
Chapter 4: The Lovász Local Lemma

The Probabilistic Method

Summer 2020

Freie Universität Berlin



Chapter Overview
• Introduce the Lovász Local Lemma and some variants

• Survey some applications, including to 𝑅 3, 𝑘
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Avoiding Bad Events
Second moment set-up

• Have a collection of good events 𝐸1, 𝐸2, … , 𝐸𝑚
• e.g.: 𝐸𝑖 = 𝑖th copy of 𝐻 appears in 𝐺 𝑛, 𝑝

• Goal: show that with positive probability, at least one event occurs

• Usually show this happens with probability 1 − 𝑜 1

Opposite situation

• Have a collection of bad events 𝐸1, 𝐸2, … , 𝐸𝑚
• e.g.: 𝐸𝑖 = 𝑖th clause in 𝑘−SAT formula not satisfied

• Goal: show that with positive probability, none of these events occur
• i.e.: ℙ ∩𝑖 𝐸𝑖

𝑐 > 0

• Union bound: ℙ ∩𝑖 𝐸𝑖
𝑐 = 1 − ℙ ∪𝑖 𝐸𝑖 ≥ 1 − σ𝑖ℙ 𝐸𝑖

• Tight when events 𝐸𝑖 are disjoint

• In general, need either 𝑚 or ℙ 𝐸𝑖 to be small enough for effective bounds



Independence to the Rescue
Independent events

• If the events 𝐸1, 𝐸2, … , 𝐸𝑚 are mutually independent, we are in business

• ℙ ∩𝑖 𝐸𝑖
𝑐 = ς𝑖ℙ 𝐸𝑖

𝑐 = ς𝑖 1 − ℙ 𝐸𝑖
• Might tend to zero, but is still positive (provided ℙ 𝐸𝑖 < 1 for all 𝑖)

• Doesn’t matter how many bad events there are, or how likely they are

A real-world example

• Work for the Bundesdruckerei
• Job: printing 𝑚 passports

• Bad event: 𝐸𝑖 = misprint in the 𝑖th passport

• Say ℙ 𝐸𝑖 =
1

2
for each 𝑖

• ℙ ∩𝑖 𝐸𝑖
𝑐 =

1

2

𝑚
> 0

• ⇒ it is possible to have a successful day



The Struggle for Independence
Do we need independence?

• In practice, true independence of events is rare

• Could hope to replace it with something weaker
• Most events being independent? Pairwise independence?

We might

• Bundesdruckerei example: suppose our passport printer is odd
• Never makes an even number of misprints

• Same marginal distributions

• ℙ 𝐸𝑖 =
1

2
for all 𝑖

• Almost complete independence
• Any 𝑚− 1 of the 𝑚 events are mutually independent

• However, ℙ ∩𝑖 𝐸𝑖
𝑐 ≤ ℙ #misprints even = 0



Lovász to the Rescue

The Bundesdruckerei problem

• ℙ 𝐸𝑖 =
1

2
is a large probability for the bad event

• If ℙ 𝐸𝑖 <
1

2
, then we lose even pairwise independence

• ℙ 𝐸𝑖 𝐸𝑗 < ℙ 𝐸𝑖

The good news

• Suppose the bad events
• are independent of most other events

• occur with reasonably small probability

• Lovász Local Lemma ⇒ events behave as if independent

• Can show that with positive probability none occur



The Local Lemma – Symmetric Setting

“Local” Lemma
• Bound on 𝑝 independent of number of events (global property)

• Only depends on number of dependencies (local property)

Conclusion

• Only assert that with positive probability, none of the events occur

• This probability can depend on the number of events

Theorem 4.1.1 (Symmetric Lovász Local Lemma; Erdős-Lovász, 1975)

Let 𝐸1, 𝐸2, … , 𝐸𝑚 be events such that each event 𝐸𝑖 is mutually 
independent of all but at most 𝑑 of the other events, and ℙ 𝐸𝑖 ≤ 𝑝
for all 𝑖. If 𝑒𝑝 𝑑 + 1 ≤ 1, then ℙ ∩𝑖 𝐸𝑖

𝑐 > 0.



Theorem 4.1.2

Any 𝑘-SAT formula in which each variable appears at most 
2𝑘

𝑒𝑘
times is 

satisfiable.

Re-restricted 𝑘-SAT
Recall

• Any 𝑘-SAT formula with fewer than 2𝑘 clauses is satisfiable
• Bound is best possible: take formula with all clauses on 𝑘 variables

Restricted 𝑘-SAT
• Previously: each 𝑘-set of variables appears in at most one clause
• What if we bound individual variable appearances instead?

• Applies to 𝑘-SAT formulae with any number of clauses!



Proof by Local Lemma

Proof

• Set each variable to true/false independently with probability 
1

2

• Events
• 𝐸𝑖 = 𝑖th clause not satisfied

• ℙ 𝐸𝑖 = 𝑝 ≔ 2−𝑘 for all 𝑖

• Dependencies
• A clause is independent of any clauses with disjoint sets of variables

• Clause has 𝑘 variables, each in ≤
2𝑘

𝑒𝑘
− 1 other clauses

• ⇒ each event independent of all but 𝑑 ≔
2𝑘

𝑒
− 1 other events

• 𝑒𝑝 𝑑 + 1 = 1 ⇒ ℙ ∩𝑖 𝐸𝑖 > 0 ⇒ formula is satisfiable! ∎

Theorem 4.1.2

Any 𝑘-SAT formula in which each variable appears at most 
2𝑘

𝑒𝑘
times is satisfiable.



Theorem 1.5.2 (Erdős, 1947)

As 𝑘 → ∞, we have

𝑅 𝑘 ≥
1

𝑒 2
+ 𝑜 1 𝑘 2

𝑘
.

Recalling Ramsey

• Disjoint sets of edges are independent
• Can improve bound with the local lemma

Theorem 4.1.3

As 𝑘 → ∞, we have

𝑅 𝑘 ≥
2

𝑒
+ 𝑜 1 𝑘 2

𝑘
.



Setting Up the Proof
Events

• We take 𝐺 ∼ 𝐺 𝑛,
1

2
as before

• For 𝐼 ∈ 𝑛
𝑘

, event 𝐸𝐼 = 𝐺 𝐼 ≅ 𝐾𝑘 or 𝐾𝑘
𝑐

• ℙ 𝐸𝐼 = 2
1− 𝑘

2 for all 𝐼

Dependencies
• 𝐸𝐼 independent of all events with disjoint edge-sets

• ⇒ 𝐸𝐼 depends on at most 𝑘
2

𝑛−2
k−2

− 1 other events

• ⇒ 𝑑 + 1 ≤ 𝑘
2

𝑛−2
k−2

Lovász Local Lemma

• ⇒ suffices to show 𝑒2
1− 𝑘

2 𝑘
2

𝑛−2
𝑘−2

≤ 1



Running the Calculations
Estimates

• 𝑘
2
≤

𝑘2

2

• 𝑛−2
𝑘−2

≤
𝑘2

𝑛2
𝑛
𝑘

≤
𝑘2

𝑛2
𝑛𝑒

𝑘

𝑘

Bounding 𝑛

• ⇒ 𝑒2
1− 𝑘

2 𝑘
2

𝑛−2
𝑘−2

≤
𝑒2

− 𝑘
2 𝑘4

𝑛2
𝑛𝑒

𝑘

𝑘
=

𝑒𝑘4

𝑛2
𝑛𝑒 2

𝑘 2
𝑘

𝑘

• If 𝑛 =
1

𝑒 2
𝑘 2

𝑘
, parenthetical term is 1

• Leading coefficient is then 𝑒2𝑘421−𝑘

• ⇒ can afford for the parenthetical term to be 2 + 𝑜(1)

• ⇒ can take 𝑛 =
2

𝑒
+ 𝑜 1 𝑘 2

𝑘
∎



Any questions?
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Returning to 𝑅 3, 𝑘

Lower bound
• Proven using 𝐺 ∼ 𝐺(𝑛, 𝑝) and alterations

Limited dependence

• Again, disjoint sets of edges are independent

• What does the Local Lemma give?

Corollary 2.1.3

As 𝑘 → ∞, we have

Ω
𝑘

ln 𝑘

3
2

= 𝑅 3, 𝑘 = 𝑂 𝑘2 .



Analysing the Events

Two classes of events

• For 𝐼 ∈ 𝑛
3

, let 𝐸𝐼 = 𝐺 𝐼 ≅ 𝐾3

• For 𝐽 ∈ 𝑛
𝑘

, let 𝐹𝐽 = 𝐺 𝐽 ≅ 𝐾𝑘
𝑐

Probabilities

• For each 𝐼 ∈ 𝑛
3

, 𝑝1 ≔ ℙ 𝐸𝐼 = 𝑝3

• For each 𝐽 ∈ 𝑛
𝑘

, 𝑝2 ≔ ℙ 𝐹𝐽 = 1 − 𝑝
𝑘
2 ≈ 𝑒

−𝑝 𝑘
2

• ⇒ in Lovász Local Lemma, should take 𝑝′ = max {𝑝1, 𝑝2}

• ⇒ optimal to have 𝑝1 = 𝑝2
• ⇒ 𝑝 ≈

12 ln 𝑘

𝑘2



Analysing the Events Further
Edge involvements

• Each edge appears in 𝑛 − 2 events 𝐸𝐼 and 𝑛−2
k−2

events 𝐹𝐽

Dependencies

• ⇒ each 𝐸𝐼 depends on fewer than 𝑑1 ≔ 3 𝑛 − 2 + 𝑛−2
𝑘−2

other events

• ⇒ each 𝐹𝐽 depends on fewer than 𝑑2 ≔
𝑘
2

n − 2 + n−2
k−2

events

• ⇒ need to take d = max 𝑑1, 𝑑2 = 𝑑2 in the Local Lemma

Bounding 𝑛

• Thus 𝑒𝑝′ 𝑑 + 1 ≤ 𝑒 𝑝′ 3𝑑 ∼ 𝑒
12 ln 𝑘

𝑘2

3
𝑘
2

𝑛 − 2 + 𝑛−2
k−2

≤
123𝑒 ln3 𝑘

𝑘4
𝑛−2
𝑘−2

≤
123𝑒 ln3 𝑘

𝑛2𝑘2
𝑛
𝑘

≤
123𝑒 ln3 𝑘

𝑛2𝑘2
𝑛𝑒

𝑘

𝑘

• For this to be less than 1, need 𝑛 = 𝑂 𝑘



Post Mortem
Different kinds of events

• Triangle events 𝐸𝐼:
• Probability 𝑝1 = 𝑝3

• Depend on relatively few other events

• Independent set events 𝐹𝐽:

• Probability 𝑝2 = 1 − 𝑝
𝑘
2

• Depend on many other events

A possible remedy

• Wasteful to use same probability, dependency bounds for all events

• Triangle events are “more independent”
• Could afford to let them occur with higher probability

• Ideally – track each event’s individual probability and dependencies



Definition 4.2.1 (Dependency digraph)

Given events 𝐸1, 𝐸2, … , 𝐸𝑚, a directed graph 𝐷 on the vertices 𝑚 is a 
dependency digraph if, for each 𝑖 ∈ 𝑚 , the event 𝐸𝑖 is mutually 

independent of the set of events 𝐸𝑗: 𝑖, 𝑗 ∉ 𝐷 .

Tracking Dependencies
Representing dependence

• Keep track of dependencies using a directed graph

• Events are independent of their non-neighbours

Why a digraph?
• In most applications, digraph will be symmetric

• 𝑖, 𝑗 ∈ 𝐷 ⇔ 𝑗, 𝑖 ∈ 𝐷

• Can sometimes help to have flexibility



The Lovász Local Lemma

Special case: independent events

• Can take 𝐷 to be edge-less

• ⇒ suffices to have 𝑥𝑖 = ℙ 𝐸𝑖 , and done

General case
• Dependencies → correction factor ς 𝑖,𝑗 1 − 𝑥𝑗
• The more dependencies, the smaller this factor

• ⇒ need probability of these events to shrink

Theorem 4.2.2 (Lovász Local Lemma; Erdős-Lovász, 1975)

Let 𝐸1, 𝐸2, … , 𝐸𝑚 be events with a dependency digraph 𝐷. If there are 
𝑥𝑖 ∈ 0,1 such that ℙ 𝐸𝑖 ≤ 𝑥𝑖ς 𝑖,𝑗 ∈𝐷

1 − 𝑥𝑗 for all 𝑖 ∈ [𝑚], then 

ℙ ∩𝑖 𝐸𝑖
𝑐 ≥ ς𝑖 1 − 𝑥𝑖 .



Returning to 𝑅 3, 𝑘 Once Again
Symmetries

• All triangle events 𝐸𝐼 have the same probability and dependencies
• ⇒ should set 𝑥𝐼 = 𝑥 for some common 𝑥

• All independent set events 𝐹𝐽 also share the same parameters
• ⇒ set 𝑥𝐽 = 𝑦 for some common 𝑦

Probability conditions
• Triangle events

• Depend on at most 3 𝑛 − 2 < 3𝑛 other triangle events

• Depend on at most 𝑛
𝑘

independent set bounds

• ⇒ suffices to have ℙ 𝐸𝐼 = 𝑝3 ≤ 𝑥 1 − 𝑥 3𝑛 1 − 𝑦
𝑛
𝑘

• Independent set events

• Depend on at most 𝑘
2

𝑛 − 2 < 𝑘
2
𝑛 triangle events, 𝑛

𝑘
independent set events

• ⇒ suffices to have ℙ 𝐹𝐽 = 1 − 𝑝
𝑘
2 ≤ 𝑦 1 − 𝑥

𝑘
2 𝑛

1 − 𝑦
𝑛
𝑘



A Conditional Result

Proof
• Follows immediately from Lovász Local Lemma and previous calculations ∎

Optimisation

• Want to maximise 𝑛 while satisfying the two inequalities

Theorem 4.2.3 (Spencer, 1977)

Let 𝑘, 𝑛 ∈ ℕ. If there are 𝑝, 𝑥, 𝑦 ∈ 0,1 such that

𝑝3 ≤ 𝑥 1 − 𝑥 3𝑛 1 − 𝑦
𝑛
𝑘

and

1 − 𝑝
𝑘
2 ≤ 𝑦 1 − 𝑥

𝑘
2 𝑛

1 − 𝑦
𝑛
k ,

then 𝑅 3, 𝑘 > 𝑛.



Some Heuristics

Maximise 𝑛 subject to

(1)     𝑝3 ≤ 𝑥 1 − 𝑥 3𝑛 1 − 𝑦
𝑛
𝑘

(2)     1 − 𝑝
𝑘
2 ≤ 𝑦 1 − 𝑥

𝑘
2 𝑛

1 − 𝑦
𝑛
𝑘

Setting 𝑦

• Do not want 1 − 𝑦
𝑛
𝑘 ≈ 𝑒−𝑦(

𝑛
𝑘) to be exponentially small

• ⇒ set 𝑦 = 𝑛
𝑘

−1
⇒ 1 − 𝑦

𝑛
k is constant

Understanding 𝑥

• From (2), we need 1 − 𝑥 𝑛 > 1 − 𝑝

• ⇒ 𝑛𝑥 < 𝑝, and 1 − 𝑥 𝑛 is constant



More Heuristics
Maximise 𝑛 subject to

(1’)    𝑝3 ≤ 𝑥

(2’)    1 − 𝑝
𝑘
2 ≤ 𝑦

(3)      𝑦 = 𝑛
𝑘

−1
and 𝑛𝑥 < 𝑝

Setting 𝑝
• From (1’) and (3), 𝑛𝑝3 ≤ 𝑛𝑥 < 𝑝 ⇒ 𝑝 < 𝑛−1/2

Fixing 𝑛

• From (2’) and (3), 1 − 𝑝
𝑘
2 ≈ 𝑒

−𝑝 𝑘
2 ≤ 𝑛

𝑘

−1
≈

𝑘

𝑛

𝑘

• ⇒ 𝑒−𝑝𝑘/2 ≤
𝑘

𝑛
≤ 𝑘−3/2, since 𝑛 = 𝑂 𝑘2

• ⇒ 𝑘 ≥ 𝑝−1 ln 𝑘 = 𝑛1/2 ln 𝑘 ⇒ 𝑛 = 𝑂
𝑘

ln 𝑘

2



Wrapping Things Up Neatly

Proof
• Upper bound from Erdős-Szekeres

• Lower bound:

• Choose 𝑘 ≥ 20 𝑛 ln 𝑛, 𝑦 = 𝑛
𝑘

−1
, 𝑥 =

1

9𝑛−3/2
and 𝑝 =

1

3 𝑛

• Substitute values into Theorem 4.2.3 ∎

Corollary 4.2.4

As 𝑘 → ∞, we have

Ω
𝑘

ln 𝑘

2

= 𝑅 3, 𝑘 = 𝑂 𝑘2 .



Any questions?
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Theorem 4.1.1 (Symmetric Lovász Local Lemma; Erdős-Lovász, 1975)

Let 𝐸1, 𝐸2, … , 𝐸𝑚 be events such that each event 𝐸𝑖 is mutually 
independent of all but at most 𝑑 of the other events, and ℙ 𝐸𝑖 ≤ 𝑝
for all 𝑖. If 𝑒𝑝 𝑑 + 1 ≤ 1, then ℙ ∩𝑖 𝐸𝑖

𝑐 > 0.

The Local Lemmas

• This follows easily from the general statement

Theorem 4.2.2 (Lovász Local Lemma; Erdős-Lovász, 1975)

Let 𝐸1, 𝐸2, … , 𝐸𝑚 be events with a dependency digraph 𝐷. If there are 
𝑥𝑖 ∈ 0,1 such that ℙ 𝐸𝑖 ≤ 𝑥𝑖ς 𝑖,𝑗 ∈𝐷

1 − 𝑥𝑗 for all 𝑖 ∈ [𝑚], then 

ℙ ∩𝑖 𝐸𝑖
𝑐 ≥ ς𝑖 1 − 𝑥𝑖 .

• Recall the symmetric version



Deducing the Symmetric Statement

Proof

• For each event 𝐸𝑖, set 𝑥𝑖 =
1

𝑑+1

• Then 𝑥𝑖ς 𝑖,𝑗 ∈𝐷
1 − 𝑥𝑗 =

1

𝑑+1
ς

𝑖,𝑗 ∈𝐷
1 −

1

𝑑+1
≥

1

𝑑+1
1 −

1

𝑑+1

𝑑

• For all 𝑑 ≥ 1, 1 −
1

𝑑+1

𝑑
≥ 𝑒−1

• ⇒ 𝑥𝑖ς 𝑖,𝑗 ∈𝐷
1 − 𝑥𝑗 ≥

1

𝑒 𝑑+1
≥ 𝑝

• ⇒ ℙ 𝐸𝑖 ≤ 𝑝 ≤ 𝑥𝑖ς 𝑖,𝑗 ∈𝐷
1 − 𝑥𝑗 ⇒ ℙ ∩𝑖 𝐸𝑖 ≥ 1 −

1

𝑑+1

𝑚
> 0 ∎

Theorem 4.1.1 (Symmetric Lovász Local Lemma; Erdős-Lovász, 1975)

Let 𝐸1, 𝐸2, … , 𝐸𝑚 be events such that each event 𝐸𝑖 is mutually 
independent of all but at most 𝑑 of the other events, and ℙ 𝐸𝑖 ≤ 𝑝
for all 𝑖. If 𝑒𝑝 𝑑 + 1 ≤ 1, then ℙ ∩𝑖 𝐸𝑖

𝑐 > 0.



Proving the General Statement

Chain rule

• ℙ ∩𝑖=1
𝑚 𝐸𝑖

𝑐 = ς𝑖=1
𝑚 ℙ 𝐸𝑖

𝑐 ∩𝑗=1
𝑖−1 𝐸𝑗

𝑐

= ς𝑖=1
𝑚 1 − ℙ 𝐸𝑖 ∩𝑗=1

𝑖−1 𝐸𝑗
𝑐

New objective

• Suffices to show ℙ 𝐸𝑖
𝑐 ∩𝑗=1

𝑖−1 𝐸𝑗
𝑐 ≥ 1 − 𝑥𝑖 for each 𝑖 ∈ 𝑚

Theorem 4.2.2 (Lovász Local Lemma; Erdős-Lovász, 1975)

Let 𝐸1, 𝐸2, … , 𝐸𝑚 be events with a dependency digraph 𝐷. If there are 
𝑥𝑖 ∈ 0,1 such that ℙ 𝐸𝑖 ≤ 𝑥𝑖ς 𝑖,𝑗 ∈𝐷

1 − 𝑥𝑗 for all 𝑖 ∈ [𝑚], then 

ℙ ∩𝑖 𝐸𝑖
𝑐 ≥ ς𝑖 1 − 𝑥𝑖 .



The Irrelevance of Order

Objective

• For each 𝑖 ∈ 𝑚 , ℙ 𝐸𝑖
𝑐 ∩𝑗=1

𝑖−1 𝐸𝑗
𝑐 ≥ 1 − 𝑥𝑖

Reordering events

• If we reorder the events, the conditions do not change

• ⇒ the event 𝐸𝑖 could be preceded by any subset of the other events

• ⇒ we can hope that more is true

Newer objective

• For each 𝑖 ∈ 𝑚 and 𝑆 ⊆ 𝑚 ∖ 𝑖 , ℙ 𝐸𝑖
𝑐 ∩𝑗∈𝑆 𝐸𝑗

𝑐 ≥ 1 − 𝑥𝑖



Conditional Probabilities
Objective

• For each 𝑖 ∈ 𝑚 and 𝑆 ⊆ 𝑚 ∖ 𝑖 , ℙ 𝐸𝑖
𝑐 ∩𝑗∈𝑆 𝐸𝑗

𝑐 ≥ 1 − 𝑥𝑖

Independence

• We know 𝐸𝑖 is independent of some of the 𝐸𝑗
• Conditioning on these events should be irrelevant

• Partition events

• Let 𝑆1 = 𝑗 ∈ 𝑆: 𝑖, 𝑗 ∈ 𝐷

• Let 𝑆2 = 𝑗 ∈ 𝑆: 𝑖, 𝑗 ∉ 𝐷

Rewriting the probability

• ℙ 𝐸𝑖
𝑐 ∩𝑗∈𝑆 𝐸𝑗

𝑐 = 1 − ℙ 𝐸𝑖 ∩𝑗∈𝑆 𝐸𝑗
𝑐 = 1 −

ℙ 𝐸𝑖 ∩ ∩ℓ∈𝑆1 𝐸ℓ
𝑐 ∩𝑗∈𝑆2 𝐸𝑗

𝑐

ℙ ∩ℓ∈𝑆1 𝐸ℓ
𝑐 ∩𝑗∈𝑆2 𝐸𝑗

𝑐



Simplifying the Numerator
Recall

• 𝑆1 = 𝑗 ∈ 𝑆: 𝑖, 𝑗 ∈ 𝐷

• 𝑆2 = 𝑗 ∈ 𝑆: 𝑖, 𝑗 ∉ 𝐷

• ℙ 𝐸𝑖 ∩𝑗∈𝑆 𝐸𝑗
𝑐) =

ℙ 𝐸𝑖 ∩ ∩ℓ∈𝑆1 𝐸ℓ
𝑐 ∩𝑗∈𝑆2 𝐸𝑗

𝑐

ℙ ∩ℓ∈𝑆1 𝐸ℓ
𝑐 ∩𝑗∈𝑆2 𝐸𝑗

𝑐

Numerator

• 𝐸𝑖 ∩ ∩ℓ∈𝑆1 𝐸ℓ
𝑐 ⊆ 𝐸𝑖

• ⇒ ℙ 𝐸𝑖 ∩ ∩ℓ∈𝑆1 𝐸ℓ
𝑐 | ∩𝑗∈𝑆2 𝐸𝑗

𝑐 ≤ ℙ 𝐸𝑖 ∩𝑗∈𝑆2 𝐸𝑗
𝑐

• 𝐸𝑖 is mutually independent of the events in 𝑆2
• ⇒ ℙ 𝐸𝑖 ∩𝑗∈𝑆2 𝐸𝑗

𝑐 = ℙ 𝐸𝑖

• Assumption: ℙ 𝐸𝑖 ≤ 𝑥𝑖ς𝑗: 𝑖,𝑗 ∈𝐷
1 − 𝑥𝑗



Simplifying the Denominator
Objective

• For each 𝑖 ∈ 𝑚 and 𝑆 ⊆ 𝑚 ∖ 𝑖 , ℙ 𝐸𝑖
𝑐 ∩𝑗∈𝑆 𝐸𝑗

𝑐 ≥ 1 − 𝑥𝑖

Denominator: ℙ ∩ℓ∈𝑆1 𝐸ℓ
𝑐 ∩𝑗∈𝑆2 𝐸𝑗

𝑐

• Chain rule
• ℙ ∩ℓ∈𝑆1 𝐸ℓ

𝑐 ∩𝑗∈𝑆2 𝐸𝑗
𝑐 = ςℓ∈𝑆1

ℙ 𝐸ℓ
𝑐 ∩𝑟∈𝑆1,𝑟<ℓ 𝐸𝑟

𝑐 ∩ ∩𝑗∈𝑆2 𝐸𝑗
𝑐

• Let 𝑇ℓ = 𝑟 ∈ 𝑆1: 𝑟 < ℓ ∪ 𝑆2

• Apply the objective
• ⇒ ℙ 𝐸ℓ

𝑐 ∩𝑗∈𝑇ℓ 𝐸𝑗
𝑐 ≥ 1 − 𝑥ℓ

• Substitute in
• ⇒ ℙ ∩ℓ∈𝑆1 𝐸ℓ

𝑐 ∩𝑗∈𝑆2 𝐸𝑗
𝑐 ≥ ςℓ∈𝑆1

1 − 𝑥ℓ

• 𝑆1 ⊆ 𝑗: 𝑖, 𝑗 ∈ 𝐷

• ⇒ ℙ ∩ℓ∈𝑆1 𝐸ℓ
𝑐 ∩𝑗∈𝑆2 𝐸𝑗

𝑐 ≥ ς
𝑗: 𝑖,𝑗 ∈𝐷

1 − 𝑥𝑗



Achieving Our Objective
Objective

• For each 𝑖 ∈ 𝑚 and 𝑆 ⊆ 𝑚 ∖ 𝑖 , ℙ 𝐸𝑖
𝑐 ∩𝑗∈𝑆 𝐸𝑗

𝑐 ≥ 1 − 𝑥𝑖

Recall

• ℙ 𝐸𝑖
𝑐 ∩𝑗∈𝑆 𝐸𝑗

𝑐 = 1 −
ℙ 𝐸𝑖 ∩ ∩ℓ∈𝑆1 𝐸ℓ

𝑐 ∩𝑗∈𝑆2 𝐸𝑗
𝑐

ℙ ∩ℓ∈𝑆1 𝐸ℓ
𝑐 ∩𝑗∈𝑆2 𝐸𝑗

𝑐

• ℙ 𝐸𝑖 ∩ ∩ℓ∈𝑆1 𝐸ℓ
𝑐 ∩𝑗∈𝑆2 𝐸𝑗

𝑐 ≤ ℙ 𝐸𝑖 ≤ 𝑥𝑖ς𝑗: 𝑖,𝑗 ∈𝐷
1 − 𝑥𝑗

• ℙ ∩ℓ∈𝑆1 𝐸ℓ
𝑐 ∩𝑗∈𝑆2 𝐸𝑗

𝑐 ≥ ς
𝑗: 𝑖,𝑗 ∈𝐷

1 − 𝑥𝑗

• ⇒ ℙ 𝐸𝑖
𝑐 ∩𝑗∈𝑆 𝐸𝑗

𝑐 ≥ 1 − 𝑥𝑖 ∎

Circular logic
• We used the objective to lower bound the denominator



Induction to the Rescue
Objective

• For each 𝑖 ∈ 𝑚 and 𝑆 ⊆ 𝑚 ∖ 𝑖 , ℙ 𝐸𝑖
𝑐 ∩𝑗∈𝑆 𝐸𝑗

𝑐 ≥ 1 − 𝑥𝑖

The issue
• Used the objective when bounding the denominator in the proof

• Parameters
• 𝑖 = ℓ ∈ 𝑆1
• 𝑆 = 𝑇ℓ = 𝑟 ∈ 𝑆1: 𝑟 < ℓ ∪ 𝑆2

The fix
• Size of conditioned set

• We have 𝑇ℓ ≤ 𝑆1 − 1 + 𝑆2 < 𝑆

• ⇒ when proving the objective for a set 𝑆, only require it for smaller subsets

• Apply induction on 𝑆
• Base case: 𝑆 = ∅ is trivial



Proof Recap

Ideas
• Chain rule: probability of intersection is product of conditional probabilities

• Prove ℙ 𝐸𝑖
𝑐 ∩𝑗∈𝑆 𝐸𝑗

𝑐 ≥ 1 − 𝑥𝑖 by induction on 𝑆
• Separate conditioned events by dependence of 𝐸𝑖
• Simplify resulting expression by bounding the numerator

• Apply induction hypothesis to the denominator

• Substituting into chain rule gives result 

Theorem 4.2.2 (Lovász Local Lemma; Erdős-Lovász, 1975)

Let 𝐸1, 𝐸2, … , 𝐸𝑚 be events with a dependency digraph 𝐷. If there are 
𝑥𝑖 ∈ 0,1 such that ℙ 𝐸𝑖 ≤ 𝑥𝑖ς 𝑖,𝑗 ∈𝐷

1 − 𝑥𝑗 for all 𝑖 ∈ [𝑚], then 

ℙ ∩𝑖 𝐸𝑖
𝑐 ≥ ς𝑖 1 − 𝑥𝑖 .



Any questions?



§4 Latin Transversals
Chapter 4: The Lovász Local Lemma

The Probabilistic Method



Latin Squares

Applications
• Experimental design

• Tournament scheduling

• Games and recreation

• Algebra
• Cayley table of a group is a Latin 

square

Definition 4.4.1 (Latin square)

A Latin square of order 𝑛 is an 𝑛 × 𝑛 array with entries from 𝑛 such 
that each symbol appears exactly once in each row and column.

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4



Latin Transversals

Example
• Conducting a survey

• Public divided by metrics
• Age

• Height

• No. combinatorics courses taken

• Want a fair sample
• No group is overrepresented

Definition 4.4.2 (Latin transversal)

Given an 𝑚 × 𝑛 array with entries in ℕ, a transversal is a selection of 
cells without any repeated row, column or symbol.

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4



Latin Transversals

Example
• Conducting a survey

• Public divided by metrics
• Age

• Height

• No. combinatorics courses taken

• Want a fair sample
• No group is overrepresented

Definition 4.4.2 (Latin transversal)

Given an 𝑚 × 𝑛 array with entries in ℕ, a transversal is a selection of 
cells without any repeated row, column or symbol.

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4



Proposition 4.4.3

Any Latin square of order 𝑛 contains a transversal of size at least 
𝑛

3
.

An Extremal Problem
Large transversals?

• How large a transversal must a Latin square of order 𝑛 contain?

Proof
• Build a transversal greedily

• There are a total of 𝑛2 cells

• Each cell clashes with 3 𝑛 − 1 other cells
• Those in the same row, column or with the same symbol

• ⇒ we can select at least 
𝑛2

3 𝑛−1 +1
cells before we run out ∎



An Upper Bound to the Extremal Problem

Proof
• Let 𝑛 = 2𝑘 and 𝐿 be the Cayley table of ℤ2𝑘

• 𝐿 𝑖, 𝑗 ≔ 𝑖 + 𝑗 (mod 2𝑘)

• Suppose we have a transversal
• Chosen cells: 𝑖, 𝜋 𝑖 : 𝑖 ∈ 2𝑘 for some permutation 𝜋 ∈ 𝑆2𝑘

• Rows, columns and symbols range over [2𝑘]

• ⇒ sum is 2𝑘
2

= 𝑘 2𝑘 − 1 ≡ 𝑘 (mod 2𝑘)

• But summing symbols = summing rows and columns:
• 𝑘 ≡ σ𝑖 𝐿 𝑖, 𝜋 𝑖 = σ𝑖 𝑖 + 𝜋 𝑖 = σ𝑖 𝑖 + σ𝑖 𝜋 𝑖 ≡ 𝑘 + 𝑘 ≡ 0 ≢ 𝑘 (mod 2𝑘) ∎

Proposition 4.4.4

For every even 𝑛 ∈ ℕ, there is a Latin square of order 𝑛 without a 
transversal of size 𝑛.



Conjecture 4.4.5 (Ryser-Brualdi-Stein, 1967+)

Every Latin square of order 𝑛 admits a transversal of size 𝑛 − 1.

A Daring Conjecture

Odd orders
• Ryser conjectured that odd Latin squares have full transversals

Theorem 4.4.6 (Erdős-Spencer, 1991)

Let 𝐴 be an 𝑛 × 𝑛 array with entries in ℕ. If no symbol appears more 

than 
𝑛−1

4𝑒
times in 𝐴, then 𝐴 admits a transversal of size 𝑛.

Comparison to the conjecture
• Weak: Latin squares have each symbol appearing 𝑛 times

• Strong: In theorem, no restrictions on row or column repetitions!



Proof Framework

Goal
• Show that a random permutation can give a full transversal

Probability space

• Choose 𝜋 ∈ 𝑆𝑛 uniformly at random

• Potential transversal 𝑖, 𝜋 𝑖 : 𝑖 ∈ 𝑛

Bad events

• Chosen cells from distinct rows and columns by construction

• Only way to fail: repeat a symbol

• How do we define events to capture this?



Defining Failure
Events by symbol

• For each symbol 𝑖 ∈ ℕ appearing in 𝐴, define an event
• 𝐸𝑖 = two cells with the symbol 𝑖 are selected

• 𝜋 gives a transversal = ∩𝑖 𝐸𝑖
𝑐

Probabilities
• ℙ 𝐸𝑖 depends very much on structure of 𝐴

• If all 𝑖-entries are in the same row ⇒ ℙ 𝐸𝑖 = 0

• If Ω 𝑛 are on a diagonal ⇒ ℙ 𝐸𝑖 = Ω 1

• Expected number of events
• Hard to compute

• Could grow linearly

Many dependencies
• Different symbols that appear in the same row/column are dependent



Redefining Failure

Events by rows

• For 𝑖, 𝑗 ∈ 𝑛
2

, define 𝐸𝑖,𝑗 = 𝐴𝑖,𝜋 𝑖 = 𝐴𝑗,𝜋 𝑗

• 𝜋 gives a transversal = ∩ 𝑖,𝑗 𝐸𝑖,𝑗
𝑐

Same issues as before

• Probabilities depend heavily on array 𝐴

• Expected number of events can be Ω 𝑛

• High dependence
• Knowing 𝐸𝑖,𝑗 occurs could tell us which elements are selected

• Affects distribution in other rows



Reredefining Failure
Events by cells

• Identify exactly where symbols are repeated

• For every pair of cells 𝑖, 𝑗 and 𝑖′, 𝑗′ with
• 𝐴 𝑖, 𝑗 = 𝐴 𝑖′, 𝑗′

• 𝑖 ≠ 𝑖′

• 𝑗 ≠ 𝑗′

define the event 𝐸𝑖,𝑗,𝑖′,𝑗′ = 𝜋 𝑖 = 𝑗 ∩ 𝜋 𝑖′ = 𝑗′

• 𝜋 gives a transversal =∩𝑖,𝑗,𝑖′,𝑗′ 𝐸𝑖,𝑗,𝑖′,𝑗′

Probabilities

• Each event occurs with probability 
1

𝑛 𝑛−1

• Number of events depends on structure of 𝐴, but at most 
1

2
⋅ 𝑛2 ⋅

𝑛−1

4𝑒

• ⇒ expected number of bad events can still be Ω 𝑛



Examining Independence

Neighbouring events
• Consider events 𝐸𝑖,𝑗,𝑖′,𝑗′ and 𝐸𝑝,𝑞,𝑝′,𝑞′

• Correspond to cells (𝑖, 𝑗), 𝑖′, 𝑗′ , 𝑝, 𝑞 and 𝑝′, 𝑞′

• Only one cell selected from each row/column

• ⇒ if 𝑖, 𝑖′ ∩ 𝑝, 𝑝′ ≠ ∅ or 𝑗, 𝑗′ ∩ 𝑞, 𝑞′ ≠ ∅, no independence

Non-neighbouring events

• Permutation restrictions are global in nature

• ⇒ information travels even when not sharing a row or column

• ⇒ cannot expect any independence



Who Needs Independence?

Proof of Lovász Local Lemma
• Used independence when bounding the numerator

• ℙ 𝐸𝑖 ∩𝑗∈𝑆2 𝐸𝑗
𝑐 = ℙ 𝐸𝑖 ≤ 𝑥𝑖ς𝑗: 𝑖,𝑗 ∈𝐷

1 − 𝑥𝑗
• (First) equality by independence

• (Second) inequality by assumption

Weakening condition

• We only use the inequality
• Could skip the intermediate equality

• ⇒ suffices to have ℙ 𝐸𝑖 ∩𝑗∈𝑆 𝐸𝑗
𝑐 ≤ 𝑥𝑖ς𝑗: 𝑖,𝑗 ∈𝐷

1 − 𝑥𝑗 for all 𝑖 ∈ [𝑚] and 

𝑆 ⊆ 𝑚 ∖ 𝑗: 𝑖, 𝑗 ∈ 𝐷



Theorem 4.4.7 (Lopsided Lovász Local Lemma; Erdős-Spencer, 1991)

Let 𝐸1, 𝐸2, … , 𝐸𝑚 be events in a probability space, let 𝑥1, 𝑥2, … , 𝑥𝑚 ∈
0,1 , and let 𝐷 be a directed graph on the vertices 𝑚 . If, for every 
𝑖 ∈ 𝑚 and 𝑆 ⊆ 𝑚 ∖ 𝑗: 𝑖, 𝑗 ∈ 𝐷 ∪ 𝑖 , we have

ℙ 𝐸𝑖 ∩𝑗∈𝑆 𝐸𝑗
𝑐 ≤ 𝑥𝑖 ෑ

𝑗: 𝑖,𝑗 ∈𝐷

1 − 𝑥𝑗 ,

then ℙ ∩𝑖 𝐸𝑖
𝑐 ≥ ς𝑖 1 − 𝑥𝑖 > 0.

The Lopsided Lovász Local Lemma
Strengthened result

• Using this observation, we can weaken the requirement in the Local Lemma

• Following version is useful in spaces with limited independence
• Most pairs of events should be positively correlated



Verifying the Condition

Proof idea
• Without loss of generality, may assume 𝑖 = 𝑗 = 1, 𝑖′ = 𝑗′ = 2

• Restrict to permutations 𝜋 satisfying ∩ 𝑝,𝑞,𝑝′,𝑞′ ∈𝑆 𝐸𝑝,𝑞,𝑝′,𝑞′
𝑐

• By modifying permutations, show that number of permutations with 𝜋 1 =
𝑟 and 𝜋 2 = 𝑠 is minimised (for 𝑟 ≠ 𝑠) when 𝑟 = 1 and 𝑠 = 2

Lemma 4.4.8

Let the events 𝐸𝑖,𝑗,𝑖′,𝑗′ be as previously defined, and let 𝑆 be a set of 
indices for events involving cells not sharing a row or column with 𝑖, 𝑗
or 𝑖′, 𝑗′ . Then

ℙ 𝐸𝑖,𝑗,𝑖′,𝑗′ ∩ 𝑝,𝑞,𝑝′,𝑞′ ∈𝑆 𝐸𝑝,𝑞,𝑝′,𝑞′
𝑐 ≤

1

𝑛 𝑛 − 1
.



Verifying the Condition - Notation
Objective

• ℙ 𝐸1,1,2,2 ∩ 𝑝,𝑞,𝑝′,𝑞′ ∈𝑆 𝐸𝑝,𝑞,𝑝′,𝑞′
𝑐 ≤

1

𝑛 𝑛−1

Notation

• Call 𝜋 “good” if 𝜋 ∈∩ 𝑝,𝑞,𝑝′,𝑞′ ∈𝑆 𝐸𝑝,𝑞,𝑝′,𝑞′
𝑐

• Let 𝑃𝑟,𝑠 = {𝜋 good, 𝜋 1 = 𝑟, 𝜋 2 = 𝑠}

• Goal: 𝑃1,2 ≤ 𝑃𝑟,𝑠 for all 𝑟, 𝑠 ∈ 𝑛 2, 𝑟 ≠ 𝑠

Setting up the proof

• Goal: Construct an injection 𝑃1,2 ↪ 𝑃𝑟,𝑠
• Case: 𝑟, 𝑠 ∉ 1,2 (others similar)

• Let 𝜋 ∈ 𝑃1,2 and let 𝑥 = 𝜋−1 𝑟 , 𝑦 = 𝜋−1(𝑠)



Verifying the Condition - Proof
Goal

• Injection 𝑃1,2 ↪ 𝑃𝑟,𝑠
• Given: 𝜋 ∈ 𝑃1,2, 𝜋 𝑥 = 𝑟, 𝜋 𝑦 = 𝑠

Switching

• Define new permutation 𝜋∗ ∈ 𝑃𝑟,𝑠

• 𝜋∗ 𝑧 =

𝑟 if 𝑧 = 1
𝑠 if 𝑧 = 2
1 if 𝑧 = 𝑥
2 if 𝑧 = 𝑦

𝜋 𝑧 otherwise
• 𝜋∗ is good: only change cells in the first two rows or columns, avoiding 𝑆

• ⇒ 𝜋∗ ∈ 𝑃𝑟,𝑠
• The map 𝜋 ↦ 𝜋∗ is injective ∎



Finding Large Transversals

Proof
• We will apply the Lopsided Lovász Local Lemma

• 𝐷: edges between (𝑖, 𝑗, 𝑖′, 𝑗′) and (𝑝, 𝑞, 𝑝′, 𝑞′) if the corresponding cells share 
a row or column

• Each event is adjacent to at most d ≔ 4 ⋅ 𝑛 ⋅
𝑛−1

4𝑒
− 1 =

n n−1

e
− 1 other events

• We set 𝑥𝑖,𝑗,𝑖′,𝑗′ =
1

𝑑+1
for each event

• ⇒ inequality reduces to 𝑒𝑝 𝑑 + 1 ≤ 1, as in symmetric case

• ℙ 𝐸𝑖,𝑗,𝑖′,𝑗′ =
1

𝑛 𝑛−1
=

1

e d+1
. ∎

Theorem 4.4.6 (Erdős-Spencer, 1991)

Let 𝐴 be an 𝑛 × 𝑛 array with entries in ℕ. If no symbol appears more 

than 
𝑛−1

4𝑒
times in 𝐴, then 𝐴 admits a transversal of size 𝑛.



Theorem (Keevash-Pokrovskiy-Sudakov-Yepremyan, 2020+)

Every Latin square of order 𝑛 admits a transversal of size

𝑛 − 𝑂
log 𝑛

log log 𝑛
.

Ryser’s Conjecture

State of the art
• More involved probabilistic proofs bring us much closer to Ryser’s Conjecture

Theorem (Kwan, 2016+)

Almost all Latin squares of order 𝑛 have a transversal of size 𝑛.



Any questions?


