Bundesdruckerei problem
 P(E;) = % is a large probability for the bad event

o If P(E;) < %, then we lose even pairwise independence
« P(E;|E;) < P(E))

The good news

* Suppose the bad events
* are independent of most other events
e occur with reasonably small probability

* Lovasz Local Lemma = events behave as if independent
e Can show that with positive probability none occur



The Local Lemma — Symmetric Setting

Theorem 4.1.1 (Symmetric Lovasz Local Lemma; Erdds-Lovasz, 1975)

Let E4, E, ..., E,,, be events such that each event E; is mutually
'independent of all but at most d of the other events, and P(E;) < p
foralli.Ifep(d + 1) <1, then P(N; E;) > 0.

|”

“Local” Lemma
* Bound on p independent of number of events (global property)
* Only depends on number of dependencies (local property)

Conclusion

* Only assert that with positive probability, none of the events occur
* This probability can depend on the number of events




Re-restricted k-SAT

Recall
e Any k-SAT formula with fewer than 2% clauses is satisfiable
e Bound is best possible: take formula with all clauses on k variables

Restricted k-SAT

* Previously: each k-set of variables appears in at most one clause
* What if we bound individual variable appearances instead?

Theorem 4.1.2
k

Any k-SAT formula in which each variable appears at most z—k times is
satisfiable.

* Applies to k-SAT formulae with any number of clauses!



Proof by Local Lemma

!Theorem 4.1.2 k
‘Any k-SAT formula in which each variable appears at most — tlmes is satisfiable.

Proof

 Set each variable to true/false independently with probability%

* Events
« E; = {ith clause not satisfied}
e P(E;) =p:=2"foralli

* Dependencies

* Aclause is independent of any clauses with disjoint sets of variables
: ) P
* Clause has k variables, each in < P 1 other clauses

e
2k
= each event independent of all but d := — — 1 other events

cep(d+1)=1=>P(N;E;) >0= formula is satisfiable! n



Recalling Ramsey

Theorem 1.5.2 (Erdés, 1947)
As k — oo, we have

e

R(k) > (iz + 0(1)> 2

* Disjoint sets of edges are independent
e Can improve bound with the local lemma

Theorem 4.1.3
As k — oo, we have

R(k) > (g + 0(1)> 2




Setting Up the Proof

Events
* WetakeG ~ G (n, %) as before
* Forl € ([Z]), event E; = {G|I] = K}, or K;;}
« P(E) = 21=(2) for all 1

Dependencies
* E; independent of all events with disjoint edge-sets

* = E; depends on at most (’2‘) ((ﬁ:; — 1) other events
s vt (0
Lovasz Local Lemma

* = suffices to show 621_(12() (’2‘) () <1



Running the Calculations

Estimates
- ()<5
(D <E 5w
Bounding n
L k
c = 27 () (n2) < &2 ()"4(k)k = & (:;)
¢« Ifn = Ek\/f , parenthetical term is 1

e Leading coefficient is then e?k*21~

* = can afford for the parenthetical term to be 2 + 0(1)

= cantaken = (g + 0(1)) kx/fk



Any questions?

E— — ——
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Returning to R(3, k)

Corollary 2.1.3

As k — oo, we have

§) k%—RSk—Okz
(E) = R(3,K) = 0(k?)

Lower bound
* Proven using G ~ G(n,p) and alterations

Limited dependence

e Again, disjoint sets of edges are independent
* What does the Local Lemma give?



Analysing the Events

Two classes of events
* Forl € ([’;]), let E, = {G|I] = K3}
« ForJ € (™), let F; = {GJ] = K¢}

Probabilities
* Foreach] € ([’;]), p, = P(E;) =p>

* Foreach ] € ([Z]), Dy = [P’(F]) =(1- p)(g) #2 e_p(lzc)
* = in Lovdsz Local Lemma, should take p’ = max {p4, p»}

* = optimal to have p; = p,
121Ink
k2

[ :}pz



Analysing the Events Further

Edge involvements

* Each edge appearsinn — 2 events E; and (ﬁ:;) events F;
Dependencies
* = each E; depends on fewer than d; := 3 (n — 2+ (Z’:; ) other events

* = each F; depends on fewer than d, = (’2‘) (n — 2+ (E:; ) events

* = need to take d = max {d,d,} = d, in the Local Lemma
Bounding n

* Thusep'(d + 1) < e(p')’d ~ (121n k) (k) (n 2+ (i )

123e1n k( )< 123¢ In3 k(n) o 12%1n? k(ne)k
—  n2k? — n2k? k

* For this to be less than 1, needn = 0(k)




Post Mortem

Different kinds of events

* Triangle events Ej:
* Probabilityp; =p
* Depend on relatively few other events

* Independent set events F;:
k
* Probability p, = (1 — p)(Z)

* Depend on many other events

3

A possible remedy

* Wasteful to use same probability, dependency bounds for all events

* Triangle events are “more independent”
e Could afford to let them occur with higher probability

* |deally — track each event’s individual probability and dependencies



Tracking Dependencies

Representing dependence

» Keep track of dependencies using a directed graph
* Events are independent of their non-neighbours

Definition 4.2.1 (Dependency d}graph)

Given events E;, E,, ..., E,, a directed graph D on the vertices [m] isa |
\dependency digraph if, for each i € [m], the event E; is mutually

independent of the set of events {E (i, ]) ¢ D}

Why a digraph?
* In most applications, digraph will be symmetric
- (,j)ED e (ji)eD
* Can sometimes help to have flexibility



The Lovasz Local Lemma

Theorem 4.2.2 (Lovasz Local Le_}nma; Erd6s-Lovasz, 1975)

Let £, E>, ..., E;, be events with a dependency digraph D. If there are |
\x; € [0,1) such that P(E;) < x; H(i j)eﬁ(l — x]-) foralli € [m], then
P(ni ELC) = Hi(l — Xi)-

Special case: independent events

- Can take D to be edge-less
» = suffices to have x; = P(E;), and done

General case

* Dependencies — correction factor H(,;,j)(l — xj)
* The more dependencies, the smaller this factor
* = need probability of these events to shrink



Returning to R(3, k) Once Again

Symmetries

 All triangle events E; have the same probability and dependencies
* = should set x; = x for some common x

* All independent set events F; also share the same parameters
* = set x; =y for some commony

Probability conditions
* Triangle events
* Depend on at most 3(n — 2) < 3n other triangle events
* Depend on at most (’;) independent set bounds
= suffices to have P(E;) = p3 < x(1 — x)3"(1 — y)(z)
* Independent set events

 Depend on at most (’;)(n —2) < (’;)n triangle events, (’;) independent set events
4
2

- = suffices to have P(F;) = (1 — p)(g) < y(l- x)( )"(1 — y)(’ié)



A Conditional Result

Theorem 4.2.3 (Spencer, 1977)h

Let k,n € N. If there are p, x,y € [0,1) such that
p® < x(1—x)*"(1 —y)W

|

'and

| k K
' 2 2

1-p&) <ya -nEra - »o,
then R(3, k) > n.

Proof
* Follows immediately from Lovasz Local Lemma and previous calculations =

Optimisation

* Want to maximise n while satisfying the two inequalities



Some Heuristics

Maximise n subject to
(1) p3 <x(1-x)3"1 -y
k k
2 2

2 a-p@<ya-nEra-y®
Setting y

* Do not want (1 — y)(z) ~ e Y to be exponentially small

s Ssety = (Z)_l = (1 — y)W is constant

Understanding x

* From (2),weneed (1 —x)">1—p
* > nx < p,and (1 — x)™is constant



More Heuristics

Maximise n subject to
(1) p®<x
k
2

2) a-pld) <y
(3) y= (’;)_1 and nx < p

Setting p
* From (1)and (3), np3 < nx <p =>p <n~ /7
Fixing n
’ IZC — IZC -1 " k k
* From (2’) and (3), (1 —p)( ) ~ e p( ) < (Z) ~ (5)

« = o PR/2 < % < k=3/2, sincen = 0(k?)

~1 _ 1/2 _ k )
e>k>2p " Ink=n"“Ink=>n=0 (ﬁ)



Wrapping Things Up Neatly

Corollary 4.2.4
As k —> oo, we have

k 2
L —— — L 2

Proof
* Upper bound from Erd&s-Szekeres
* Lower bound:
« Choose k = 20y/nlnn, y = (Z)_l, X =

e Substitute values into Theorem 4.2.3

andp = L
9n—3/2 p= 37




Any questions?

E— — ——
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The Local Lemmas

* Recall the symmetric version

Theorem 4.1.1 (Symmetric Lovasz Local Lemmma; Erd6s-Lovasz, 1975)

Let £y, E>, ..., E,,, be events such that each event E; is mutually
'independent of all but at most d of the other events, and P(E;) < p
foralli.Ifep(d + 1) < 1, then P(n; E{) > 0.

* This follows easily from the general statement

Theorem 4.2.2 (Lovasz Local Le“mma; Erd6s-Lovasz, 1975)

Let £y, E>, ..., E,,, be events with a dependency digraph D. If there are
'x; € [0,1) such that P(E;) < x; H(i j)eﬁ(l — xj) foralli € [m], then
P(ﬂi Elc) = Hl(l — Xl').




Deducing the Symmetric Statement

Theorem 4.1.1 (Symmetric Lovasz Local Lemmma; Erd6s-Lovasz, 1975)

Let E4, E>, ..., E,,, be events such that each event E; is mutually
'independent of all but at most d of the other events, and P(E;) < p
foralli.Ifep(d + 1) < 1, then P(n; E;) > 0.

Proof
* For each event E;, set x; = ﬁ
d
1 1 1
Then x; H(i,j)eﬁ(l 1) H(U)ED (1 B E) =l (1 B ﬁ)
) _ 1 1
Foralld > 1, (1 a+t 1) =

i H(U)ED(1 x]) = e(d+1) =P

1 m
° = P(El) <p <X H(i,j)El_j(l — Xj) = [P)(ni El) = (1 — m) >0



Proving the General Statement

Theorem 4.2.2 (Lovasz Local Le_}nma; Erd6s-Lovasz, 1975)

Let E;, E,, ..., E,,, be events with a dependency digraph D. If there are |
1x; €10,1) such that P(E;) < x; H(ij)ez_)’(l — x;) for all i € [m], then
P(N; E7) = [1;(1 = xy).

Chain rule
» P(N, Ef) = [T2, P(E| njz] Ef)
= [1iZ1 (1 — P(E;| Nz} ch))
New objective
* Suffices to show P(Ef| n};} E]-C) > 1 — x; foreachi € [m]



The Irrelevance of Order

Objective
* For each i € [m], P(Ef| n};} ch) >1—x;

Reordering events

* |f we reorder the events, the conditions do not change

* = the event E; could be preceded by any subset of the other events
= we can hope that more is true

Newer objective

* Foreachi € [m]and S € [m] \ {i}, P(Ef| Njes E]-C) >1—x;



Conditional Probabilities

Objective
* Foreachi € [m]and S € [m] \ {i}, IP(Ef| Njes E]-C) >1—x;

Independence

* We know E; is independent of some of the E;
* Conditioning on these events should be irrelevant
* Partition events
¢ LletS; = {j € S:(i,j) € D}
¢ LetS, ={j € S:(i,j) ¢ D}

Rewriting the probability

P(Ei N (ngesl Ef)|(ﬂj€52 E]C))
P(nfeﬁ Eﬂnfesz E]'C)

» P(Ef| Njes Ef)=1— P(E;| Njes EI=NiR=



Simplifying the Numerator

Recall
+ S, ={j € S:(i,j) € D}
+ S, ={j €5:(i,)) & D}
P(E; N (Nges, EF)|(Njes, EJ'C))

° : j 5 =
P(E;]| Njes E] ) [P(ﬂgesl EﬂnjeSz Efc)

Numerator
* E; 0 (Nees, Ef) S E;
* = P(E; N (Nees, EF)| Njes, Ef) < P(E| Njes, Ef)
* E; is mutually independent of the eventsin S,
» = P(E;| Njes, Ef) = P(E;)
* Assumption: P(E;) < x; Hj:(i,j)eﬁ(l — xj)



Simplifying the Denominator

Objective
* Foreachi € [m]and S € [m] \ {i}, IP’(Ef| Njes E]-C) >1—x;

Denominator: P(ngegl Ef] Njes, ch)

* Chainrule
* P(Nges, Ef| Njes, Ef) = Mpes, P(EF|(Nres, r<e Ef) N (Njes, Ef))
e letT, ={resS;:r<f}jus,

* Apply the objective
* = P(Ef| Njer, Ef) 21— x,

* Substitute in
* = P(Nges, EF| Njes, Ef) = Tpes, (1 — x)

. S, € {j: (i,j) € D}
* > ]P)(ﬂfesl Eﬂ Njes, ch) e l_lj:(i,j)ez_)’(1 B xf)



Achieving Our Objective

Objective
* Foreachi € [m]and S € [m] \ {i}, IP’(Ef| Njes E]-C) >1—x;

Recall

P(E; N (Nges, Ef)|Njes, EF)

e P(Ef| Nieg EF) =1 — L 27

(EE] s ) =1 =, Byes, )
* P(E; N (Nges, EF)| Njes, Ef) < P(ED < x; 11 ; e5(1 — %7)
’ P(ni’ESl Efl Njes, ch) = Hj;(i,j)ef)’(l B xj)

A [P)(Elc‘ ﬂjES ch) > 1 — X

Circular logic

* We used the objective to lower bound the denominator



Induction to the Rescue

Objective
* Foreachi € [m]and S € [m] \ {i}, IP’(Ef| Njes E]-C) >1—x;

The issue
* Used the objective when bounding the denominator in the proof

e Parameters

'l=€€51
°S=Tg={T651:T<€}U52
The fix

* Size of conditioned set

* We have |Ty| < |S;] —1+|S,| < |S]

= when proving the objective for a set S, only require it for smaller subsets
* Apply induction on |S]|

e Basecase: S = @ is trivial



Proof Recap

Theorem 4.2.2 (Lovasz Local Le;ﬂma; Erd6s-Lovasz, 1975)

Let £y, E>, ..., E,,, be events with a dependency digraph D. If there are |
x; € [0,1) such that P(E;) < x; H(i j)eﬁ(l — xj) for all i € [m], then
P(ni Elc) = Hl(l — .X'i).

EER
* Chain rule: probability of intersection is product of conditional probabilities
* Prove P(Ef| Njes ch) > 1 — x; by induction on [S]|
» Separate conditioned events by dependence of E;

» Simplify resulting expression by bounding the numerator
e Apply induction hypothesis to the denominator

* Substituting into chain rule gives result



Any questions?

E— — ——
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Latin Squares

Definition 4.4.1 (Latin square) -

A Latin square of order n is an n X n array with entries from [n] such
that each symbol appears exactly once in each row and column.

| p) 3 4 5 Applications
* Experimental design
2 3 4 > 1 e Tournament scheduling
* Games and recreation
3 4 5 1 2
e Algebra
4 5 1 9 3 * Cayley table of a group is a Latin
square



Latin Transversals

Definition 4.4.2 (Latin transver‘sﬁal)

Given an m X n array with entries in N, a transversal is a selection of

cells without any repeated row, column or symbol.

3

4

i

5

1

Example
* Conducting a survey
e Public divided by metrics
* Age
* Height
* No. combinatorics courses taken

* Want a fair sample
* No group is overrepresented



Latin Transversals

Definition 4.4.2 (Latin transver‘sﬁal)

Given an m X n array with entries in N, a transversal is a selection of
cells without any repeated row, column or symbol.

Example
* Conducting a survey
e Public divided by metrics
* Age
* Height
* No. combinatorics courses taken

* Want a fair sample
* No group is overrepresented




An Extremal Problem

Large transversals?
 How large a transversal must a Latin square of order n contain?

lProp05|t|on 4.4.3

'Any Latin square of order n contains a transversal of size at least = 3

Proof
* Build a transversal greedily
* There are a total of n? cells

 Each cell clashes with 3(n — 1) other cells

* Those in the same row, column or with the same symbol
2

n
e = we can select at least cells before we run out
3(n—-1)+1




An Upper Bound to the Extremal Problem

Proposition 4.4.4

'For every even n € N, there is a Latin square of order n without a
transversal of size n.

Proof
* Letn = 2k and L be the Cayley table of Z,,,
* L(i,j) =1+ j (mod 2k)
* Suppose we have a transversal
* Chosen cells: {(i,ﬂ(i)): i € [Zk]} for some permutation € S,
* Rows, columns and symbols range over [2k]
« = sumis (%) = k(2k — 1) = k (mod 2k)
e But summing symbols = summing rows and columns:
' Zl-L(i,n(i)) — Zi(i + n(i)) =Y i+X; (i) =k+k=0 %k (mod 2k)



A Daring Conjecture

lConJecture 4.4.5 (Ryser- Brualdi- Stein, 1967+)
Every Latin square of order n admits a transversal of sizen — 1.

Odd orders

* Ryser conjectured that odd Latin squares have full transversals

Theorem 4.4.6 (Erdés-Spencer,k1991)

Let A be an n X n array with entries in N. If no symbol appears more

n—1

‘than o times in A4, then A admits a transversal of size n.

Comparison to the conjecture
* Weak: Latin squares have each symbol appearing n times
* Strong: In theorem, no restrictions on row or column repetitions!



Proof Framework

Goal

e Show that a random permutation can give a full transversal

Probability space

* Choose € §,, uniformly at random
 Potential transversal {(i,n(i)):i € [n]}

Bad events

* Chosen cells from distinct rows and columns by construction
* Only way to fail: repeat a symbol
 How do we define events to capture this?



Defining Failure

Events by symbo

* For each symbol i € N appearing in A4, define an event
» E; = {two cells with the symbol i are selected}

e {m gives a transversal} = N; Ef

Probabilities

* P(E;) depends very much on structure of A
* If all i-entries are in the same row = P(E;) =0
 If Q(n) are on a diagonal = P(E;) = Q(1)

* Expected number of events

* Hard to compute
e Could grow linearly

Many dependencies
 Different symbols that appear in the same row/column are dependent



Redefining Failure

Events by rows
* For {i,j} € ([;])' define E; j = {Ain() = Ajn(i)

o {mr gives a transversal} = NG ElC]

Same issues as before

* Probabilities depend heavily on array A
* Expected number of events can be Q(n)
* High dependence

* Knowing E; ; occurs could tell us which elements are selected
* Affects distribution in other rows



Reredefining Failure

Events by cells

* |ldentify exactly where symbols are repeated
* For every pair of cells (i,j) and (i’,j") with

« A(L,j) = A(,j")

c i #1

*J#EJ

define the event E; ; v v = {m(i) = j} n{r(i’) = j'}

» {m gives a transversal} =N; ; ;v 1 E; ;1 i

Probabilities

* Each event occurs with probability n(n—1)

1 ~1
* Number of events depends on structure of A, but at most > n? .=

* = expected number of bad events can still be Q(n)



Examining Independence

Neighbouring events

* Consider events E; ; ;v irand E, o 1 o7
 Correspond to cells (i,)), (i’,j"), (p,q) and (p’,q")
* Only one cell selected from each row/column

e >if{i,i'}n{p,p'}#0or{j,j'} n{q,q'} # @, noindependence

Non-neighbouring events

* Permutation restrictions are global in nature
* = information travels even when not sharing a row or column

= cannot expect any independence



Who Needs Independence?

Proof of Lovasz Local Lemma
* Used independence when bounding the numerator
[ J o o c — o o —_— o
P(Ei| Njes, Ef) = P(ED < x; T, ; 5e5(1 — %))
 (First) equality by independence
* (Second) inequality by assumption

Weakening condition

* We only use the inequality
e Could skip the intermediate equality
° i . . C . — Y. ]
= suffices to have IP(EL| Njes Ej ) < X; Hj:(i,j)eﬁ(l x]) forall i € [m] and

s c [m]\ {j: (i,j) € D}



The Lopsided Lovasz Local Lemma

Strengthened result

* Using this observation, we can weaken the requirement in the Local Lemma

* Following version is useful in spaces with limited independence
* Most pairs of events should be positively correlated

l

|

Theorem 4.4.7 (Lopsided Lovdsz Local Lemma; Erdés-Spencer, 1991)

Let £y, E>, ..., E,,, be events in a probability space, let x4, x5, ..., X,;;, €
10,1), and let D be a directed graph on the vertices [m]. If, for every
i € |m]and S S [m]\ ({j: (i,j) € D} U {i}), we have

P(E| s E) < | | (1-x),
j:(i,j)ED
then P(N; E;) = [[;(1 — x;) > 0.

P




Veritying the Condition

Lemma 4.4.8

Let the events E; ; ;7 i» be as previously defined, and let 5 be a set of

indices for events involving cells not sharing a row or column with (i, j) |
jor (i’,j"). Then

P (E

1
C
<
Npap'a)es p,q,p’,q’) “nn—-1)

RN

Proof idea
* Without loss of generality, may assumei=j=1,i =j' =2
o . . . . C
Restrict to permutations m satisfying n(p,q,p',q')ES Ep,q,p,,q,
* By modifying permutations, show that number of permutations with (1) =
r and w(2) = s is minimised (forr # s) whenr =1 and s = 2



Veritying the Condition - Notation

Objective

C 1
° <
]P (E1,1,2,2 ‘ n(p,q,p',q’)ES Ep,q,p',q') — n(n—l)

Notation

» Call m “good” if T €Ny 417 a"Ves Ep g’ o’
* Let P s = {m good, n(1) =1, n(2) = s}

* Goal: [Py ,| < |B-4| forall (1,s) € [n]%,7 # s

Setting up the proof
* Goal: Construct an injection P; , © P, ¢
e Case:1,s & {1,2} (others similar)
* letm € Pi,andletx = 1(r),y = 17 1(s)



Veritying the Condition - Proof
Goal

* Injection Py, © B
* Given:m € P, (x) =r,m(y) =5

Switching
* Define new permutationt™ € B,
[ rifz=1 |
sifz =2
e t*(z) =< lifz=x
2ifz=vy
\.(z) otherwise

e " is good: only change cells in the first two rows or columns, avoiding S
> € P g
The map = 1" is injective



Finding Large Transversals

Theorem 4.4.6 (Erdc’Ss-Spencer,u1991)

Let A be an n X n array with entries in N. If no symbol appears more

| -1, : : .
than n4—e times in 4, then A admits a transversal of size n.

Proof
* We will apply the Lopsided Lovasz Local Lemma

e D: edges between (i,j,i’,j') and (p,q,p’, q") if the corresponding cells share

a row or column

: : ~1 -1
e Each event is adjacenttoat mostd :=4-n - 1= n(n-1)

4e e
1
® s ] = —
We set x; ; ;7 i T

* = inequality reduces to ep(d + 1) < 1, as in symmetric case
1 1
P(E 1) = n(n-1)  e(d+1)’

— 1 other events

for each event




Ryser’s Conjecture

State of the art
* More involved probabilistic proofs bring us much closer to Ryser’s Conjecture

Theorem (Keevash—Pokrovskiy:éudakov-Yepremyan, 2020+)
Every Latin square of order n admits a transversal of size

| ( logn )
| n—~o0 :
loglogn

Theorem (Kwan, 2016+)
| :
'‘Almost all Latin squares of order n have a transversal of size n.




Any questions?

E— — ——



