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Chapter Overview

* Prove some strong concentration inequalities
* Improve bounds on Ramsey numbers
e Study Hamiltonicity and chromatic number of G(n, p)
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Domination vs Minimum Degree

Corollary 2.2.5
Let G be an n-vertex graph with §(G) = 6. Then G has a dominating

setS € V(G) with |S] < (1n(5+1)+1) n.

O+1

Homework exercise
» Show bound is tight by consider G(n, p)

Degrees in G(n,p)
* Degree of a vertex ~ Bin(n — 1,p)
* = expected degreeis (n — 1)p
* Minimum degree: need to show not far from mean
» Suppose P(Jdeg(v) —(n— Dp| = a) < %
* Union bound = IP’((Y(G(n, p)) >(n—1)p— d) P %



Comparing Bounds

Concentration inequalities
+ Let X ~ Bin(n — 1,p), p <
* E[X]=m—-1Dp,Var(X) = (n — )p(1 —p) = 6(np)

* Markov: P(X = a) <2A ]

* = error probability < % fora = Q(n)

* Chebyshev: P(X - E[X]| Zz a) < Va;X)
* = error probability < % fora = Q(n\/ﬁ)
. . _Caz
e Central Limit Theorem: P(X — E[X]| = a) < exp (Var(X))

e = error probability < % fora = Q(\/np logn)



The Problem With CLT

Asymptotics
e Central Limit Theorem is asymptotic, valid as n — oo
* We would like a quantitative bound for some given n

Definition 5.1.1

Let S, = Xi—; X;, where the X; are independently and uniformly
distributed on {—1,1}.

Binomial connection

* We have S,, ~ 2 Bin (n,%) —g

* Convenient to translate so mean is zero

Goal
* Show §,, is exponentially unlikely to be far from zero



Chernoff Bounds

Theorem 5.1.2 (Symmetric Chernoff Bound)

2
'For every a > 0, we have P(S,, = a) < exp (— Z—n)

Remarks

e Concrete bounds for all n, a
* Symmetry: same bound for P(S,, < —a)

* Bin (n,%) = %(Sn + n)

e = concentration for binomial random variables

lCoroIIary 5.1.3
'For every a > 0, we have P (‘Bln( —) — 2‘ > a) < 2exp (_Zaz) .

n




Proving Chernoftf

lTheorem 5.1.2 (Symmetrfc Chernoff Bound)

2n

! y
'For every a > 0, we have P(S,, = a) < exp (— a—).

i B

Proof
e Exponential conversion
« {S, =a}={e5r = e} = {etn > et}
* Concentration
« e?5n 3 non-negative random variable
* Markov: IP(e’lSn = e’w) < E[e’lsn]e"w
* Expectation

* Recall S, = Y11 X;

n
* Independence = E[e*St| = [TiL, E[e?i] = (% (e* + e“l)) = cosh™(1)



Over the Cosh

Recall
« P(S,, = a) < E[etSn]|e e
* E[e?Sn| = cosh™(1)

A little calculus

* cosh(x) = %(ex + e™%)

2 3 4
* Taylorseries:e* =1+ x4+ =+ +2 4 ...
2 6 24

X

6

2 4
« > cosh(x) =1+ 4+ +
2 24 7

Finishing the proof

20

2 4 6

x? x*  x
+.“S1+7+?+4_8+.“

* + P(S, = a) <exp G nA* — Aa)

* Minimise: A = %=> P(S,, = a) < exp (— a—)

2

2n



The General Setting

Shortcomings
 Required each X; to be uniform on {—1,1}

Wider Framework

*Pu,P2 - Pn € [0'1]1 and p = n_l ?=1 Di
* X; independent with P(X; =1—p;) =p;and P(X = —p;) = 1 — p;
* X =2 X

Theorem 5.1.4 (Asymmetric Chernoff Bound)
Let a > 0 and let X and p be as above. Then

2 2 3
P(X < —a) < exp (— zclen) and P(X > a) < exp (Z%n + Z(Zn)z).

!




An Asymmetric Chernoff Bound

Theorem 5.1.4 (Asymmetric Chernoff Bound)
Let a > 0 and let X and p be as above. Then

2

—a —a? a3
< — < — > <
P(X < —a) < exp (an) and P(X = a) < exp (an + 2(pn)2).
Special case
 p; =pforalli=> X + np ~Bin(n, p)
: —a? a3
> P(|Bin(n,p) —np| = a) < 2exp (an + 2(pn)2)

Corollary 5.1.5

For every € > 0 there is some ¢, > 0 such that, if Y is the sum of
'mutually independent indicator random variables and u = E[Y], then

PClY —ul = ep) < 2exp(—ceu).




Any questions?

E— — ——
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The Story So Far

Goal
* Determine the order of magnitude of R(3, k)

Upper bound
* Erd6s-Szekeres (1935): R(3,k) < (k;rl) = 0(k?)

Lower bounds
* First moment, Mantel: R(3,k) = Q(k)

3/2
* Alterations: R(3,k) = Q(( i ) >

log k

/’ k 2
* Lovasz Local Lemma: R(3,k) =Q (log k)



Alterations Revisited

Theorem 2.1.2 (£ = 3)
Foreveryn,k € Nand p € [0,1], we have

R(3,Kk) > 7 — (’;) D3 — (Z) 1 —p) &),

Proof sketch
* Take G ~ G(n,p)

 Remove one vertex from each triangle, independent set of size k
* Resulting graph G’ is Ramsey

* First moment = with positive probability G’ has many vertices

Optimisation

K \3/2
* Largest right-hand side can be is O (log k)



Alternative Alterations

Vertex removal

* Wasteful operation
* To fix a single, small triangle, we make )(n) changes to the graph
e Shrinks our resulting Ramsey graph too much

Edge removal

* More efficient fix

* To fix a triangle, need only remove a single edge
* Problematic

* Being triangle-free and having small independence numbers are in conflict

* Need to ensure we can destroy all triangles without creating large independent sets
* A new hope

* Can our more advanced probabilistic tools help?



Plan of Attack

Detriangulation
* Need to remove at least one edge from each triangle

* Let T’ be a maximal set of edge-disjoint triangles in G
e If T is a triangle in G, maximality = must share an edge with some T’ € T

 Remove all edges of all triangles in T
* Removes 3|7 | edges
* Need to remove at least |T"| edges

Independent sets

e Cannot let a set S of k vertices become independent
* Would help if G[S] had many edges to begin with
* Expect to see (';)p edges

* Chernoff = very unlikely to see many fewer
e Can afford a union bound over all such sets S



Local Edge Distribution

Local edge counts
* Fix a set S of k vertices

+ e(G[S]) ~ Bin (), p)

* Expect (’;)p edges, how likely are we to see at least half of that?

lTheorem 5.1.4 (Asymmet_ric Chernoff Bound)

a

% —a2\ |
'Leta > 0 and let X and p be as before. Then P(X < —a) < exp (zzTn) '

Applying Chernoff
 set X = Bin ((£),p) — (5)p, and leta = (¥)p
+ = P(eGlsh <5 (5)p) < exp (—5 ()



Local Properties Globally

Recall
+ P(e(GISD <5 (¥)p) < exp (-5 (E)p)

Union bound

 We need every k-set to have many edges
* Apply a union bound over choice of S

o P (EIS: e(G|S]) < %(’;)p) < (Z) exp (— % (g)p) < exp (k Inn — % (g)p)
Setting parameters
* Smallifklnn < 1—10 ('Zc)p, say

* To avoid too many triangles, take equality above

* Then with high probability each k-set spans at least % (’;)p = 5k Inn edges



A Tangle of Triangles

Recall
Olnn

* Settingp = : —

= almost surely, every k-set has at least 5k Inn edges

New independent sets

 Remove all edges from a maximal set J° of edge-disjoint triangles
* Need to avoid creating an independent set of k vertices
* Fix a set S of k vertices

How many edges do we lose?

* Only triangles with an edge in S are relevant
* Number of potential such triangles:

G+ (G -0

* Expected number of relevant triangles
() + ) —0))p® ~ =2 In*n + 4000 == In*n ~ 4000~ In° n



Accounting for Triangles

Recall
* With high probability, each k-set S spans at least 5k In n edges
* Expect there to be at most 4000 % In® n triangles with an edge in S

Setting more parameters

* In order to ensure S does not become independent, need %1n3 n<cklnn

e ¢ > (0 some small constant

e Solving:n < C(L)Z = c’( i )2
&M= Inn/ log k

Large deviations

* Need to ensure that no set S sees too many triangles
e Union bound over (’;) many sets

* = need the probability that we get more triangles than expected to be small



Too Many Triangles

Concentration inequalities

e Chernoff: probability of seeing too many triangles is exponentially small
* Problem: indicator variables for triangles are not independent
* Chebyshev: error probabilities only polynomially small

* Not enough to make up for (Z) summands in union bound

Saving grace
* We only remove edges of triangles in T, edge-disjoint set of triangles

Lemma 5.2.1 (ErdGs-Tetali, 1996)

Let £y, E5, ..., E;;, be a collection of events and set u = ),/ ; P(E;). For |

lany s,
i S

IP’(Ei1 N E;, n--NE;_ forsome independent E; , E; , ...,Eis) <—.




The ErdOs-Tetali Lemma

Lemma 5.2.1 (ErdGs-Tetali, 1996)

Let E4, E, ..., E;, be a collection of events and set u = )./%, IP(E;). For |

any s, |
| S

P(Eil N E;, Nn--NE;_ forsomeindependent E; , E; , ...,Eis) < —.

Proof
 Take a union bound over all such s-sets of events

. IPD(EL-1 N---N E; for some independent events)
1
< Yiy,oiggind P(Eiy NN E; ) = _Z(il o ind P(Eyy 0N E;)

_ %Z(il,---;is) o H§=1 P (Eij) Z(ll Jis)E[m]S H ( 1)
1 > W
= (Ziepm P(ED) ] )

s!



Handling Triangle Errors

Recall
* With high probability, each k-set S has at least 5k Inn edges
* Expected number of triangles with an edge in S at most ck Inn for small ¢

ErdOs-Tetali

 Events E;: ith triangle meeting S is present in G(n, p)
e u<cklnn
e lets =klnn

* Lemma 5.2.1 = P(S sees edges of s disjoint triangles) < %

Calculation
S
e Stirling: s! > (f)

e

S e\> k- _
-:%S(”?) < (ce)knm < n7kifc < g2



Completing the Proof

Union bound

* Union bound over all (2) < n* sets = with high probability, every k-set:
* Spans at least 5k Inn edges and meets at most k In n edge-disjoint triangles

Alteration

k \2 __20Inn
log k) e P = k—1
* Let J' be a maximal set of edge-disjoint triangles, and remove all edges in T
* Each k-set loses at most 3k Inn edges = doesn’t become independent

* Resulting graph is therefore Ramsey.

* GivenG ~ G(n,p), wheren = ¢’ (

Theorem 5.2.2 (Erdés, 1961; K;ivelevich, 1995)
2
Ask — o0, R(3, k) = Q(( i ) )

log k




Closing In

Lower bounds
* Edge-alteration gave same bound as Lovasz Local Lemma

- k610 =0((%))

* Could this be the truth? What can we say in the other direction?

Theorem 1.5.5 (Erd(')'s—Szekeres,~ 1935)
Forall £,k € N,
L+ k —

| R(f,k)s( ) ) O(k1).

In particular, R(3,k) = 0(k?).

Narrowing the gap
e Left with a log® k gap to close



Independent Sets in Triangle-Free Graphs

lProposition 5.2.3
'If G is an n-vertex triangle-free graph, a(G) > +/n — 1.

Proof
* Key observation: G triangle-free = every neighbourhood is independent

- if G has a vertex of degree n — 1, we are done
e Otherwise A(G) <+n—1
e Greedy algorithm:

n
) a(G) = A(G)+1 = \/ﬁ

Ramsey numbers
* Implies R(3,k) = 0(k?)



Room for Improvement

Greedy algorithm
* Order vertices arbitrarily
* Add first vertex v to independent set
 Remove all its < A neighbours, and repeat

* Bound is sharp only if v never has any neighbours previously removed
* Only true for disjoint union of cliques
* = cannot be sharp for triangle-free graphs

Theorem 5.2.4 (Ajtai, Komlds, gzemerédi, 1980; Shearer, 1995)
If G is an n-vertex triangle-free graph with maximum degree A, then

nlogA
G) = .




An Improved Upper Bound

Corollary 5.2.5

8k*>
log k’

Ask - oo, R(3,k) <

Proof

2

8k
° letn =
log k

c IFA(G) = k
* Let v be a vertex of maximum degree
* N(v)is anindependent set of size > k

* IfA(G) < k
 Theorem5.2.4= a(G) =

and let G be an n-vertex triangle-free graph

nlogA > nlogk — I
8A 8k




The Big Picture

Randomness

* We show that a random independent set [ of G has this size
* IfweletY,, = 1g,ep, then [I| =3, Y,
* Would suffice to compute E[|I[] = ), E[Y,] = X, P(v € ])
e Computing IP(v € I) not straightforward — depends on neighbourhood

Neighbourhoods
* How does I meet the neighbourhood N(v)?
e Ifv el:
e MusthaveI NN(v) =0
e Ifv & I:

« CanhaveINN(w) # @
* Since N(v) is independent, intersection can be arbitrary
* = might expect intersection to be large



New Random Variables

Local variables

e Define new variables to account for local information
* letX, = A-1gep + I NN)]
e Heuristic justification

* Regularise contribution of v

* Whenv €1, have X, = A
 When v & I, can still have X, = 0(A)

* Easier to get useful bounds on X,

Lemma 5.2.6

If A > 16, we have E[X,] > 284

for every v.




Deducing the Theorem

Theorem 5.2.4 (Ajtai, Komlos, §zemerédi, 1980; Shearer, 1995)
If G is an n-vertex triangle-free graph with maximum degree A, then

| nlogA
f G) = :
a(G) T
Proof
* If A < 15,done by a(G) = ALH

* Otherwise, let I be a uniformly random independent set of G
* For each vertex v, let X;, = A-1gp,epn + I N N(V)|

let X =), X,

Observe: X < 2A|I|

* Each v € I contributes at most 2A: A via X,,, and 1 via X, for each neighbour u

Lemma 5.2.6 = E[X] > nlng




Proving the Lemma

lLemma 5.2.5

IfFA > 16, we have E[X,] = 08 2

for every v.

Proof
* Xy =A-1gep+IINNW)]
* Whichu € N(v) could be in I?

* Need to know I N N(N(v))
* Idea: condition on how I meets the rest of the graph
s LetH =G\ ({v} U N(v))

- E[X,] = E[E[X,[I nV(H) =]]]

+ Suffices to show E[X,|I N V(H) = J] = 28~

for every independent J in H



Extending Independent Sets

Goal

« E[X,|[ N V(H) = J] > 282

4

Available neighbours

e letA=NW)\N()
* Those neighbours of v that could be added to ]
e Leta = |A]|

Independent extensions

* Two types of extensions of J to I:

e [ =]JU{v}
e [=JUS,someSCc A

* | is chosen uniformly at random from 2% + 1 optoins



Computing Conditional Expectations

Recall
* Xy, =A-1gen +INN®W)]

+ Want to show E[X,|I N V(H) = J] = 284

4

Conditional Expectation

e Case:v €[
* Probability:
« X, =A

e Case:v & [

* Probability: 2§+1

» E[X,lvg LInV(H) =]] = E[IS|] =~

" sa—1
* > E[XIINV(H) =]] = 2041 E;"ﬂ‘+1

1
2a+1

a




Concluding Calculations

Recall
A a28¢-1

C BN V(H) = J] = 2+ 2
« Want to show E[X,|[INV(H) =]] =

log A
4

Contradiction

log A A a2¢-1
* Ifnot, = 24+1 2041

« > 2%+ 1)logA > 4A + 2a2°
* = (logA —2a)2% > 4A —logA
e Also=>a=>1
* Must have 2a < log A
e =20 <+/A
« = (logA — 2)VA > 4A —log A
* FalseforA = 16




Epilogue

What we know

» () =RGB0 = 0 ()

log? k log k

lTheorem 5.2.7 (Kim, 1995)

§As k > o, R(3,k) =0 (lok;k).

Remarks
e Kim’s proof a “tour de force”
* Lower bound recently sharpened via analysis of triangle-free process
* Asymptotics of R(s, k), s = 4 fixed and k — oo, unknown



Any questions?

E— — ——
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Setting the Scene

Definition 5.3.1

‘A Hamiltonian cycle in a graph G is a cycle passing through every vertex
of G. A graph is called Hamiltonian if it contains a Hamiltonian cycle.

lTheorem 5.3.2 (Karp, 1972)
'Deciding whether a graph is Hamlltonlan IS NP Complete

Questions
* Are there easy ways to recognise Hamiltonian graphs?
 What happens for the average graph?



A Sufficient Condition

lTheorem 5.3.3 (Dirac, 1952)

| |
'Every n-vertex graph G with minimum degree §(G) = % is Hamiltonian.

Optimal bound
* n even: two disjoint cliques
* n odd: two cliques sharing one vertex

Corollary 5.3.4
'Forevery e > 0andp > G + g) n, G(n,p) is Hamiltonian w.h.p.




Threshold Lower Bound

First moment

. (n-1)! _ n\ L
There are » —((1+0(1))e) possible Hamiltonian cycles

 Each appearsin G(n,p) with probability p™

n
* = expected number of cycles is ((1+:?1))e)

¢« >ifp < %, then G (n, p) has no Hamiltonian cycles w.h.p.

Connectivity
* G(n,p) Hamiltonian = G(n, p) connected

Proposition 5.3.5

(1—¢)logn

'Foreverye > 0andp < , G(n,p) is w.h.p. not Hamiltonian.

n




Dirac’s Theorem

lTheorem 5.3.3 (Dirac, 1952)

Every n-vertex graph G with minimum degree §(G) = g is Hamiltonian.

A

Proof
* (7 is connected

* If not, smaller component would not support minimum degree
Let P = vyv1V, ... V; be a longest path

 N({vy,v:}) € P, as otherwise path could be extended
Pigeonhole: 3i such that {v;, v}, {vo, V;+1} € E(G)
We have a cycle C = vgv V5 ... Vj Vs Vi1 Vi_o ... Vi1 Vg
If t = n, this is a Hamiltonian cycle

If ¢ < n, connectivity = edgefromCto G \ C
* Gives a longer path, contradiction. u



Dirac’s Algorithm

More than existential
* Proof shows us how to find a Hamiltonian cycle
Start with any path
If there are edges out from the endpoints, extend path

Otherwise by pigeonhole turn path into cycle
* Use external edge to extend path

Repeat until cycle is Hamiltonian

Random setting

e Extremal problem:
* Need to assume worst-case graph
* Used large degree, pigeonhole to rotate path into cycle

* Can we use properties of G(n,p) to do this more efficiently?



Pdsa Rotations
Goal

* Given path P = vyv4 ... V¢ in a graph G
* Want to find a longer path or a Hamiltonian cycle

Definition 5.3.6 (Booster)

Given a graph G, a booster is a potential edge e such that G U {e}
contains a longer path or a Hamiltonian cycle.

Rotations
* If G is connected, the pair {v,, v;} is a booster
» Suppose {v;, 1.} EE(G),1<i<t—2
 Rotation along {v;, v;}: P' = vyv; ...V;VsV;_1 ... V; 41 also a path of length t
e = the pair {vy, v;4+1} is also a booster



Endpoint Neighbourhoods

Lemma 5.3.7

Let P = vy, ... U be a longest path in a graph G, and let R be the set
'of endpoints reachable from v, by sequences of rotations. Then
Ng(R) € Np(R).

Proof
* After rotating along {v;, v}, only v;, v; get new neighbours on the path

* letv ER
 Rotate to path P’ with v as an endpoint
 lety e N(v) \ R
* Ify & V(P), extend P’ to y = longer path than P
If y € V(P), rotate P’ along the edge {v, y}
= a neighbour x of y on P’ is an endpoint of the new path, so x € R
If x also a neighbour of y on P, then y € Np(R)
Otherwise must have rotated along an edge incidentto y = y € Np(R)



Expanders

Corollary 5.3.8

Let P be a longest path in G, and let R be the set of endpoints
following sequences of rotations. Then |N;(R)| < 2|R| — 1.

Proof
* Lemma5.3.7= N;(R) € Np(R)
 Each vertex in R contributes at most two neighbours to Np(R)
* Final vertex v; only contributes one
* = |Np(R)| < 2|R| -1

Definition 5.3.9 (Expander)

A graph G is a (k, 2)-expander if, for every S € V(G) with |S| < k, we
have [N;(S)| = 2|S].




Expanders Have Many Boosters

lCoroIIary 5.3.10

E
P
|

'If G is a connected (k, 2)-expander, then G has at least = k2 boosters.

Proof

* |If G is Hamiltonian, every edge is a booster.

* Otherwise let P = vyv; ... v be a longest path
Fix vg, and let Ry be the endpoints after rotations

* Corollary 5.3.8 = |N;(Ry)| < 2|Ry| — 1

G a (k,2)-expander= |Ry| = k + 1
Given any y € R, rotate to a vy-y path P’
Fix y, and let R,, be the endpoints of paths from y after rotating P’

For each z € Ry, {y, z} is a booster, counted at most twice |



Dirac’s Algorithm in Random Graphs

Assumptions
(1+¢&) logn

* G(n,p) is connected — know to be true for p > ~

* G(n,p) is a (k, 2)-expander for k large

Rotation-Extension process

 Start with a longest path P
e Corollary 5.3.10 = gives rise to (k?) boosters

 Each booster is an edge of G(n, p) independently with probability p

* = Probability none of the boosters appearis (1 — p)k2
e = if p = w(k™?), then w.h.p. one of the boosters should be in G (1, p)

* Use it to extend path, repeat until Hamiltonian



Multiple Exposures

Recall
* Longest path gave rise to Q(k?) boosters
e Want to show w.h.p. a booster appears in G(n, p)

Problem

* To find the boosters, we needed to expose edges in (V(ZP))

* Might already have found boosters are not edges
* They do not appear independently with probability p

Solution
 Split the random graph into independent subgraphs
* Letpy,qgsatisfyl —p=(1—-py)(1—q)
« ThenG(n,p) ~ G(n,py) UG(n,q)
* Use G(n,py) to obtain connectivity, expansion properties, find boosters
* Use G(n, q) to show boosters appear in the random graph w.h.p.



Random Graphs are Expanders

lLemma 5.3.11
|
fp > ’ cT)lgn then G(n,p) is w.h.p. an ( 2)-expander.
Proof
* If not, there is some set S of size s :== |S| < — such that [N(S)| < 2s

e =>3JIW cV(G)\S, |W| = 2s, such that we have no edges fromSto V(G) \ (SU W)
* Probability these edges are missing is (1 — p)S(”‘35) < e Ps(n=3s) < o—psn/2

* Count number of pairs (S, W)
- (1) < (%)S choices for S, (%) < (5.) < (%)25 choices for W
* Union bound

L 3

+ P(G(n,p) bad) < To_, (L2 e-pn/2)’ > (w) = o(1)

4




The Hamiltonicity Threshold

]Theorem 5.3.12 (Pdsa, 1976)

| 80 1 : : -
fp > Zgn, then G(n, p) is w.h.p. Hamiltonian.
Proof :
> lsfi g = 710gnand g = 731110871

Let Go ~ G(Tl Do), and for i € [n], let G; ~ G(n, q) be independent
* IfG =GyU (U; G;),thenG ~ G(n,p)forp=1—(1 —pe)(1 — )" < ——— 80logn

n2

Lemma 5.3.11 = G, is w.h.p. a connected (E' 2)-expander

2
Corollary 5.3.10 = any supergraph of G, has at least % boosters

le —qnz

* = probability G; does not contain one of the boosters < (1 —g)72 <e 72 =0 (l)

n
= Grow a longest path, using G; to find a booster in the ith step




Epilogue

* Hamiltonicity displays a very sharp threshold

Theorem 5.3.13 (Komlés—Szemerédi, 1983)
(1+¢) logn
n

Fore >0andp > , G(n,p) is w.h.p. Hamiltonian.

* Even sharper results were later proven

Theorem 5.3.14 (Bollobas, 1982; Ajtai-Komlos-Szemerédi, 1985)

[In the random graph process, w.h.p. the graph becomes Hamiltonian
precisely when the minimum degree is at least two.




Any questions?

E— — ——
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Threshold for Triangles

lTheorem 3.3.1
'For £ > 2, the threshold for K, € G(n, p)ispo(n) =n —2/(t-1),

Triangular case

£ = 3:threshold for containing triangles is n™1

Upper tail

* When p > n~1, how unlikely is G(n, p) to be triangle-free?

* Proof of Theorem 3.3.1

* Used Chebyshev’s Inequality
* Gives polynomial error bounds



Exponential Dreams

Indicator random variables
* Let X denote the number of trianglesin G ~ G(n,p)
e GivenT € ([g’]), let X1 be the indicator that G[T] = Kj

 ThenP(X; =1) = p3
 AlsoX =) Xr

Stronger concentration

* Using Chernoff would give P(X = 0) < exp (‘%(?)PB)
e Exponentially small error bound

* Problem: summands X7 not independent
* Xr, X7 positively correlated when [T N T'| = 2



Sparse Independence
Cheap fix

* Restrict our attention to mutually independent events
* Equivalently: consider a family of edge-disjoint triangles

Lemma 5.4.1

'There exists a family ofg("gl) pairwise edge-disjoint triangles in K.

Proof
* Colour each triangle {i, j, k} with the colourc =i+ j + k (modn)

* Each colour class is edge-disjoint
* Given vertices i, j, third vertex k = ¢ — i — j determined

* Large colour class

: : 1 1 /n—
* For some ¢, number of c-coloured triangles is at least - (g) =3 ("2 1)



Don’t Let Your Dreams Be Dreams
lCoroIIary 5.4.2 _ B

%G(n, p) is triangle-free with probability at most exp (— % (";1)p3).

Proof
* Let T be the collection of triangles from Lemma 5.4.1

 If G(n,p) is triangle-free, no triangle in T appears
* These appear independently

» Probability none appearis (1 — p3)7! < exp(—|T|p?)

Good news

* Exponential bound on error probability

Bad news
* Exponent (";1)p3 = O(n?p3) is of lower order than expected



Postmortem of a Proof

Improving the exponent

* Need to consider all (g) possible triangles
* Dependencies are limited — can we recover Chernoff-type bounds?

Revisiting Chernoff
* Sp = ?=1Xi
* Properties of X;:
* Bounded, {—1,1}-variables
.« E[X;] =0
e X; mutually independent
* Using independence:

* Applied Markov to e>n
* Independence = E[e°n] = IE[eZiX"] = [1; E[e*i]



Martingales

Conditional independence

* What if the X; are not independent?
* Recover independence by conditioning on previous variables

> Product rule: E[e2i%i| = [, E[eX:|{X;:j < i }]
e = if (Xi|{Xj:j < l}) has the right properties, can prove Chernoff-type bounds

Definition 5.4.3 (Martingale)

A martingale is a sequence Zy, Z4, ..., Z,, of random variables such
that, foreach 1 < i < m, we have

| E|Z;[{Z;:j < i}| = Z;.

éLooser speaking, given what has previously transpired, we expect
nothing to change in the ith step.

A e P— -




Martingales, Tame and Wild

Boring mathsy example
* Let X; be independent and uniformon {—1,1},for1 <i <m
cletZ; =2 X;
« E|Z;[{Z;:j < i}| = E|Zioy + Xil{Z;:) < i} = Zi_1 + E|[X;{Z;:) < i}]
- E|X;|{Z;:j <i}|] =E[X;]=0
= (Z;:0 <i <m)isamartingale
Fun real-world example
 Gambling on (fair) coin tosses
* Z; = cumulative profit/loss after ith toss
* Bet b; = b;(Zy,Z4, ...,Z;_1) on the ith toss, depending on previous outcomes
.. 1 1
* E|Z;{Z;:j < i}] = > (Zi—g +bi) +5(Ziog = by) = Zi—y
« = (Z;:0 <i<m)isamartingale
Disclaimer: gambling can be addictive and bad for your bank balance



Martingale Concentration

Theorem 5.4.4 (Azuma’s Inequélity)

let Zy,Z1, ..., Z,, be a martingale with Z, = 0and |Z; — Z;_{| < 1 for
lall 1 <i < m.Then, forany a > 0, we have
P(Z,, = a) < exp(—a®/2m).

Proof
cSetX; =Z;—7Z;_4
e > |X;|<1landZ,, = X" X;
* Martingale = IE[Xi|{Zj5j < l}] =0
* Forany A > 0, we have {Z,, = a} © {et’m > ¢%4}
. [P)(e,‘{Zm > e/'la) < IE[BAZm]e_Aa
+ E[e?m| = T2, Ele™i|{Z;:) < i}]



A Little Calculus

Lemma 5.4.5

If A > 0 and Y is a random variable with E[Y]| = 0 and |Y| < 1, then
| Ele?Y] < cosh/l

Proof
_e’1+e‘ el—e—4 a2 (1 y 21 (1 y
et f) = =+ Sy =t (j+3) + e (;-3)
« = f represents chord between g(y) = e betweeny = —landy = 1
e Convexity= g(y) < f(y) forally € [-1,1]
ette=4 er—e—4

* Thus IE[e’W] = E[g(Y)] < E[f(Y)] = —t— E|Y] = cosh A




Completing the Proof

Theorem 5.4.4 (Azuma’s Inequélity)

Let Zy, Z4, ..., Z,, be a martingale with Z, = 0and |Z; — Z;_{| < 1 for
alll < i <m.Then, forany a > 0, we have
P(Z,, = a) < exp(—a®/2m).

Proof (cont’d)
o P(e)tzm > ela) < E[elzm]e—/la
» E|le??m| =112, Ele*i|{Z;:j < i}]
* By Lemma 5.4.5, IE[e’lXi|{Zj:j < l}] < cosh 1 < e?’/?
¢ ~P(Z,, = a) <exp (Azm — Aa)

2
a

e Substitute A =

m



Graph Martingales

Upper tail for triangles
* Sample G ~ G(n,p), X = # trianglesin G
« X = ZTE([n]) X, with X7 the indicator that G|[T] = Kj
3

Where is the martingale?

* Natural candidate

* Ordersets Ty, T, ..., Ty,

e letZ; = stiXTj
* Problem

* Positive correlation = cannot make [E[XTi|{Zj:j < l}] = 0 for all choices of Z;
* Solution

* Reveal information about G in stages
* Let Z; be the expected value of X given the information after i rounds



The Doob Martingale

General framework
* Sample G ~ G(n,p), interested in graph parameter f(G) € R
* Example: f(G) = # triangles in G
Revealing G

* Order the possible edges ([121]) = {e, €3, ...,ep} form = (Z)
® LEtSi = {8]_] < l}

The martingale

* Z; = E[f(®IEG) nS;] - E[f(G)]

* Expected value of parameter given the previously revealed edges

- Zy = E[f(G)] - [f(G)]—O
¢ Zm = E[f(®|EG) n ("] = E[f ()] = F(G) — E[f(6)]



A Small Example

Framework
e G ~G (3%) and £(G) = w(G)
2
1.75 — 2.25
N / \
1.5
/N / \ / \ / \

6 1 2
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Veritying Martingale-ness

Recall
* G ~ G(n,p), and we are exploring a graph parameter f (G)
° Si ={€]]Sl}
* Z; = E[f(GQ)|E(G) n S;]

Conditional expectations
* E[Z;1|E(G) n'S;] = E[E[f(G)IE(G) N Si1]IE(G) NS
= E[f(®)IE(G) nS;] = Z;
* = this is a martingale



Lipschitz Properties

Bounded differences
 To apply Azuma’s Inequality, we need |Z; — Z;_;| < 1 forall i
* Intuitively: changing one edge should not change f(G) much

Definition 5.4.6 (c-Lipschitz) B
Let ¢ > 0. A graph parameter f is c-(edge-)Lipschitz if, for any edge e,

1fG@) - fGLre)l<c

Fact 5.4.7

Given a c-Lipschitz parameter f, we have |Z; — Z;_{| < 1 for the
normalised Doob martingale Z; = = (E[f(G)|E(G) n S;] — E[f(6))).




Summary

Theorem 5.4.4 (Azuma’s Inequ‘élity)

let Zy,Z1, ..., Z,, be a martingale with Z, = 0and |Z; — Z;_{| < 1 for
alll < i <m.Then, forany a > 0, we have
P(Z,, = a) < exp(—a?/2m).

Corollary 5.4.8

Let f be a c-Lipschitz graph parameter, G ~ G(n,p), u = E[f(G)], and |
a > 0.Then P(f(G) = u+ a) < exp(—a?/n?c?).

Remarks

* Same bound holds for P(f(G) < u—a)

* Can also use a vertex-exposure martingale
» Z; is the expected value of f(G) after exposing induced subgraph of G on first i vertices



Any questions?

E— — ——



§5 Triangle-free Graphs

—

Chapter 5: Concentration
The Probabilistic Method



A Quick Review

lTheorem 3.3.1
'For £ > 2, the threshold for K, € G(n, p) is pg(n) = n=2/¢=-1),

e

Triangle-freeness
e > whenp = w(n™?1), ]P(Kg o G(n,p)) =0(1)
* Error bound from Chebyshev = only polynomially small

Exponential error bounds
» Sharper estimates by considering edge-disjoint triangles

lCoroIIary 5.4.2
'G(n, p) is triangle-free with probability at most exp (— % ("gl)p?’).

e T T




Applying Azuma

Corollary 5.4.8’

Let f be a c-Lipschitz graph parameter, G ~ G(n,p), u = E[f(G)], and
a>0.Then P(f(G) < u— a) < exp(—a?/n*c?).

Counting triangles
e f(G) = #trianglesin G
° ‘u = (g)pS = a
cc=n-—2

lCoroIIary 5.5.1

_ __1\2,,6
'G(n,p) is triangle-free with probability at most exp ( (n 3? £ ) .




Immeasurable Disappointment

Worse exponent
1 : 1 /p—
* Exponent — (n — 1)?p® is worse than the - ("2 Y)p? from before
* Problems
* Long martingale, (’21), and large Lipschitz constant, n — 2

 What if we apply vertex-exposure instead?

Corollary 5.5.2

Let f be a c,-vertex-Lipschitz parameter, u = E[f(G)], and a > O.
Then, for G ~ G(n,p), P(f(G) < u — a) < exp(—a?/2nc2).

Vertex-exposure martingale
* Shorter martingale, n, but worse Lipschitz constant, (";1)
* Yields a worse exponent, ©@(np®)



A Judicious Parameter

Reducing the Lipschitz constant

* Need to decrease the influence a single edge can have
* |dea: edge-disjoint triangles
* Let f(G) = maximum number of pairwise edge-disjoint triangles

Corollary 5.4.8

Let f be a c-Lipschitz graph parameter, G ~ G(n,p), u = E[f(G)], and
a>0.Then P(f(G) = u + a) < exp(—a?/n*c?).

New bound
* This choice of f is 1-Lipschitz
* Still have G triangle-free © f(G) = 0, so take a = E[f(G)]
« = P(G triangle—free) < exp(—E[f(G)]?/n?)

 How do we bound this expectation?



Edge-Disjoint Triangles

Lemma 5.5.3

Let g € [0,1], and let G be a graph with X triangles and Y pairs of
itriangles sharing an edge. Then G has a collection of m pairwise edge-
disjoint triangles, for some m = gX — g*Y.

Proof

* Let T be the collection of all X triangles in G

Let R' € T be a g-random subcollection
* Triangle T € R’ with probability g, independent of all other triangles

Let Y’ be the number of pairs of overlapping triangles in R’
From each pair in R’ sharing an edge, remove one of the triangles
* = resulting R € R’ is pairwise edge-disjoint

E[|R[] = E[IR'| = Y'] = X — q°Y



Random Edge-Disjoint Triangles

Random graph setting
* let G ~ G(n,p), X = # triangles, Y = # overlapping pairs of triangles
e Lemma 5.5.3 = f(G) = qX — q°Y forallq € [0,1]
* = E[f(6)] = qE[X] — q°E[Y]

Choosing values

* We have E[X] = (})p3, E[ [E =) (" )p°
* Calculus = optlmal q =

3np2

Corollary 5.5.4
1
LetG ~ G(n,p) forp = T Then IE[f(G)] (— — 0(1))




Immeasurable Joy

Recall
* G ~G(n,p)
* £(G) = maximum number of pairwise edge-disjoint triangles in G
e Corollary 5.5.4 = if p = 1/4/3n, then E[f(G)] = Q(n?p)
e Corollary 5.4.8 = P(G triangle—free) < exp(—E[f(G)]?/n?)

Theorem 5.5.5

1
fLet p= = andlet G ~ G(n,p). Then
P(K; & G) < exp(—Q(n?p?)).

* Improves previous exponent when cn~ 1?2 < p<cn



Any questions?

E— — ——



§6 Chromatic Number

—

Chapter 5: Concentration
The Probabilistic Method



Introducing the Problem

General bounds
 What makes the chromatic number large?

* X(G) = w(G)

n
« x(G) Zm

Complexity

e Determining chromatic number of graphs is NP-Complete
* Even deciding if a graph is 3-colourable is NP-Complete

Typical behaviour

* What can we say about y (G (n, —))?



Colouring Random Graphs

Question
e Whatis y (G (n, %))?
Applying general bounds
 Homework: with high probability, w (G (n, %)) ~ 2logn

¢« = )((G (n,%)) > (2 + 0(1))logn

e Symmetry = « (G (n, %)) ~ 2logn

2 x(6(n)) 2 Lo

2 2logn
* Homework: will show this bound is sharp



Honing In

* Can we further narrow down the likely values of y (G (n, —))?

lLemma 5.6.1
'The parameter y(G) is 1-vertex-Lipschitz.

Proof

* Let v € V(G) be arbitrary, and let H = G[V \ {v}]
* Chromatic number is monotone increasing
* = x(G) = x(H)
* Can always assign v a new colour
e = y(G) <y(H)+1
* = changing G at v can change y(G) by at most one



Colouring with Martingales

Theorem 5.6.2
For € > 0 there is a constant C = C (&) such that for every n there is an |
linterval I, € [n] of length C+/n such that, for G ~ G (n, %),
P(x(G) ¢ 1,,) < e.

Proof

» Apply the vertex-exposure martingale to the parameter y(G)
 Z; = E[x(®|G[[1]]] - Ex(G)],0<i<n

* Lemma 5.6.1: y(G) is 1-vertex-Lipschitz

« Azuma’s inequality: P(|Z;| = a) < 2 exp(—a?/2n)

e Ifa= /ann %, right-hand size is €

« > cantakel, = (u —a,u + a), where u = E|[G] |



Reflections on our Results

Narrow window

. _ (1+o(D))n 1-0(1)
Previously saw that y(G) = 2Togn

* = margin of error of 0(y/n) is relatively small
 Theorem doesn’t say anything about where this interval is

almost surely

Sparse random graphs

e NeverusedthatG ~ G (n, 1)
2

* Proof appliesto G ~ G(n,p) forany p = p(n)
 However, result is trivial for sparse graphs

e eg.ifp=o0 (%), then G is bipartite with high probability

¢ Ifp < vi% then with high probability A(G) < Cvn = x(G) < Cyn + 1



Colouring Subgraphs of Sparse Graphs

Proposition 5.6.3

Fix a > gand c > 0.Then,ifp =n"%and G ~ G(n,p), with high

'probability G has the property that, for every set S of ci/n vertices,
y(G[S]) < 3.

Proof

* If H is d-degenerate, then y(H) <d + 1
« = if y(G[S]) > 3 forsome S, G[S] is not 2-degenerate

e = ( contains some subgraph H with v(H) < c\/nand §(H) = 3
+ = e(H) 2 Zv(H)
* Hence it suffices to show G is unlikely to contain such a subgraph



Subgraphs of Sparse Random Graphs are Sparse
Goal

 Every subgraph H € G on at most c+/n vertices has at most

Proof (cont’d)

Sng) edges

ne

* Number of choices for V(H): (™) T

2l edges of H: <(§)> (%) (t?e)%t

2

Number of choices of

= P(3 bad H on t vertices) < (nf) (?) P2 (en'” 3a/2t1/2)

Since t < c/n, this is at most (c’n5/4_3“/2)
As a > g, exponent of n is negative
= summing over all t, P(3 bad H) = 0(1)



Wow, Much Precise

Theorem 5.6.4 (Shamir—Spenceur, 1987)

Fix ¢ > Zand setp = n~%. There is some u = u(n, p) such that if G ~
G(n,p), then almost surely u < y(G) < u + 3.

Proof idea
* Enough to focus on likely values of y(G)
* Consider the smallest u such that P(y(G) < u) = Q(1)
e Show that one can colour most vertices of G with u colours
* Use Proposition 5.6.3 for the rest




A Wise Choice of Graph Parameter

Theorem 5.6.4

Fix a > zand setp = n~%. There is some u = u(n,p) such that if G ~
G(n,p), then almost surely u < y(G) < u + 3.

Proof

* Suffices to show that for any € > 0, there isu = u(n, p, €) such that
Plu<y(G)<u+3)=1-3¢
* Define u = u(n, p, €) to be smallest u such that P(y(G) < u) = ¢
s S P((G)<u—1)<c¢
Now wish to show that most vertices can be u-coloured
Define f(G) = minimum size of S € V(G) such that y(G[V \ S]) < u
P(f(G) =0) =P(x(G) =u) =¢



Setting Up Azuma

Recall

* u: least integer such that P(x(G) < u) > ¢
* f(G): minimum size of S such that y(G[V \ S]) <u

Lipschitz
* Fix avertex v € V(G)
* Choose a minimum set S’ whose removal from G[V \ {v}|= y < u

* Worst-case: can always take S = S’ U {v}
* = f is 1-vertex-Lipschitz

Martingale

 Run the vertex-exposure martingale on f(G)



Completing the Proof

Recall
* f(G): minimum size of S such that y(G[V \ S]) < u; let u = E[f(G)]
e P(f(G)=0) =>¢

Concentration
« Azuma’s Inequality =2 P(f(G) < u — a) < exp(—a?/2n)
« ¢ < P(f(G) =0) < exp(—u?/2n)
e > u< \/ann 1/¢e
e Azuma’s Inequality = P(f(G) = u + a) < exp(—a?/2n)
« > P(f(G)=p+2nlnl/e)<¢
¢« > [P(f(G) > 2\/2nln 1/8) <¢€

And voila
e = cah remove c+/n vertices and u colour the rest
* Proposition 5.6.3 = can 3-colour removed vertices with probability 1 —&¢ =



Epilogue

Location of interval

e Again, proof only shows concentration
* Actual value of chromatic number not needed

e Concern: didn’t our choice of u depend on &7
e Supposeu =u(n,p,e)andu’ =un,p, ')
* Weproved P(y(G) € [luu+3])=1—¢ P(y(G) e [u,u"+3]))=>1—-¢
e > P(y(G) elu,u+3]nu,u"+3D)=1—¢ec—-¢
» = Different u’s give an even stronger concentration inequality

Further results
* Alon-Krivelevich (1997): if @ > %and p = n~%, there is some u = u(n, p) such
that )((G(n, p)) € {u,u + 1} with high probability

* Heckel-Riordan (2020+): if I € [n] is an interval such that )((G(n, 1/2)) €l
with high probability, then |I| = n1/2-0(1)



Any questions?

E— — ——



