Chapter 4: The Lovász Local Lemma

The Probabilistic Method Summer 2020 Freie Universität Berlin

Chapter Overview

- Introduce the Lovász Local Lemma and some variants
- Survey some applications, including to R(3, k)

§1 Introducing the Lemma

Chapter 4: The Lovász Local Lem The Probabilistic Method

§2 The Ramsey Number R(3, k)

Chapter 4: The Lovász Local Lemma The Probabilistic Method

§3 Proving the Local Lemma

Chapter 4: The Lovász Local Lemm The Probabilistic Method

§4 Latin Transversals

Chapter 4: The Lovász Local Lemma The Probabilistic Method

§1 Introducing the Lemma

Chapter 4: The Lovász Local Lemma

The Probabilistic Method

Avoiding Bad Events

Second moment set-up

- Have a collection of good events E_1 , E_2 , ..., E_m
 - e.g.: $E_i = \{i \text{th copy of } H \text{ appears in } G(n, p)\}$
- Goal: show that with positive probability, at least one event occurs
- Usually show this happens with probability 1 o(1)

Opposite situation

- Have a collection of bad events E_1, E_2, \dots, E_m
 - e.g.: $E_i = \{i \text{th clause in } k \text{SAT formula not satisfied} \}$
- Goal: show that with positive probability, none of these events occur
 - i.e.: $\mathbb{P}(\cap_i E_i^c) > 0$
- Union bound: $\mathbb{P}(\cap_i E_i^c) = 1 \mathbb{P}(\cup_i E_i) \ge 1 \sum_i \mathbb{P}(E_i)$
 - Tight when events E_i are disjoint
 - In general, need either m or $\mathbb{P}(E_i)$ to be small enough for effective bounds

Independence to the Rescue

Independent events

- If the events E_1, E_2, \dots, E_m are mutually independent, we are in business
- $\mathbb{P}(\cap_i E_i^c) = \prod_i \mathbb{P}(E_i^c) = \prod_i (1 \mathbb{P}(E_i))$
- Might tend to zero, but is still positive (provided $\mathbb{P}(E_i) < 1$ for all i)
 - Doesn't matter how many bad events there are, or how likely they are

A real-world example

- Work for the Bundesdruckerei
 - Job: printing *m* passports
- Bad event: $E_i = \{ \text{misprint in the } i \text{th passport} \}$
 - Say $\mathbb{P}(E_i) = \frac{1}{2}$ for each i
- $\mathbb{P}(\cap_i E_i^c) = \left(\frac{1}{2}\right)^m > 0$
 - \Rightarrow it is possible to have a successful day

The Struggle for Independence

Do we need independence?

- In practice, true independence of events is rare
- Could hope to replace it with something weaker
 - *Most* events being independent? Pairwise independence?

We might

- Bundesdruckerei example: suppose our passport printer is odd
 - Never makes an even number of misprints
- Same marginal distributions
 - $\mathbb{P}(E_i) = \frac{1}{2}$ for all i
- Almost complete independence
 - Any m-1 of the m events are mutually independent
- However, $\mathbb{P}(\cap_i E_i^c) \leq \mathbb{P}(\# \text{ misprints even}) = 0$

The Bundesdruckerei problem

- $\mathbb{P}(E_i) = \frac{1}{2}$ is a large probability for the bad event
- If $\mathbb{P}(E_i) < \frac{1}{2}$, then we lose even pairwise independence
 - $\mathbb{P}(E_i|E_j) < \mathbb{P}(E_i)$

The good news

- Suppose the bad events
 - are independent of most other events
 - occur with reasonably small probability
- Lovász Local Lemma \Rightarrow events behave as if independent
- Can show that with positive probability none occur

The Local Lemma – Symmetric Setting

Theorem 4.1.1 (Symmetric Lovász Local Lemma; Erdős-Lovász, 1975)

Let $E_1, E_2, ..., E_m$ be events such that each event E_i is mutually independent of all but at most d of the other events, and $\mathbb{P}(E_i) \leq p$ for all i. If $ep(d+1) \leq 1$, then $\mathbb{P}(\cap_i E_i^c) > 0$.

"Local" Lemma

- Bound on *p* independent of number of events (global property)
- Only depends on number of dependencies (local property)

Conclusion

- Only assert that with positive probability, none of the events occur
- This probability can depend on the number of events

Re-restricted k-SAT

Recall

- Any k-SAT formula with fewer than 2^k clauses is satisfiable
- Bound is best possible: take formula with all clauses on k variables

Restricted k-SAT

- Previously: each k-set of variables appears in at most one clause
- What if we bound individual variable appearances instead?

Theorem 4.1.2

Any k-SAT formula in which each variable appears at most $\frac{2^k}{e^k}$ times is satisfiable.

• Applies to *k*-SAT formulae with any number of clauses!

Proof by Local Lemma

Theorem 4.1.2 Any k-SAT formula in which each variable appears at most $\frac{2^k}{e^k}$ times is satisfiable.

Proof

- Set each variable to true/false independently with probability $\frac{1}{2}$
- Events
 - $E_i = \{i \text{th clause not satisfied}\}$
 - $\mathbb{P}(E_i) = p \coloneqq 2^{-k}$ for all i
- Dependencies
 - A clause is independent of any clauses with disjoint sets of variables
 - Clause has k variables, each in $\leq \frac{2^k}{e^k} 1$ other clauses
 - \Rightarrow each event independent of all but $d \coloneqq \frac{2^k}{e} 1$ other events
- $ep(d + 1) = 1 \Rightarrow \mathbb{P}(\cap_i E_i) > 0 \Rightarrow$ formula is satisfiable!

Recalling Ramsey

Theorem 1.5.2 (Erdős, 1947)

As $k \to \infty$, we have

$$R(k) \ge \left(\frac{1}{e\sqrt{2}} + o(1)\right) k\sqrt{2}^k.$$

- Disjoint sets of edges are independent
 - Can improve bound with the local lemma

Theorem 4.1.3 As $k \to \infty$, we have $R(k) \ge \left(\frac{\sqrt{2}}{e} + o(1)\right) k \sqrt{2}^k$.

Setting Up the Proof

Events

- We take $G \sim G\left(n, \frac{1}{2}\right)$ as before
- For $I \in {[n] \choose k}$, event $E_I = \{G[I] \cong K_k \text{ or } K_k^c\}$
- $\mathbb{P}(E_I) = 2^{1 \binom{k}{2}}$ for all I

Dependencies

- E_I independent of all events with disjoint edge-sets
- $\Rightarrow E_I$ depends on at most $\binom{k}{2} \left(\binom{n-2}{k-2} 1 \right)$ other events • $\Rightarrow d + 1 \le \binom{k}{2} \binom{n-2}{k-2}$

Lovász Local Lemma

•
$$\Rightarrow$$
 suffices to show $e 2^{1 - \binom{k}{2}} \binom{k}{2} \binom{n-2}{k-2} \le 1$

Running the Calculations

Estimates

•
$$\binom{k}{2} \leq \frac{k^2}{2}$$

• $\binom{n-2}{k-2} \leq \frac{k^2}{n^2} \binom{n}{k} \leq \frac{k^2}{n^2} \left(\frac{ne}{k}\right)^k$

Bounding n

•
$$\Rightarrow e 2^{1-\binom{k}{2}}\binom{k}{2}\binom{n-2}{k-2} \le \frac{e 2^{-\binom{k}{2}}k^4}{n^2} \left(\frac{ne}{k}\right)^k = \frac{e k^4}{n^2} \left(\frac{ne\sqrt{2}}{k\sqrt{2}^k}\right)^k$$

- If $n = \frac{1}{e\sqrt{2}}k\sqrt{2}^{n}$, parenthetical term is 1
- Leading coefficient is then $e^2k^42^{1-k}$
 - \Rightarrow can afford for the parenthetical term to be 2 + o(1)

•
$$\Rightarrow$$
 can take $n = \left(\frac{\sqrt{2}}{e} + o(1)\right) k \sqrt{2}^k$

Any questions?

§2 The Ramsey Number R(3, k)

Chapter 4: The Lovász Local Lemma

The Probabilistic Method

Returning to R(3,k)

Corollary 2.1.3
As
$$k \to \infty$$
, we have
$$\Omega\left(\left(\frac{k}{\ln k}\right)^{\frac{3}{2}}\right) = R(3, k) = O(k^2).$$

Lower bound

• Proven using $G \sim G(n, p)$ and alterations

Limited dependence

- Again, disjoint sets of edges are independent
- What does the Local Lemma give?

Analysing the Events

Two classes of events

- For $I \in {[n] \choose 3}$, let $E_I = \{G[I] \cong K_3\}$
- For $J \in {[n] \choose k}$, let $F_J = \{G[J] \cong K_k^c\}$

Probabilities

• For each
$$I \in {[n] \choose 3}$$
, $p_1 \coloneqq \mathbb{P}(E_I) = p^3$

- For each $J \in {[n] \choose k}$, $p_2 \coloneqq \mathbb{P}(F_J) = (1-p)^{\binom{k}{2}} \approx e^{-p\binom{k}{2}}$
- \Rightarrow in Lovász Local Lemma, should take $p' = \max{\{p_1, p_2\}}$
- \Rightarrow optimal to have $p_1 = p_2$

•
$$\Rightarrow p \approx \frac{12 \ln k}{k^2}$$

Analysing the Events Further

Edge involvements

• Each edge appears in n-2 events E_I and $\binom{n-2}{k-2}$ events F_J

Dependencies

- \Rightarrow each E_I depends on fewer than $d_1 \coloneqq 3\left(n-2+\binom{n-2}{k-2}\right)$ other events
- \Rightarrow each F_J depends on fewer than $d_2 \coloneqq \binom{k}{2} \left(n 2 + \binom{n-2}{k-2}\right)$ events
- \Rightarrow need to take d = max $\{d_1, d_2\} = d_2$ in the Local Lemma

Bounding n

• Thus
$$ep'(d+1) \le e(p')^3 d \sim e\left(\frac{12\ln k}{k^2}\right)^3 \binom{k}{2} \left(n-2+\binom{n-2}{k-2}\right)$$

$$\le \frac{12^3 e\ln^3 k}{k^4} \binom{n-2}{k-2} \le \frac{12^3 e\ln^3 k}{n^2 k^2} \binom{n}{k} \le \frac{12^3 e\ln^3 k}{n^2 k^2} \left(\frac{ne}{k}\right)^k$$

• For this to be less than 1, need n = O(k)

Post Mortem

Different kinds of events

- Triangle events *E*_{*I*}:
 - Probability $p_1 = p^3$
 - Depend on relatively few other events
- Independent set events *F_I*:
 - Probability $p_2 = (1-p)^{\binom{k}{2}}$
 - Depend on many other events

A possible remedy

- Wasteful to use same probability, dependency bounds for all events
- Triangle events are "more independent"
 - Could afford to let them occur with higher probability
- Ideally track each event's individual probability and dependencies

Tracking Dependencies

Representing dependence

- Keep track of dependencies using a directed graph
- Events are independent of their non-neighbours

Definition 4.2.1 (Dependency digraph)

Given events $E_1, E_2, ..., E_m$, a directed graph \overrightarrow{D} on the vertices [m] is a *dependency digraph* if, for each $i \in [m]$, the event E_i is mutually independent of the set of events $\{E_j: (i, j) \notin \overrightarrow{D}\}$.

Why a digraph?

- In most applications, digraph will be symmetric
 - $(i,j) \in \vec{D} \Leftrightarrow (j,i) \in \vec{D}$
- Can sometimes help to have flexibility

The Lovász Local Lemma

Theorem 4.2.2 (Lovász Local Lemma; Erdős-Lovász, 1975)

Let $E_1, E_2, ..., E_m$ be events with a dependency digraph \overrightarrow{D} . If there are $x_i \in [0,1)$ such that $\mathbb{P}(E_i) \leq x_i \prod_{(i,j)\in \overrightarrow{D}} (1-x_j)$ for all $i \in [m]$, then $\mathbb{P}(\cap_i E_i^c) \geq \prod_i (1-x_i)$.

Special case: independent events

- Can take \overrightarrow{D} to be edge-less
- \Rightarrow suffices to have $x_i = \mathbb{P}(E_i)$, and done

General case

- Dependencies \rightarrow correction factor $\prod_{(i,j)} (1 x_j)$
- The more dependencies, the smaller this factor
- \Rightarrow need probability of these events to shrink

Returning to R(3, k) Once Again

Symmetries

- All triangle events E_I have the same probability and dependencies
 - \Rightarrow should set $x_I = x$ for some common x
- All independent set events F_I also share the same parameters
 - \Rightarrow set $x_J = y$ for some common y

Probability conditions

- Triangle events
 - Depend on at most 3(n-2) < 3n other triangle events
 - Depend on at most $\binom{n}{k}$ independent set bounds
 - \Rightarrow suffices to have $\mathbb{P}(E_I) = p^3 \le x(1-x)^{3n}(1-y)^{\binom{n}{k}}$
- Independent set events
 - Depend on at most $\binom{k}{2}(n-2) < \binom{k}{2}n$ triangle events, $\binom{n}{k}$ independent set events
 - \Rightarrow suffices to have $\mathbb{P}(F_J) = (1-p)^{\binom{k}{2}} \le y(1-x)^{\binom{k}{2}n}(1-y)^{\binom{n}{k}}$

A Conditional Result

Theorem 4.2.3 (Spencer, 1977)

Let $k, n \in \mathbb{N}$. If there are $p, x, y \in [0,1)$ such that $p^3 \leq x(1-x)^{3n}(1-y)^{\binom{n}{k}}$

and

$$(1-p)^{\binom{k}{2}} \le y(1-x)^{\binom{k}{2}n}(1-y)^{\binom{n}{k}},$$

then R(3, k) > n.

Proof

• Follows immediately from Lovász Local Lemma and previous calculations

Optimisation

• Want to maximise *n* while satisfying the two inequalities

Some Heuristics

Maximise *n* subject to

(1)
$$p^3 \le x(1-x)^{3n}(1-y)^{\binom{n}{k}}$$

(2) $(1-p)^{\binom{k}{2}} \le y(1-x)^{\binom{k}{2}n}(1-y)^{\binom{n}{k}}$

Setting *y*

• Do not want $(1 - y)^{\binom{n}{k}} \approx e^{-y\binom{n}{k}}$ to be exponentially small

•
$$\Rightarrow$$
 set $y = {\binom{n}{k}}^{-1} \Rightarrow (1 - y)^{\binom{n}{k}}$ is constant

Understanding *x*

- From (2), we need $(1 x)^n > 1 p$
- $\Rightarrow nx < p$, and $(1-x)^n$ is constant

More Heuristics

Maximise *n* subject to

(1')
$$p^3 \le x$$

(2') $(1-p)^{\binom{k}{2}} \le y$
(3) $y = \binom{n}{k}^{-1}$ and $nx < p$

Setting p

• From (1') and (3), $np^3 \le nx$

Fixing *n*

• From (2') and (3),
$$(1-p)^{\binom{k}{2}} \approx e^{-p\binom{k}{2}} \leq \binom{n}{k}^{-1} \approx \left(\frac{k}{n}\right)^k$$

• $\Rightarrow e^{-pk/2} \leq \frac{k}{n} \leq k^{-3/2}$, since $n = O(k^2)$
• $\Rightarrow k \geq p^{-1} \ln k = n^{1/2} \ln k \Rightarrow n = O\left(\left(\frac{k}{\ln k}\right)^2\right)$

Wrapping Things Up Neatly

Corollary 4.2.4
As
$$k \to \infty$$
, we have
$$\Omega\left(\left(\frac{k}{\ln k}\right)^2\right) = R(3,k) = O(k^2).$$

Proof

- Upper bound from Erdős-Szekeres
- Lower bound:
 - Choose $k \ge 20\sqrt{n} \ln n$, $y = {\binom{n}{k}}^{-1}$, $x = \frac{1}{9n^{-3/2}}$ and $p = \frac{1}{3\sqrt{n}}$
 - Substitute values into Theorem 4.2.3

Any questions?

§3 Proving the Local Lemma

Chapter 4: The Lovász Local Lemma

The Probabilistic Method

The Local Lemmas

• Recall the symmetric version

Theorem 4.1.1 (Symmetric Lovász Local Lemma; Erdős-Lovász, 1975) Let $E_1, E_2, ..., E_m$ be events such that each event E_i is mutually independent of all but at most d of the other events, and $\mathbb{P}(E_i) \leq p$ for all i. If $ep(d + 1) \leq 1$, then $\mathbb{P}(\cap_i E_i^c) > 0$.

• This follows easily from the general statement

Theorem 4.2.2 (Lovász Local Lemma; Erdős-Lovász, 1975) Let $E_1, E_2, ..., E_m$ be events with a dependency digraph \vec{D} . If there are $x_i \in [0,1)$ such that $\mathbb{P}(E_i) \leq x_i \prod_{(i,j) \in \vec{D}} (1-x_j)$ for all $i \in [m]$, then $\mathbb{P}(\cap_i E_i^c) \geq \prod_i (1-x_i)$.

Deducing the Symmetric Statement

Theorem 4.1.1 (Symmetric Lovász Local Lemma; Erdős-Lovász, 1975)

Let $E_1, E_2, ..., E_m$ be events such that each event E_i is mutually independent of all but at most d of the other events, and $\mathbb{P}(E_i) \leq p$ for all i. If $ep(d + 1) \leq 1$, then $\mathbb{P}(\cap_i E_i^c) > 0$.

Proof

• For each event
$$E_i$$
, set $x_i = \frac{1}{d+1}$
• Then $x_i \prod_{(i,j)\in\vec{D}} (1-x_j) = \frac{1}{d+1} \prod_{(i,j)\in\vec{D}} (1-\frac{1}{d+1}) \ge \frac{1}{d+1} (1-\frac{1}{d+1})^d$
• For all $d \ge 1$, $(1-\frac{1}{d+1})^d \ge e^{-1}$
• $\Rightarrow x_i \prod_{(i,j)\in\vec{D}} (1-x_j) \ge \frac{1}{e(d+1)} \ge p$
• $\Rightarrow \mathbb{P}(E_i) \le p \le x_i \prod_{(i,j)\in\vec{D}} (1-x_j) \Rightarrow \mathbb{P}(\cap_i E_i) \ge (1-\frac{1}{d+1})^m > 0$

Proving the General Statement

Theorem 4.2.2 (Lovász Local Lemma; Erdős-Lovász, 1975)

Let $E_1, E_2, ..., E_m$ be events with a dependency digraph \vec{D} . If there are $x_i \in [0,1)$ such that $\mathbb{P}(E_i) \leq x_i \prod_{(i,j)\in \vec{D}} (1-x_j)$ for all $i \in [m]$, then $\mathbb{P}(\cap_i E_i^c) \geq \prod_i (1-x_i)$.

Chain rule

•
$$\mathbb{P}(\bigcap_{i=1}^{m} E_i^c) = \prod_{i=1}^{m} \mathbb{P}\left(E_i^c \mid \bigcap_{j=1}^{i-1} E_j^c\right)$$
$$= \prod_{i=1}^{m} \left(1 - \mathbb{P}\left(E_i \mid \bigcap_{j=1}^{i-1} E_j^c\right)\right)$$

New objective

• Suffices to show $\mathbb{P}(E_i^c | \cap_{j=1}^{i-1} E_j^c) \ge 1 - x_i$ for each $i \in [m]$

The Irrelevance of Order

Objective

• For each $i \in [m]$, $\mathbb{P}(E_i^c | \cap_{j=1}^{i-1} E_j^c) \ge 1 - x_i$

Reordering events

- If we reorder the events, the conditions do not change
- \Rightarrow the event E_i could be preceded by any subset of the other events
- \Rightarrow we can hope that more is true

Newer objective

• For each $i \in [m]$ and $S \subseteq [m] \setminus \{i\}$, $\mathbb{P}(E_i^c | \cap_{j \in S} E_j^c) \ge 1 - x_i$

Conditional Probabilities

Objective

• For each $i \in [m]$ and $S \subseteq [m] \setminus \{i\}$, $\mathbb{P}(E_i^c | \cap_{j \in S} E_j^c) \ge 1 - x_i$

Independence

- We know E_i is independent of some of the E_j
 - Conditioning on these events should be irrelevant
- Partition events
 - Let $S_1 = \{j \in S : (i,j) \in \vec{D}\}$
 - Let $S_2 = \{j \in S : (i,j) \notin \vec{D}\}$

Rewriting the probability

•
$$\mathbb{P}(E_i^c | \cap_{j \in S} E_j^c) = 1 - \mathbb{P}(E_i | \cap_{j \in S} E_j^c) = 1 - \frac{\mathbb{P}(E_i \cap (\cap_{\ell \in S_1} E_\ell^c) | (\cap_{j \in S_2} E_j^c))}{\mathbb{P}(\cap_{\ell \in S_1} E_\ell^c | \cap_{j \in S_2} E_j^c)}$$

Simplifying the Numerator

Recall

•
$$S_1 = \{j \in S: (i, j) \in \overrightarrow{D}\}$$

• $S_2 = \{j \in S: (i, j) \notin \overrightarrow{D}\}$
• $\mathbb{P}(E_i | \cap_{j \in S} E_j^c) = \frac{\mathbb{P}(E_i \cap (\cap_{\ell \in S_1} E_\ell^c) | (\cap_{j \in S_2} E_j^c))}{\mathbb{P}(\cap_{\ell \in S_1} E_\ell^c | \cap_{j \in S_2} E_j^c)}$

Numerator

•
$$E_i \cap \left(\bigcap_{\ell \in S_1} E_\ell^c \right) \subseteq E_i$$

• $\Rightarrow \mathbb{P} \left(E_i \cap \left(\bigcap_{\ell \in S_1} E_\ell^c \right) | \bigcap_{j \in S_2} E_j^c \right) \leq \mathbb{P} \left(E_i | \bigcap_{j \in S_2} E_j^c \right)$

• E_i is mutually independent of the events in S_2

• $\Rightarrow \mathbb{P}(E_i | \cap_{j \in S_2} E_j^c) = \mathbb{P}(E_i)$

• Assumption: $\mathbb{P}(E_i) \leq x_i \prod_{j:(i,j)\in \vec{D}} (1-x_j)$

Simplifying the Denominator

Objective

• For each $i \in [m]$ and $S \subseteq [m] \setminus \{i\}$, $\mathbb{P}(E_i^c | \cap_{j \in S} E_j^c) \ge 1 - x_i$

Denominator: $\mathbb{P}\left(\cap_{\ell \in S_1} E_{\ell}^{c} \middle| \cap_{j \in S_2} E_{j}^{c}\right)$

- Chain rule
 - $\mathbb{P}\left(\bigcap_{\ell \in S_1} E_{\ell}^{c} \middle| \bigcap_{j \in S_2} E_{j}^{c}\right) = \prod_{\ell \in S_1} \mathbb{P}\left(E_{\ell}^{c} \middle| \left(\bigcap_{r \in S_1, r < \ell} E_{r}^{c}\right) \cap \left(\bigcap_{j \in S_2} E_{j}^{c}\right)\right)$
 - Let $T_{\ell} = \{r \in S_1 : r < \ell\} \cup S_2$
- Apply the objective
 - $\Rightarrow \mathbb{P}(E_{\ell}^{c} | \cap_{j \in T_{\ell}} E_{j}^{c}) \ge 1 x_{\ell}$
- Substitute in

•
$$\Rightarrow \mathbb{P}\left(\bigcap_{\ell \in S_1} E_{\ell}^{c} \middle| \bigcap_{j \in S_2} E_{j}^{c}\right) \ge \prod_{\ell \in S_1} (1 - x_{\ell})$$

- $S_1 \subseteq \{j: (i,j) \in \vec{D}\}$
 - $\Rightarrow \mathbb{P}(\bigcap_{\ell \in S_1} E_{\ell}^c | \bigcap_{j \in S_2} E_j^c) \ge \prod_{j:(i,j) \in \overrightarrow{D}} (1-x_j)$

Achieving Our Objective

Objective

• For each $i \in [m]$ and $S \subseteq [m] \setminus \{i\}$, $\mathbb{P}(E_i^c | \cap_{j \in S} E_j^c) \ge 1 - x_i$

Recall

- $\mathbb{P}(E_i^c | \cap_{j \in S} E_j^c) = 1 \frac{\mathbb{P}(E_i \cap (\cap_{\ell \in S_1} E_\ell^c) | \cap_{j \in S_2} E_j^c)}{\mathbb{P}(\cap_{\ell \in S_1} E_\ell^c | \cap_{j \in S_2} E_j^c)}$ • $\mathbb{P}(E_i \cap (\cap_{\ell \in S_1} E_\ell^c) | \cap_{j \in S_2} E_j^c) \leq \mathbb{P}(E_i) \leq x_i \prod_{j:(i,j) \in \overrightarrow{D}} (1 - x_j)$
- $\mathbb{P}\left(\bigcap_{\ell \in S_1} E_{\ell}^{c} \middle| \bigcap_{j \in S_2} E_{j}^{c}\right) \ge \prod_{j:(i,j) \in \overrightarrow{D}} (1-x_j)$
- $\Rightarrow \mathbb{P}(E_i^c | \cap_{j \in S} E_j^c) \ge 1 x_i$

🔔 Circular logic

• We used the objective to lower bound the denominator

Induction to the Rescue

Objective

• For each $i \in [m]$ and $S \subseteq [m] \setminus \{i\}$, $\mathbb{P}(E_i^c | \cap_{j \in S} E_j^c) \ge 1 - x_i$

The issue

- Used the objective when bounding the denominator in the proof
- Parameters
 - $i = \ell \in S_1$
 - $S = T_{\ell} = \{r \in S_1 : r < \ell\} \cup S_2$

The fix

- Size of conditioned set
 - We have $|T_{\ell}| \le |S_1| 1 + |S_2| < |S|$
 - \Rightarrow when proving the objective for a set *S*, only require it for smaller subsets
- Apply induction on |S|
 - Base case: $S = \emptyset$ is trivial

Proof Recap

Theorem 4.2.2 (Lovász Local Lemma; Erdős-Lovász, 1975)

Let $E_1, E_2, ..., E_m$ be events with a dependency digraph \vec{D} . If there are $x_i \in [0,1)$ such that $\mathbb{P}(E_i) \leq x_i \prod_{(i,j)\in \vec{D}} (1-x_j)$ for all $i \in [m]$, then $\mathbb{P}(\cap_i E_i^c) \geq \prod_i (1-x_i)$.

Ideas

- Chain rule: probability of intersection is product of conditional probabilities
- Prove $\mathbb{P}(E_i^c | \cap_{j \in S} E_j^c) \ge 1 x_i$ by induction on |S|
 - Separate conditioned events by dependence of E_i
 - Simplify resulting expression by bounding the numerator
 - Apply induction hypothesis to the denominator
- Substituting into chain rule gives result

Any questions?

§4 Latin Transversals

Chapter 4: The Lovász Local Lemma

The Probabilistic Method

Latin Squares

Definition 4.4.1 (Latin square)

A Latin square of order n is an $n \times n$ array with entries from [n] such that each symbol appears exactly once in each row and column.

1	2	3	4	5	
2	3	4	5	1	
3	4	5	1	2	
4	5	1	2	3	
5	1	2	3	4	

^	
ADD	lications

- Experimental design
- Tournament scheduling
- Games and recreation
- Algebra
 - Cayley table of a group is a Latin square

Latin Transversals

Definition 4.4.2 (Latin transversal)

Given an $m \times n$ array with entries in \mathbb{N} , a *transversal* is a selection of cells without any repeated row, column or symbol.

1	2	3	4	5
2	3	4	5	1
3	4	5	1	2
4	5	1	2	3
5	1	2	3	4

Example

- Conducting a survey
- Public divided by metrics
 - Age
 - Height
 - No. combinatorics courses taken
- Want a fair sample
 - No group is overrepresented

Latin Transversals

Definition 4.4.2 (Latin transversal)

Given an $m \times n$ array with entries in \mathbb{N} , a *transversal* is a selection of cells without any repeated row, column or symbol.

Example

- Conducting a survey
- Public divided by metrics
 - Age
 - Height
 - No. combinatorics courses taken
- Want a fair sample
 - No group is overrepresented

An Extremal Problem

Large transversals?

• How large a transversal must a Latin square of order *n* contain?

Proposition 4.4.3

Any Latin square of order n contains a transversal of size at least $\frac{n}{3}$.

Proof

- Build a transversal greedily
- There are a total of n^2 cells
- Each cell clashes with 3(n-1) other cells
 - Those in the same row, column or with the same symbol

•
$$\Rightarrow$$
 we can select at least $\frac{n^2}{3(n-1)+1}$ cells before we run out

An Upper Bound to the Extremal Problem

Proposition 4.4.4

For every even $n \in \mathbb{N}$, there is a Latin square of order n without a transversal of size n.

Proof

- Let n = 2k and L be the Cayley table of \mathbb{Z}_{2k}
 - $L(i,j) \coloneqq i + j \pmod{2k}$
- Suppose we have a transversal
 - Chosen cells: $\{(i, \pi(i)): i \in [2k]\}$ for some permutation $\pi \in S_{2k}$
- Rows, columns and symbols range over [2k]

• \Rightarrow sum is $\binom{2k}{2} = k(2k-1) \equiv k \pmod{2k}$

• But summing symbols = summing rows and columns:

• $k \equiv \sum_{i} L(i, \pi(i)) = \sum_{i} (i + \pi(i)) = \sum_{i} i + \sum_{i} \pi(i) \equiv k + k \equiv 0 \not\equiv k \pmod{2k}$

A Daring Conjecture

Conjecture 4.4.5 (Ryser-Brualdi-Stein, 1967+)

Every Latin square of order n admits a transversal of size n - 1.

Odd orders

• Ryser conjectured that odd Latin squares have full transversals

Theorem 4.4.6 (Erdős-Spencer, 1991)

Let A be an $n \times n$ array with entries in N. If no symbol appears more than $\frac{n-1}{4e}$ times in A, then A admits a transversal of size n.

Comparison to the conjecture

- Weak: Latin squares have each symbol appearing *n* times
- Strong: In theorem, no restrictions on row or column repetitions!

Proof Framework

Goal

• Show that a random permutation can give a full transversal

Probability space

- Choose $\pi \in S_n$ uniformly at random
- Potential transversal $\{(i, \pi(i)): i \in [n]\}$

Bad events

- Chosen cells from distinct rows and columns by construction
- Only way to fail: repeat a symbol
- How do we define events to capture this?

Defining Failure

Events by symbol

- For each symbol $i \in \mathbb{N}$ appearing in A, define an event
 - $E_i = \{$ two cells with the symbol *i* are selected $\}$
- { π gives a transversal} = $\cap_i E_i^c$

Probabilities

- $\mathbb{P}(E_i)$ depends very much on structure of A
 - If all *i*-entries are in the same row $\Rightarrow \mathbb{P}(E_i) = 0$
 - If $\Omega(n)$ are on a diagonal $\Rightarrow \mathbb{P}(E_i) = \Omega(1)$
- Expected number of events
 - Hard to compute
 - Could grow linearly

Many dependencies

• Different symbols that appear in the same row/column are dependent

Redefining Failure

Events by rows

- For $\{i, j\} \in {[n] \choose 2}$, define $E_{i,j} = \{A_{i,\pi(i)} = A_{j,\pi(j)}\}$
- { π gives a transversal} = $\bigcap_{\{i,j\}} E_{i,j}^c$

Same issues as before

- Probabilities depend heavily on array A
- Expected number of events can be $\Omega(n)$
- High dependence
 - Knowing $E_{i,j}$ occurs could tell us which elements are selected
 - Affects distribution in other rows

Reredefining Failure

Events by cells

- Identify exactly where symbols are repeated
- For every pair of cells (i, j) and (i', j') with
 - A(i,j) = A(i',j')
 - $i \neq i'$
 - $j \neq j'$

define the event $E_{i,j,i',j'} = \{\pi(i) = j\} \cap \{\pi(i') = j'\}$

• { π gives a transversal} = $\bigcap_{i,j,i',j'} E_{i,j,i',j'}$

Probabilities

- Each event occurs with probability $\frac{1}{n(n-1)}$
- Number of events depends on structure of A, but at most $\frac{1}{2} \cdot n^2 \cdot \frac{n-1}{4c}$
- \Rightarrow expected number of bad events can still be $\Omega(n)$

Examining Independence

Neighbouring events

- Consider events $E_{i,j,i',j'}$ and $E_{p,q,p',q'}$
 - Correspond to cells (i, j), (i', j'), (p, q) and (p', q')
- Only one cell selected from each row/column
- \Rightarrow if $\{i, i'\} \cap \{p, p'\} \neq \emptyset$ or $\{j, j'\} \cap \{q, q'\} \neq \emptyset$, no independence

Non-neighbouring events

- Permutation restrictions are global in nature
- \Rightarrow information travels even when not sharing a row or column
- \Rightarrow cannot expect any independence

Who Needs Independence?

Proof of Lovász Local Lemma

- Used independence when bounding the numerator
- $\mathbb{P}(E_i | \cap_{j \in S_2} E_j^c) = \mathbb{P}(E_i) \le x_i \prod_{j:(i,j) \in \overrightarrow{D}} (1-x_j)$
 - (First) equality by independence
 - (Second) inequality by assumption

Weakening condition

- We only use the inequality
 - Could skip the intermediate equality
- \Rightarrow suffices to have $\mathbb{P}(E_i | \cap_{j \in S} E_j^c) \le x_i \prod_{j:(i,j) \in \vec{D}} (1 x_j)$ for all $i \in [m]$ and $S \subseteq [m] \setminus \{j: (i,j) \in \vec{D}\}$

The Lopsided Lovász Local Lemma

Strengthened result

- Using this observation, we can weaken the requirement in the Local Lemma
- Following version is useful in spaces with limited independence
 - Most pairs of events should be positively correlated

Theorem 4.4.7 (Lopsided Lovász Local Lemma; Erdős-Spencer, 1991) Let $E_1, E_2, ..., E_m$ be events in a probability space, let $x_1, x_2, ..., x_m \in [0,1)$, and let \vec{D} be a directed graph on the vertices [m]. If, for every $i \in [m]$ and $S \subseteq [m] \setminus (\{j: (i, j) \in \vec{D}\} \cup \{i\}),$ we have $\mathbb{P}(E_i | \cap_{j \in S} E_j^c) \leq x_i \prod_{j: (i, j) \in \vec{D}} (1 - x_j),$ then $\mathbb{P}(\cap_i E_i^c) \geq \prod_i (1 - x_i) > 0.$

Verifying the Condition

Lemma 4.4.8

Let the events $E_{i,j,i',j'}$ be as previously defined, and let S be a set of indices for events involving cells not sharing a row or column with (i,j) or (i',j'). Then

$$\mathbb{P}\left(E_{i,j,i',j'}\middle|\cap_{(p,q,p',q')\in S}E_{p,q,p',q'}^{c}\right)\leq\frac{1}{n(n-1)}.$$

Proof idea

- Without loss of generality, may assume i = j = 1, i' = j' = 2
- Restrict to permutations π satisfying $\bigcap_{(p,q,p',q')\in S} E_{p,q,p',q'}^c$
- By modifying permutations, show that number of permutations with $\pi(1) = r$ and $\pi(2) = s$ is minimised (for $r \neq s$) when r = 1 and s = 2

Verifying the Condition - Notation

Objective

•
$$\mathbb{P}\left(E_{1,1,2,2} \mid \cap_{(p,q,p',q') \in S} E_{p,q,p',q'}^{c}\right) \leq \frac{1}{n(n-1)}$$

Notation

- Call π "good" if $\pi \in \cap_{(p,q,p',q')\in S} E_{p,q,p',q'}^c$
- Let $P_{r,s} = \{\pi \text{ good, } \pi(1) = r, \pi(2) = s\}$
- Goal: $|P_{1,2}| \le |P_{r,s}|$ for all $(r,s) \in [n]^2, r \ne s$

Setting up the proof

- Goal: Construct an injection $P_{1,2} \hookrightarrow P_{r,s}$
- Case: $r, s \notin \{1,2\}$ (others similar)
- Let $\pi \in P_{1,2}$ and let $x = \pi^{-1}(r), y = \pi^{-1}(s)$

Verifying the Condition - Proof

Goal

- Injection $P_{1,2} \hookrightarrow P_{r,s}$
- Given: $\pi \in P_{1,2}, \pi(x) = r, \pi(y) = s$

Switching

- Define new permutation $\pi^* \in P_{r,s}$ • $\pi^*(z) = \begin{cases} r \text{ if } z = 1 \\ s \text{ if } z = 2 \\ 1 \text{ if } z = x \\ 2 \text{ if } z = y \\ \pi(z) \text{ otherwise} \end{cases}$
 - π^* is good: only change cells in the first two rows or columns, avoiding S
 - $\Rightarrow \pi^* \in P_{r,s}$
 - The map $\pi \mapsto \pi^*$ is injective

Finding Large Transversals

Theorem 4.4.6 (Erdős-Spencer, 1991)

Let A be an $n \times n$ array with entries in N. If no symbol appears more than $\frac{n-1}{4e}$ times in A, then A admits a transversal of size n.

Proof

- We will apply the Lopsided Lovász Local Lemma
- \vec{D} : edges between (i, j, i', j') and (p, q, p', q') if the corresponding cells share a row or column
 - Each event is adjacent to at most $d \coloneqq 4 \cdot n \cdot \frac{n-1}{4e} 1 = \frac{n(n-1)}{e} 1$ other events
- We set $x_{i,j,i',j'} = \frac{1}{d+1}$ for each event

• \Rightarrow inequality reduces to $ep(d + 1) \le 1$, as in symmetric case

•
$$\mathbb{P}(E_{i,j,i',j'}) = \frac{1}{n(n-1)} = \frac{1}{e(d+1)}$$
.

Ryser's Conjecture

State of the art

• More involved probabilistic proofs bring us much closer to Ryser's Conjecture

Theorem (Keevash-Pokrovskiy-Sudakov-Yepremyan, 2020+) Every Latin square of order n admits a transversal of size $n - O\left(\frac{\log n}{\log \log n}\right)$.

Theorem (Kwan, 2016+)

Almost all Latin squares of order n have a transversal of size n.

Any questions?