Chapter 5: Concentration

The Probabilistic Method Summer 2020 Freie Universität Berlin

Chapter Overview

- Prove some strong concentration inequalities
- Improve bounds on Ramsey numbers
- Study Hamiltonicity and chromatic number of G(n, p)

§1 Chernoff Bounds	§2 Returning to Ramsey	§3 Hamiltonicity
Chapter 5: Concentration	Chapter 5: Concentration	Chapter 5: Concentration
The Probabilistic Method	The Probabilistic Method	The Probabilistic Method
§4 Martingales	§5 Triangle-free Graphs	§6 Chromatic Number
Chapter 5: Concentration	Chapter 5: Concentration	Chapter 5: Concentration
The Probabilistic Method	The Probabilistic Method	The Probabilistic Method

§1 Chernoff Bounds

Chapter 5: Concentration

The Probabilistic Method

Domination vs Minimum Degree

Corollary 2.2.5

Let *G* be an *n*-vertex graph with $\delta(G) \ge \delta$. Then *G* has a dominating set $S \subseteq V(G)$ with $|S| \le \left(\frac{\ln(\delta+1)+1}{\delta+1}\right)n$.

Homework exercise

• Show bound is tight by consider G(n, p)

Degrees in G(n, p)

- Degree of a vertex ~ Bin(n 1, p)
- \Rightarrow expected degree is (n-1)p
- Minimum degree: need to show not far from mean
 - Suppose $\mathbb{P}(|\deg(v) (n-1)p| \ge a) < \frac{1}{2n}$
 - Union bound $\Rightarrow \mathbb{P}(\delta(G(n,p)) \ge (n-1)p d) > \frac{1}{2}$

Comparing Bounds

Concentration inequalities

- Let $X \sim Bin(n 1, p), p \le \frac{1}{2}$
 - $\mathbb{E}[X] = (n-1)p$, $\operatorname{Var}(X) = (n-1)p(1-p) = \Theta(np)$
- Markov: $\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}$

•
$$\Rightarrow$$
 error probability $< \frac{1}{2n}$ for $a = \Omega(n)$

- Chebyshev: $\mathbb{P}(|X \mathbb{E}[X]| \ge a) \le \frac{\operatorname{Var}(X)}{a^2}$
 - \Rightarrow error probability $< \frac{1}{2n}$ for $a = \Omega(n\sqrt{p})$
- Central Limit Theorem: $\mathbb{P}(|X \mathbb{E}[X]| \ge a) \le \exp\left(\frac{-ca^2}{\operatorname{Var}(X)}\right)$

•
$$\Rightarrow$$
 error probability $< \frac{1}{2n}$ for $a = \Omega(\sqrt{np} \log n)$

The Problem With CLT

Asymptotics

- Central Limit Theorem is asymptotic, valid as $n \to \infty$
- We would like a quantitative bound for some given n

Definition 5.1.1

Let $S_n = \sum_{i=1}^n X_i$, where the X_i are independently and uniformly distributed on $\{-1,1\}$.

Binomial connection

- We have $S_n \sim 2 \operatorname{Bin}\left(n, \frac{1}{2}\right) \frac{n}{2}$
 - Convenient to translate so mean is zero

Goal

• Show S_n is exponentially unlikely to be far from zero

Chernoff Bounds

Theorem 5.1.2 (Symmetric Chernoff Bound)

For every a > 0, we have $\mathbb{P}(S_n \ge a) \le \exp\left(-\frac{a^2}{2n}\right)$.

Remarks

- Concrete bounds for all *n*, *a*
- Symmetry: same bound for $\mathbb{P}(S_n \leq -a)$
- $\operatorname{Bin}\left(n,\frac{1}{2}\right) = \frac{1}{2}\left(S_n + n\right)$
 - \Rightarrow concentration for binomial random variables

Corollary 5.1.3

For every
$$a > 0$$
, we have $\mathbb{P}\left(\left|\operatorname{Bin}\left(n, \frac{1}{2}\right) - \frac{n}{2}\right| \ge a\right) \le 2\exp\left(\frac{-2a^2}{n}\right)$.

Proving Chernoff

Theorem 5.1.2 (Symmetric Chernoff Bound)

For every a > 0, we have $\mathbb{P}(S_n \ge a) \le \exp\left(-\frac{a^2}{2n}\right)$.

Proof

- Exponential conversion
 - $\{S_n \ge a\} = \{e^{S_n} \ge e^a\} = \{e^{\lambda S_n} \ge e^{\lambda a}\}$
- Concentration
 - $e^{\lambda S_n}$ a non-negative random variable
 - Markov: $\mathbb{P}(e^{\lambda S_n} \ge e^{\lambda a}) \le \mathbb{E}[e^{\lambda S_n}]e^{-\lambda a}$
- Expectation
 - Recall $S_n = \sum_{i=1}^n X_i$
 - $\Rightarrow e^{\lambda S_n} = \prod_{i=1}^n e^{\lambda X_i}$
 - Independence $\Rightarrow \mathbb{E}[e^{\lambda S_n}] = \prod_{i=1}^n \mathbb{E}[e^{\lambda X_i}] = \left(\frac{1}{2}(e^{\lambda} + e^{-\lambda})\right)^n = \cosh^n(\lambda)$

Over the Cosh

Recall

- $\mathbb{P}(S_n \ge a) \le \mathbb{E}[e^{\lambda S_n}]e^{-\lambda a}$
- $\mathbb{E}[e^{\lambda S_n}] = \cosh^n(\lambda)$

A little calculus

•
$$\cosh(x) = \frac{1}{2}(e^x + e^{-x})$$

• Taylor series:
$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \cdots$$

•
$$\Rightarrow \cosh(x) = 1 + \frac{x^2}{2} + \frac{x^4}{24} + \frac{x^6}{720} + \dots \le 1 + \frac{x^2}{2} + \frac{x^4}{8} + \frac{x^6}{48} + \dots = e^{\frac{x^2}{2}}$$

Finishing the proof

•
$$\therefore \mathbb{P}(S_n \ge a) \le \exp\left(\frac{1}{2}n\lambda^2 - \lambda a\right)$$

• Minimise:
$$\lambda = \frac{a}{n} \Rightarrow \mathbb{P}(S_n \ge a) \le \exp\left(-\frac{a^2}{2n}\right)$$

The General Setting

Shortcomings

• Required each X_i to be uniform on $\{-1,1\}$

Wider Framework

- $p_1, p_2, \dots, p_n \in [0,1]$, and $p = n^{-1} \sum_{i=1}^n p_i$
- X_i independent with $\mathbb{P}(X_i = 1 p_i) = p_i$ and $\mathbb{P}(X = -p_i) = 1 p_i$

• $X = \sum_{i=1}^{n} X_i$

Theorem 5.1.4 (Asymmetric Chernoff Bound) Let a > 0 and let X and p be as above. Then $\mathbb{P}(X \le -a) \le \exp\left(-\frac{a^2}{2pn}\right)$ and $\mathbb{P}(X \ge a) \le \exp\left(\frac{-a^2}{2pn} + \frac{a^3}{2(pn)^2}\right)$.

An Asymmetric Chernoff Bound

Theorem 5.1.4 (Asymmetric Chernoff Bound)

Let a > 0 and let X and p be as above. Then

$$\mathbb{P}(X \le -a) \le \exp\left(\frac{-a^2}{2pn}\right)$$
 and $\mathbb{P}(X \ge a) \le \exp\left(\frac{-a^2}{2pn} + \frac{a^3}{2(pn)^2}\right)$.

Special case

- $p_i = p$ for all $i \Rightarrow X + np \sim Bin(n, p)$
- $\Rightarrow \mathbb{P}(|\operatorname{Bin}(n,p) np| \ge a) \le 2 \exp\left(\frac{-a^2}{2pn} + \frac{a^3}{2(pn)^2}\right)$

Corollary 5.1.5

For every $\varepsilon > 0$ there is some $c_{\varepsilon} > 0$ such that, if Y is the sum of mutually independent indicator random variables and $\mu = \mathbb{E}[Y]$, then $\mathbb{P}(|Y - \mu| \ge \varepsilon \mu) \le 2 \exp(-c_{\varepsilon}\mu)$.

Any questions?

§2 Returning to Ramsey

Chapter 5: Concentration

The Probabilistic Method

The Story So Far

Goal

• Determine the order of magnitude of R(3, k)

Upper bound

• Erdős-Szekeres (1935): $R(3,k) \le \binom{k+1}{2} = O(k^2)$

Lower bounds

- First moment, Mantel: $R(3,k) = \Omega(k)$
- Alterations: $R(3,k) = \Omega\left(\left(\frac{k}{\log k}\right)^{3/2}\right)$ • Lovász Local Lemma: $R(3,k) = \Omega\left(\left(\frac{k}{\log k}\right)^2\right)$

Alterations Revisited

Theorem 2.1.2 ($\ell = 3$) For every $n, k \in \mathbb{N}$ and $p \in [0,1]$, we have $R(3,k) > n - {n \choose 3} p^3 - {n \choose k} (1-p)^{\binom{k}{2}}.$

Proof sketch

- Take $G \sim G(n, p)$
- Remove one vertex from each triangle, independent set of size k
 - Resulting graph G' is Ramsey
- First moment \Rightarrow with positive probability G' has many vertices

Optimisation

• Largest right-hand side can be is
$$O\left(\left(\frac{k}{\log k}\right)^{3/2}\right)$$

Alternative Alterations

Vertex removal

- Wasteful operation
 - To fix a single, small triangle, we make $\Omega(n)$ changes to the graph
 - Shrinks our resulting Ramsey graph too much

Edge removal

- More efficient fix
 - To fix a triangle, need only remove a single edge
- Problematic
 - Being triangle-free and having small independence numbers are in conflict
 - Need to ensure we can destroy all triangles without creating large independent sets
- A new hope
 - Can our more advanced probabilistic tools help?

Plan of Attack

Detriangulation

- Need to remove at least one edge from each triangle
- Let \mathcal{T} be a maximal set of *edge-disjoint* triangles in G
 - If T is a triangle in G, maximality \Rightarrow must share an edge with some $T' \in \mathcal{T}$
- Remove all edges of all triangles in ${\mathcal T}$
 - Removes $3|\mathcal{T}|$ edges
 - Need to remove at least $|\mathcal{T}|$ edges

Independent sets

- Cannot let a set *S* of *k* vertices become independent
- Would help if G[S] had many edges to begin with
 - *Expect* to see $\binom{k}{2}p$ edges
 - Chernoff ⇒ very unlikely to see many fewer
 - Can afford a union bound over all such sets *S*

Local Edge Distribution

Local edge counts

- Fix a set *S* of *k* vertices
- $e(G[S]) \sim Bin\left(\binom{k}{2}, p\right)$
- Expect $\binom{k}{2}p$ edges, how likely are we to see at least half of that?

Theorem 5.1.4 (Asymmetric Chernoff Bound)

Let a > 0 and let X and p be as before. Then $\mathbb{P}(X \le -a) \le \exp\left(\frac{-a^2}{2pn}\right)$.

Applying Chernoff

• Set
$$X = \operatorname{Bin}\left(\binom{k}{2}, p\right) - \binom{k}{2}p$$
, and let $a = \frac{1}{2}\binom{k}{2}p$
• $\Rightarrow \mathbb{P}\left(e(G[S]) \le \frac{1}{2}\binom{k}{2}p\right) \le \exp\left(-\frac{1}{8}\binom{k}{2}p\right)$

Local Properties Globally

Recall

•
$$\mathbb{P}\left(e(G[S]) \leq \frac{1}{2}\binom{k}{2}p\right) \leq \exp\left(-\frac{1}{8}\binom{k}{2}p\right)$$

Union bound

- We need *every* k-set to have many edges
 - Apply a union bound over choice of *S*

•
$$\mathbb{P}\left(\exists S: e(G[S]) \leq \frac{1}{2}\binom{k}{2}p\right) \leq \binom{n}{k} \exp\left(-\frac{1}{8}\binom{k}{2}p\right) \leq \exp\left(k\ln n - \frac{1}{8}\binom{k}{2}p\right)$$

Setting parameters

- Small if $k \ln n \leq \frac{1}{10} \binom{k}{2} p$, say
- $\Leftrightarrow p \ge \frac{20 \ln n}{k-1}$
 - To avoid too many triangles, take equality above
- Then with high probability each k-set spans at least $\frac{1}{2} \binom{k}{2} p = 5k \ln n$ edges

A Tangle of Triangles

Recall

• Setting $p = \frac{20 \ln n}{k-1} \Rightarrow$ almost surely, every k-set has at least $5k \ln n$ edges

New independent sets

- Remove all edges from a maximal set ${\mathcal T}$ of edge-disjoint triangles
- Need to avoid creating an independent set of k vertices
- Fix a set *S* of *k* vertices

How many edges do we lose?

- Only triangles with an edge in *S* are relevant
- Number of potential such triangles:
 - $\binom{k}{3} + \binom{k}{2}(n-k)$
- Expected number of relevant triangles

•
$$\left(\binom{k}{3} + \binom{k}{2}(n-k)\right)p^3 \approx \frac{4000}{3}\ln^3 n + 4000\frac{n-k}{k}\ln^3 n \approx 4000\frac{n}{k}\ln^3 n$$

Accounting for Triangles

Recall

- With high probability, each k-set S spans at least $5k \ln n$ edges
- Expect there to be at most $4000 \frac{n}{\nu} \ln^3 n$ triangles with an edge in S

Setting more parameters

- In order to ensure S does not become independent, need $\frac{n}{\nu} \ln^3 n \leq ck \ln n$
 - c > 0 some small constant

• Solving:
$$n \le c \left(\frac{k}{\ln n}\right)^2 = c' \left(\frac{k}{\log k}\right)^2$$

Large deviations

- Need to ensure that no set *S* sees too many triangles
 - Union bound over $\binom{n}{k}$ many sets
- \Rightarrow need the probability that we get more triangles than expected to be small

Too Many Triangles

Concentration inequalities

- Chernoff: probability of seeing too many triangles is exponentially small
 - Problem: indicator variables for triangles are not independent
- Chebyshev: error probabilities only polynomially small
 - Not enough to make up for $\binom{n}{k}$ summands in union bound

Saving grace

• We only remove edges of triangles in \mathcal{T} , edge-disjoint set of triangles

Lemma 5.2.1 (Erdős-Tetali, 1990)

Let $E_1, E_2, ..., E_m$ be a collection of events and set $\mu = \sum_{i=1}^m \mathbb{P}(E_i)$. For any s,

 $\mathbb{P}(E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_s} \text{ for some independent } E_{i_1}, E_{i_2}, \dots, E_{i_s}) \leq \frac{\mu^s}{s!}.$

Lemma 5.2.1 (Erdős-Tetali, 1990)

Let $E_1, E_2, ..., E_m$ be a collection of events and set $\mu = \sum_{i=1}^m \mathbb{P}(E_i)$. For any s,

 $\mathbb{P}(E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_s} \text{ for some independent } E_{i_1}, E_{i_2}, \dots, E_{i_s}) \leq \frac{\mu^s}{s!}.$

Proof

• Take a union bound over all such *s*-sets of events

•
$$\mathbb{P}(E_{i_1} \cap \dots \cap E_{i_s} \text{ for some independent events})$$

$$\leq \sum_{\{i_1,\dots,i_s\} \text{ ind }} \mathbb{P}(E_{i_1} \cap \dots \cap E_{i_s}) = \frac{1}{s!} \sum_{(i_1,\dots,i_s) \text{ ind }} \mathbb{P}(E_{i_1} \cap \dots \cap E_{i_s})$$

$$= \frac{1}{s!} \sum_{(i_1,\dots,i_s) \text{ ind }} \prod_{j=1}^s \mathbb{P}(E_{i_j}) \leq \frac{1}{s!} \sum_{(i_1,\dots,i_s) \in [m]^s} \prod_{j=1}^s \mathbb{P}(E_{i_j})$$

$$= \frac{1}{s!} (\sum_{i \in [m]} \mathbb{P}(E_i))^s = \frac{\mu^s}{s!}$$

Handling Triangle Errors

Recall

- With high probability, each k-set S has at least $5k \ln n$ edges
- Expected number of triangles with an edge in S at most $ck \ln n$ for small c

Erdős-Tetali

- Events E_i : *i*th triangle meeting S is present in G(n, p)
 - $\mu \leq ck \ln n$
- Let $s = k \ln n$
- Lemma 5.2.1 $\Rightarrow \mathbb{P}(S \text{ sees edges of } s \text{ disjoint triangles}) \leq \frac{\mu^s}{s'}$

Calculation

• Stirling:
$$s! \ge \left(\frac{s}{e}\right)^s$$

• $\Rightarrow \frac{\mu^s}{s!} \le \left(\frac{\mu e}{s}\right)^s \le (ce)^{k \ln n} < n^{-k}$ if $c < e^{-2}$

Completing the Proof

Union bound

- Union bound over all $\binom{n}{k} < n^k$ sets \Rightarrow with high probability, every k-set:
 - Spans at least $5k \ln n$ edges and meets at most $k \ln n$ edge-disjoint triangles

Alteration

- Given $G \sim G(n, p)$, where $n = c' \left(\frac{k}{\log k}\right)^2$ and $p = \frac{20 \ln n}{k-1}$
- Let ${\mathcal T}$ be a maximal set of edge-disjoint triangles, and remove all edges in ${\mathcal T}$

95)

- Each k-set loses at most $3k \ln n$ edges \Rightarrow doesn't become independent
- Resulting graph is therefore Ramsey.

Theorem 5.2.2 (Erdős, 1961; Krivelevich, 199
As
$$k \to \infty$$
, $R(3, k) = \Omega\left(\left(\frac{k}{\log k}\right)^2\right)$.

Closing In

Lower bounds

• Edge-alteration gave same bound as Lovász Local Lemma

•
$$R(3,k) = \Omega\left(\left(\frac{k}{\log k}\right)^2\right)$$

• Could this be the truth? What can we say in the other direction?

Theorem 1.5.5 (Erdős-Szekeres, 1935) For all $\ell, k \in \mathbb{N}$, $R(\ell, k) \leq \begin{pmatrix} \ell + k - 2 \\ \ell - 1 \end{pmatrix} = O(k^{\ell-1}).$

In particular, $R(3, k) = O(k^2)$.

Narrowing the gap

• Left with a $\log^2 k$ gap to close

Independent Sets in Triangle-Free Graphs

Proposition 5.2.3

If G is an n-vertex triangle-free graph, $\alpha(G) \ge \sqrt{n} - 1$.

Proof

- Key observation: G triangle-free \Rightarrow every neighbourhood is independent
- \therefore if G has a vertex of degree $\sqrt{n} 1$, we are done
 - Otherwise $\Delta(G) < \sqrt{n} 1$
- Greedy algorithm:

•
$$\alpha(G) \ge \frac{n}{\Delta(G)+1} \ge \sqrt{n}$$

Ramsey numbers

• Implies $R(3, k) = O(k^2)$

Room for Improvement

Greedy algorithm

- Order vertices arbitrarily
- Add first vertex v to independent set
- Remove all its $\leq \Delta$ neighbours, and repeat
- Bound is sharp only if v never has any neighbours previously removed
 - Only true for disjoint union of cliques
 - \Rightarrow cannot be sharp for triangle-free graphs

Theorem 5.2.4 (Ajtai, Komlós, Szemerédi, 1980; Shearer, 1995) If G is an n-vertex triangle-free graph with maximum degree Δ , then $\alpha(G) \ge \frac{n \log \Delta}{8\Delta}$.

An Improved Upper Bound

Corollary 5.2.5 As $k \to \infty$, $R(3, k) \le \frac{8k^2}{\log k}$.

Proof

- Let $n = \frac{8k^2}{\log k}$ and let G be an n-vertex triangle-free graph
- If $\Delta(G) \ge k$
 - Let v be a vertex of maximum degree
 - N(v) is an independent set of size $\geq k$
- If $\Delta(G) < k$
 - Theorem 5.2.4 $\Rightarrow \alpha(G) \ge \frac{n \log \Delta}{8\Delta} \ge \frac{n \log k}{8k} = k$

The Big Picture

Randomness

- We show that a *random* independent set *I* of *G* has this size
- If we let $Y_{v}=1_{\{v\in I\}}$, then $|I|=\sum_{v}Y_{v}$
 - Would suffice to compute $\mathbb{E}[|I|] = \sum_{\nu} \mathbb{E}[Y_{\nu}] = \sum_{\nu} \mathbb{P}(\nu \in I)$
 - Computing $\mathbb{P}(v \in I)$ not straightforward depends on neighbourhood

Neighbourhoods

- How does I meet the neighbourhood N(v)?
- If $v \in I$:
 - Must have $I \cap N(v) = \emptyset$
- If $v \notin I$:
 - Can have $I \cap N(v) \neq \emptyset$
 - Since N(v) is independent, intersection can be arbitrary
 - \Rightarrow might expect intersection to be large

New Random Variables

Local variables

- Define new variables to account for local information
- Let $X_{v} = \Delta \cdot \mathbb{1}_{\{v \in I\}} + |I \cap N(v)|$
- Heuristic justification
 - Regularise contribution of v
 - When $v \in I$, have $X_v = \Delta$
 - When $v \notin I$, can still have $X_v = \Theta(\Delta)$
 - Easier to get useful bounds on X_{v}

Lemma 5.2.6

If
$$\Delta \ge 16$$
, we have $\mathbb{E}[X_v] \ge \frac{\log \Delta}{4}$ for every v .

Deducing the Theorem

Theorem 5.2.4 (Ajtai, Komlós, Szemerédi, 1980; Shearer, 1995)

If G is an *n*-vertex triangle-free graph with maximum degree Δ , then $\alpha(G) \ge \frac{n \log \Delta}{8\Lambda}$.

Proof

- If $\Delta \leq 15$, done by $\alpha(G) \geq \frac{n}{\Delta+1}$
- Otherwise, let *I* be a uniformly random independent set of *G*
- For each vertex v, let $X_v = \Delta \cdot \mathbb{1}_{\{v \in I\}} + |I \cap N(v)|$
- Let $X = \sum_{v} X_{v}$
- Observe: $X \leq 2\Delta |I|$
 - Each $v \in I$ contributes at most $2\Delta: \Delta$ via X_v , and 1 via X_u for each neighbour u

• Lemma 5.2.6
$$\Rightarrow \mathbb{E}[X] \ge \frac{n \log \Delta}{4}$$

Proving the Lemma

Lemma 5.2.5

If
$$\Delta \ge 16$$
, we have $\mathbb{E}[X_{v}] \ge \frac{\log \Delta}{4}$ for every v .

Proof

- $X_{v} = \Delta \cdot \mathbb{1}_{\{v \in I\}} + |I \cap N(v)|$
- Which $u \in N(v)$ could be in *I*?
 - Need to know $I \cap N(N(v))$
 - Idea: condition on how *I* meets the rest of the graph
 - Let $H = G \setminus (\{v\} \cup N(v))$
- $\mathbb{E}[X_{v}] = \mathbb{E}\big[\mathbb{E}[X_{v}|I \cap V(H) = J]\big]$
- Suffices to show $\mathbb{E}[X_{\nu}|I \cap V(H) = J] \ge \frac{\log \Delta}{4}$ for every independent J in H

Extending Independent Sets

Goal

•
$$\mathbb{E}[X_{v}|I \cap V(H) = J] \ge \frac{\log \Delta}{4}$$

Available neighbours

- Let $A = N(v) \setminus N(J)$
 - Those neighbours of v that could be added to J
- Let a = |A|

Independent extensions

- Two types of extensions of *J* to *I*:
 - $I = J \cup \{v\}$
 - $I = J \cup S$, some $S \subseteq A$
- *I* is chosen uniformly at random from $2^a + 1$ optoins

Computing Conditional Expectations

Recall

- $X_{v} = \Delta \cdot \mathbb{1}_{\{v \in I\}} + |I \cap N(v)|$
- Want to show $\mathbb{E}[X_{v}|I \cap V(H) = J] \ge \frac{\log \Delta}{4}$

Conditional Expectation

- Case: $v \in I$
 - Probability: $\frac{1}{2^{a}+1}$

•
$$X_{v} = \Delta$$

- Case: $v \notin I$
 - Probability: $\frac{2^a}{2^a+1}$
 - $\mathbb{E}[X_v | v \notin I, I \cap V(H) = J] = \mathbb{E}[|S|] = \frac{a}{2}$

•
$$\Rightarrow \mathbb{E}[X_{v}|I \cap V(H) = J] = \frac{\Delta}{2^{a}+1} + \frac{a2^{a-1}}{2^{a}+1}$$

Concluding Calculations

Recall

•
$$\mathbb{E}[X_{\nu}|I \cap V(H) = J] = \frac{\Delta}{2^{a}+1} + \frac{a2^{a-1}}{2^{a}+1}$$

• Want to show $\mathbb{E}[X_{v}|I \cap V(H) = J] \ge \frac{\log \Delta}{4}$

Contradiction

• If not,
$$\frac{\log \Delta}{4} > \frac{\Delta}{2^{a}+1} + \frac{a2^{a-1}}{2^{a}+1}$$

• $\Rightarrow (2^{a}+1)\log \Delta > 4\Delta + 2a2^{a}$
• $\Rightarrow (\log \Delta - 2a)2^{a} > 4\Delta - \log \Delta$
• Also $\Rightarrow a \ge 1$

• Must have $2a < \log \Delta$

• $\Rightarrow 2^a < \sqrt{\Delta}$

- $\Rightarrow (\log \Delta 2)\sqrt{\Delta} > 4\Delta \log \Delta$
- False for $\Delta \ge 16$

Epilogue

What we know

•
$$\Omega\left(\frac{k^2}{\log^2 k}\right) = R(3,k) = O\left(\frac{k^2}{\log k}\right)$$

Theorem 5.2.7 (Kim, 1995)
As
$$k \to \infty$$
, $R(3,k) = \Omega\left(\frac{k^2}{\log k}\right)$.

Remarks

- Kim's proof a "tour de force"
- Lower bound recently sharpened via analysis of triangle-free process
- Asymptotics of R(s, k), $s \ge 4$ fixed and $k \rightarrow \infty$, unknown

Any questions?

§3 Hamiltonicity

Chapter 5: Concentration

The Probabilistic Method

Definition 5.3.1

A Hamiltonian cycle in a graph G is a cycle passing through every vertex of G. A graph is called Hamiltonian if it contains a Hamiltonian cycle.

Theorem 5.3.2 (Karp, 1972)

Deciding whether a graph is Hamiltonian is NP-Complete.

Questions

- Are there easy ways to recognise Hamiltonian graphs?
- What happens for the average graph?

A Sufficient Condition

Theorem 5.3.3 (Dirac, 1952)

Every *n*-vertex graph G with minimum degree $\delta(G) \ge \frac{n}{2}$ is Hamiltonian.

Optimal bound

- *n* even: two disjoint cliques
- *n* odd: two cliques sharing one vertex

Corollary 5.3.4 For every $\varepsilon > 0$ and $p \ge \left(\frac{1}{2} + \varepsilon\right) n$, G(n, p) is Hamiltonian w.h.p.

Threshold Lower Bound

First moment

• There are
$$\frac{(n-1)!}{2} = \left(\frac{n}{(1+o(1))e}\right)^n$$
 possible Hamiltonian cycles

- Each appears in G(n, p) with probability p^n
- \Rightarrow expected number of cycles is $\left(\frac{np}{(1+o(1))e}\right)^n$
- \Rightarrow if $p \leq \frac{e-\varepsilon}{n}$, then G(n, p) has no Hamiltonian cycles w.h.p.

Connectivity

• G(n,p) Hamiltonian $\Rightarrow G(n,p)$ connected

Proposition 5.3.5

For every $\varepsilon > 0$ and $p \le \frac{(1-\varepsilon)\log n}{n}$, G(n,p) is w.h.p. not Hamiltonian.

Theorem 5.3.3 (Dirac, 1952)

Every *n*-vertex graph G with minimum degree $\delta(G) \ge \frac{n}{2}$ is Hamiltonian.

Proof

- *G* is connected
 - If not, smaller component would not support minimum degree
- Let $P = v_0 v_1 v_2 \dots v_t$ be a longest path
 - $N(\{v_0, v_t\}) \subseteq P$, as otherwise path could be extended
- Pigeonhole: $\exists i$ such that $\{v_i, v_t\}, \{v_0, v_{i+1}\} \in E(G)$
- We have a cycle $C = v_0 v_1 v_2 \dots v_i v_t v_{t-1} v_{t-2} \dots v_{i+1} v_0$
- If t = n, this is a Hamiltonian cycle
- If t < n, connectivity \Rightarrow edge from C to $G \setminus C$
 - Gives a longer path, contradiction.

Dirac's Algorithm

More than existential

- Proof shows us how to find a Hamiltonian cycle
- Start with any path
- If there are edges out from the endpoints, extend path
- Otherwise by pigeonhole turn path into cycle
 - Use external edge to extend path
- Repeat until cycle is Hamiltonian

Random setting

- Extremal problem:
 - Need to assume worst-case graph
 - Used large degree, pigeonhole to rotate path into cycle
- Can we use properties of G(n, p) to do this more efficiently?

Pósa Rotations

Goal

- Given path $P = v_0 v_1 \dots v_t$ in a graph G
- Want to find a longer path or a Hamiltonian cycle

Definition 5.3.6 (Booster)

Given a graph G, a booster is a potential edge e such that $G \cup \{e\}$ contains a longer path or a Hamiltonian cycle.

Rotations

- If G is connected, the pair $\{v_0, v_t\}$ is a booster
- Suppose $\{v_i, v_t\} \in E(G), 1 \le i \le t 2$
 - Rotation along $\{v_i, v_t\}$: $P' = v_0 v_1 \dots v_i v_t v_{t-1} \dots v_{i+1}$ also a path of length t
 - \Rightarrow the pair $\{v_0, v_{i+1}\}$ is also a booster

Endpoint Neighbourhoods

Lemma 5.3.7

Let $P = v_0 v_1 \dots v_t$ be a longest path in a graph G, and let R be the set of endpoints reachable from v_0 by sequences of rotations. Then $N_G(R) \subseteq N_P(R)$.

Proof

- After rotating along $\{v_i, v_t\}$, only v_i, v_t get new neighbours on the path
- Let $v \in R$
 - Rotate to path P' with v as an endpoint
- Let $y \in N(v) \setminus R$
 - If $y \notin V(P)$, extend P' to $y \Rightarrow$ longer path than P
 - If $y \in V(P)$, rotate P' along the edge $\{v, y\}$
 - \Rightarrow a neighbour x of y on P' is an endpoint of the new path, so $x \in R$
 - If x also a neighbour of y on P, then $y \in N_P(R)$
 - Otherwise must have rotated along an edge incident to $y \Rightarrow y \in N_P(R)$

Expanders

Corollary 5.3.8

Let P be a longest path in G, and let R be the set of endpoints following sequences of rotations. Then $|N_G(R)| \le 2|R| - 1$.

Proof

- Lemma 5.3.7 \Rightarrow $N_G(R) \subseteq N_P(R)$
- Each vertex in R contributes at most two neighbours to $N_P(R)$
- Final vertex v_t only contributes one
- \Rightarrow $|N_P(R)| \le 2|R| 1$

Definition 5.3.9 (Expander)

A graph G is a (k, 2)-expander if, for every $S \subseteq V(G)$ with $|S| \leq k$, we have $|N_G(S)| \geq 2|S|$.

Expanders Have Many Boosters

Corollary 5.3.10

If G is a connected (k, 2)-expander, then G has at least $\frac{1}{2}k^2$ boosters.

Proof

- If G is Hamiltonian, every edge is a booster.
- Otherwise let $P = v_0 v_1 \dots v_t$ be a longest path
- Fix v_0 , and let R_0 be the endpoints after rotations
 - Corollary $5.3.8 \Rightarrow |N_G(R_0)| \le 2|R_0| 1$
- *G* a (*k*, 2)-expander $\Rightarrow |R_0| \ge k + 1$
- Given any $y \in R_0$, rotate to a v_0 -y path P'
- Fix y, and let R_y be the endpoints of paths from y after rotating P'
 - Again, $\left|R_{\mathcal{Y}}\right| \geq k+1$
- For each $z \in R_y$, $\{y, z\}$ is a booster, counted at most twice

Dirac's Algorithm in Random Graphs

Assumptions

- G(n,p) is connected know to be true for $p \ge \frac{(1+\varepsilon)\log n}{n}$
- G(n, p) is a (k, 2)-expander for k large

Rotation-Extension process

- Start with a longest path P
- Corollary 5.3.10 \Rightarrow gives rise to $\Omega(k^2)$ boosters
- Each booster is an edge of G(n, p) independently with probability p
 - \Rightarrow Probability none of the boosters appear is $(1-p)^{k^2}$
 - \Rightarrow if $p = \omega(k^{-2})$, then w.h.p. one of the boosters should be in G(n, p)
- Use it to extend path, repeat until Hamiltonian

Multiple Exposures

Recall

- Longest path gave rise to $\Omega(k^2)$ boosters
- Want to show w.h.p. a booster appears in G(n, p)

Problem

- To find the boosters, we needed to expose edges in $\binom{V(P)}{2}$
 - Might already have found boosters are not edges
 - They do not appear independently with probability p

Solution

- Split the random graph into independent subgraphs
 - Let p_0 , q satisfy $1 p = (1 p_0)(1 q)$
 - Then $G(n,p) \sim G(n,p_0) \cup G(n,q)$
- Use $G(n, p_0)$ to obtain connectivity, expansion properties, find boosters
- Use G(n, q) to show boosters appear in the random graph w.h.p.

Random Graphs are Expanders

Lemma 5.3.11

If
$$p \ge \frac{7 \log n}{n}$$
, then $G(n, p)$ is w.h.p. an $\left(\frac{n}{6}, 2\right)$ -expander.

Proof

- If not, there is some set S of size $s \coloneqq |S| \le \frac{n}{6}$ such that |N(S)| < 2s
 - $\Rightarrow \exists W \subset V(G) \setminus S, |W| = 2s$, such that we have no edges from S to $V(G) \setminus (S \cup W)$
 - Probability these edges are missing is $(1-p)^{s(n-3s)} \le e^{-ps(n-3s)} \le e^{-psn/2}$
- Count number of pairs (S, W)
 - $\binom{n}{s} \leq \left(\frac{ne}{s}\right)^s$ choices for *S*, $\binom{n-s}{2s} \leq \binom{n}{2s} \leq \left(\frac{ne}{2s}\right)^{2s}$ choices for *W*
- Union bound

•
$$\mathbb{P}(G(n,p) \text{ bad}) \le \sum_{s=1}^{\frac{n}{6}} \left(\frac{n^3 e^3}{4s^3} e^{-pn/2}\right)^s \le \sum_{s=1}^{\frac{n}{6}} \left(\frac{e^3}{4\sqrt{n}}\right)^s = o(1)$$

The Hamiltonicity Threshold

Theorem 5.3.12 (Pósa, 1976)
If
$$p \ge \frac{80 \log n}{n}$$
, then $G(n, p)$ is w.h.p. Hamiltonian.

Proof

• \Rightarrow Grow a longest path, using G_i to find a booster in the *i*th step

• Hamiltonicity displays a very sharp threshold

Theorem 5.3.13 (Komlós-Szemerédi, 1983) For $\varepsilon > 0$ and $p \ge \frac{(1+\varepsilon)\log n}{n}$, G(n,p) is w.h.p. Hamiltonian.

• Even sharper results were later proven

Theorem 5.3.14 (Bollobás, 1984; Ajtai-Komlós-Szemerédi, 1985)

In the random graph process, w.h.p. the graph becomes Hamiltonian precisely when the minimum degree is at least two.

Any questions?

§4 Martingales

Chapter 5: Concentration

The Probabilistic Method

Threshold for Triangles

Theorem 3.3.1

For $\ell \geq 2$, the threshold for $K_{\ell} \subseteq G(n,p)$ is $p_0(n) = n^{-2/(\ell-1)}$.

Triangular case

• $\ell = 3$: threshold for containing triangles is n^{-1}

Upper tail

- When $p \gg n^{-1}$, how unlikely is G(n, p) to be triangle-free?
- Proof of Theorem 3.3.1
 - Used Chebyshev's Inequality
 - Gives polynomial error bounds

Exponential Dreams

Indicator random variables

- Let X denote the number of triangles in $G \sim G(n, p)$
- Given $T \in {[n] \choose 3}$, let X_T be the indicator that $G[T] \cong K_3$
 - Then $\mathbb{P}(X_T = 1) = p^3$
 - Also $X = \sum_T X_T$

Stronger concentration

- Using Chernoff would give $\mathbb{P}(X = 0) \le \exp\left(-\frac{1}{2}\binom{n}{3}p^3\right)$
 - Exponentially small error bound
- Problem: summands X_T not independent
 - $X_T, X_{T'}$ positively correlated when $|T \cap T'| = 2$

Sparse Independence

Cheap fix

- Restrict our attention to mutually independent events
- Equivalently: consider a family of edge-disjoint triangles

Lemma 5.4.1

There exists a family of $\frac{1}{3} \binom{n-1}{2}$ pairwise edge-disjoint triangles in K_n .

Proof

- Colour each triangle $\{i, j, k\}$ with the colour $c \equiv i + j + k \pmod{n}$
- Each colour class is edge-disjoint
 - Given vertices *i*, *j*, third vertex $k \equiv c i j$ determined
- Large colour class
 - For some c, number of c-coloured triangles is at least $\frac{1}{n} \binom{n}{3} = \frac{1}{3} \binom{n-1}{2}$

Don't Let Your Dreams Be Dreams

Corollary 5.4.2

G(n,p) is triangle-free with probability at most $\exp\left(-\frac{1}{3}\binom{n-1}{2}p^3\right)$.

Proof

- Let ${\mathcal T}$ be the collection of triangles from Lemma 5.4.1
- If G(n, p) is triangle-free, no triangle in \mathcal{T} appears
 - These appear independently
- Probability none appear is $(1-p^3)^{|\mathcal{T}|} \leq \exp(-|\mathcal{T}|p^3)$

Good news

• Exponential bound on error probability

Bad news

• Exponent $\binom{n-1}{2}p^3 = \Theta(n^2p^3)$ is of lower order than expected

Postmortem of a Proof

Improving the exponent

- Need to consider all $\binom{n}{3}$ possible triangles
- Dependencies are limited can we recover Chernoff-type bounds?

Revisiting Chernoff

- $S_n = \sum_{i=1}^n X_i$
- Properties of X_i:
 - Bounded, {-1,1}-variables
 - $\mathbb{E}[X_i] = 0$
 - X_i mutually independent
- Using independence:
 - Applied Markov to e^{S_n}
 - Independence $\Rightarrow \mathbb{E}[e^{S_n}] = \mathbb{E}[e^{\sum_i X_i}] = \prod_i \mathbb{E}[e^{X_i}]$

Martingales

Conditional independence

- What if the X_i are not independent?
 - Recover independence by conditioning on previous variables
- Product rule: $\mathbb{E}\left[e^{\sum_{i} X_{i}}\right] = \prod_{i} \mathbb{E}\left[e^{X_{i}} | \{X_{j}: j < i\}\right]$
- \Rightarrow if $(X_i | \{X_j : j < i\})$ has the right properties, can prove Chernoff-type bounds

Definition 5.4.3 (Martingale)

A martingale is a sequence $Z_0, Z_1, ..., Z_m$ of random variables such that, for each $1 \le i \le m$, we have $\mathbb{E}[Z_i | \{Z_j : j < i\}] = Z_{i-1}.$

Loosely speaking, given what has previously transpired, we expect nothing to change in the *i*th step.

Martingales, Tame and Wild

Boring mathsy example

- Let X_i be independent and uniform on $\{-1,1\}$, for $1 \le i \le m$
- Let $Z_i = \sum_{j \le i} X_j$
- $\mathbb{E}[Z_i | \{Z_j : j < i\}] = \mathbb{E}[Z_{i-1} + X_i | \{Z_j : j < i\}] = Z_{i-1} + \mathbb{E}[X_i | \{Z_j : j < i\}]$
 - $\mathbb{E}[X_i | \{Z_j : j < i\}] = \mathbb{E}[X_i] = 0$
 - \Rightarrow (Z_i: 0 $\leq i \leq m$) is a martingale

Fun real-world example

- Gambling on (fair) coin tosses
- Z_i = cumulative profit/loss after *i*th toss
- Bet $b_i = b_i(Z_0, Z_1, ..., Z_{i-1})$ on the *i*th toss, depending on previous outcomes
- $\mathbb{E}[Z_i | \{Z_j : j < i\}] = \frac{1}{2}(Z_{i-1} + b_i) + \frac{1}{2}(Z_{i-1} b_i) = Z_{i-1}$
 - \Rightarrow (Z_i : $0 \le i \le m$) is a martingale

Disclaimer: gambling can be addictive and bad for your bank balance

Martingale Concentration

Theorem 5.4.4 (Azuma's Inequality)

Let $Z_0, Z_1, ..., Z_m$ be a martingale with $Z_0 = 0$ and $|Z_i - Z_{i-1}| \le 1$ for all $1 \le i \le m$. Then, for any a > 0, we have $\mathbb{P}(Z_m \ge a) \le \exp(-a^2/2m)$.

Proof

- Set $X_i = Z_i Z_{i-1}$
 - $\Rightarrow |X_i| \le 1 \text{ and } Z_m = \sum_{i=1}^m X_i$
 - Martingale $\Rightarrow \mathbb{E}[X_i | \{Z_j : j < i\}] = 0$
- For any $\lambda > 0$, we have $\{Z_m \ge a\} \Leftrightarrow \{e^{\lambda Z_m} \ge e^{\lambda a}\}$
- $\mathbb{P}(e^{\lambda Z_m} \ge e^{\lambda a}) \le \mathbb{E}[e^{\lambda Z_m}]e^{-\lambda a}$
- $\mathbb{E}[e^{\lambda Z_m}] = \prod_{i=1}^m \mathbb{E}[e^{\lambda X_i} | \{Z_j : j < i\}]$

Lemma 5.4.5

If $\lambda > 0$ and Y is a random variable with $\mathbb{E}[Y] = 0$ and $|Y| \le 1$, then $\mathbb{E}[e^{\lambda Y}] \le \cosh \lambda$.

Proof

• Let
$$f(y) = \frac{e^{\lambda} + e^{-\lambda}}{2} + \frac{e^{\lambda} - e^{-\lambda}}{2}y = e^{\lambda}\left(\frac{1}{2} + \frac{y}{2}\right) + e^{-\lambda}\left(\frac{1}{2} - \frac{y}{2}\right)$$

• \Rightarrow f represents chord between $g(y) = e^{\lambda y}$ between y = -1 and y = 1

• Convexity $\Rightarrow g(y) \le f(y)$ for all $y \in [-1,1]$

• Thus
$$\mathbb{E}[e^{\lambda Y}] = \mathbb{E}[g(Y)] \le \mathbb{E}[f(Y)] = \frac{e^{\lambda} + e^{-\lambda}}{2} + \frac{e^{\lambda} - e^{-\lambda}}{2} \mathbb{E}[Y] = \cosh \lambda$$

Theorem 5.4.4 (Azuma's Inequality)

Let $Z_0, Z_1, ..., Z_m$ be a martingale with $Z_0 = 0$ and $|Z_i - Z_{i-1}| \le 1$ for all $1 \le i \le m$. Then, for any a > 0, we have $\mathbb{P}(Z_m \ge a) \le \exp(-a^2/2m)$.

Proof (cont'd)

- $\mathbb{P}(e^{\lambda Z_m} \ge e^{\lambda a}) \le \mathbb{E}[e^{\lambda Z_m}]e^{-\lambda a}$
- $\mathbb{E}[e^{\lambda Z_m}] = \prod_{i=1}^m \mathbb{E}[e^{\lambda X_i} | \{Z_j : j < i\}]$
- By Lemma 5.4.5, $\mathbb{E}\left[e^{\lambda X_i} | \{Z_j : j < i\}\right] \le \cosh \lambda \le e^{\lambda^2/2}$

•
$$\therefore \mathbb{P}(Z_m \ge a) \le \exp\left(\frac{\lambda^2 m}{2} - \lambda a\right)$$

• Substitute $\lambda = \frac{a}{m}$

Graph Martingales

Upper tail for triangles

• Sample $G \sim G(n, p)$, X = # triangles in G

•
$$X = \sum_{T \in \binom{[n]}{3}} X_T$$
, with X_T the indicator that $G[T] \equiv K_3$

Where is the martingale?

- Natural candidate
 - Order sets T_1, T_2, \dots, T_m
 - Let $Z_i = \sum_{j \le i} X_{T_j}$
- Problem
 - Positive correlation \Rightarrow cannot make $\mathbb{E}[X_{T_i} | \{Z_j : j < i\}] = 0$ for all choices of Z_j
- Solution
 - Reveal information about *G* in stages
 - Let Z_i be the expected value of X given the information after *i* rounds

The Doob Martingale

General framework

- Sample $G \sim G(n, p)$, interested in graph parameter $f(G) \in \mathbb{R}$
 - Example: f(G) = # triangles in G

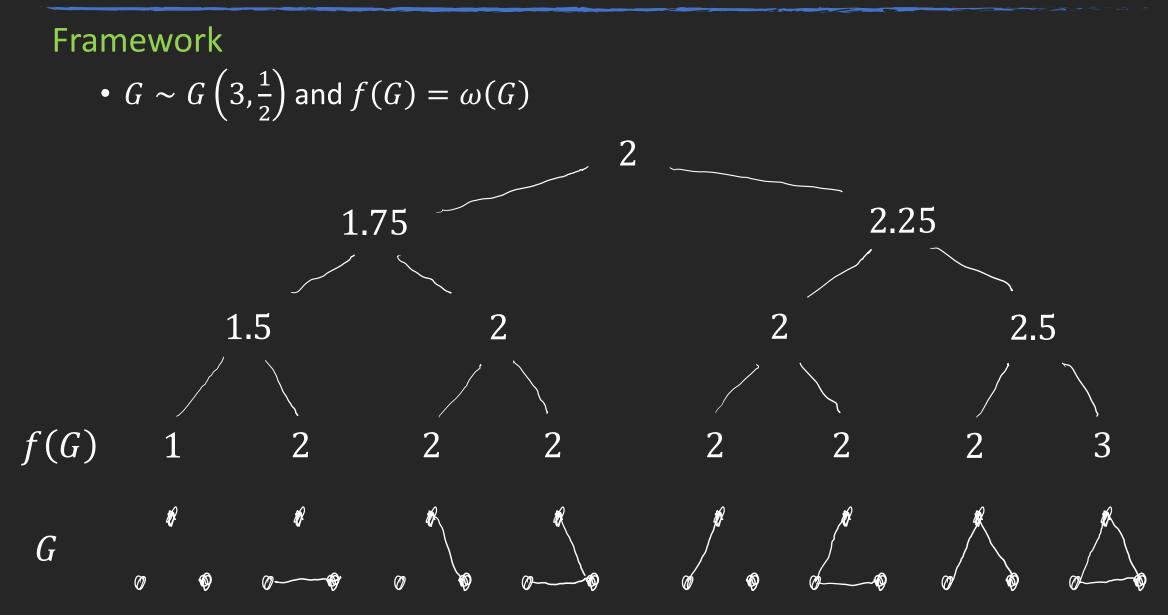
Revealing G

• Order the possible edges $\binom{[n]}{2} = \{e_1, e_2, \dots, e_m\}$ for $m = \binom{n}{2}$ • Let $S_i = \{e_j : j \le i\}$

The martingale

- $Z_i = \mathbb{E}[f(G)|E(G) \cap S_i] \mathbb{E}[f(G)]$
 - Expected value of parameter given the previously revealed edges
- $Z_0 = \mathbb{E}[f(G)] \mathbb{E}[f(G)] = 0$
- $Z_m = \mathbb{E}\left[f(G) \left| E(G) \cap {\binom{[n]}{2}}\right] \mathbb{E}\left[f(G)\right] = f(G) \mathbb{E}\left[f(G)\right]$

A Small Example



Verifying Martingale-ness

Recall

- $G \sim G(n, p)$, and we are exploring a graph parameter f(G)
- $S_i = \{e_j : j \le i\}$
- $Z_i = \mathbb{E}[f(G)|E(G) \cap S_i]$

Conditional expectations

- $\mathbb{E}[Z_{i+1}|E(G) \cap S_i] = \mathbb{E}[\mathbb{E}[f(G)|E(G) \cap S_{i+1}]|E(G) \cap S_i]$ = $\mathbb{E}[f(G)|E(G) \cap S_i] = Z_i$
- \Rightarrow this is a martingale

Lipschitz Properties

Bounded differences

- To apply Azuma's Inequality, we need $|Z_i Z_{i-1}| \le 1$ for all i
- Intuitively: changing one edge should not change f(G) much

Definition 5.4.6 (*c*-Lipschitz)

Let c > 0. A graph parameter f is c-(edge-)Lipschitz if, for any edge e, $|f(G) - f(G \triangle e)| \le c$.

Fact 5.4.7

Given a *c*-Lipschitz parameter *f*, we have $|Z_i - Z_{i-1}| \le 1$ for the normalised Doob martingale $Z_i = \frac{1}{c} (\mathbb{E}[f(G)|E(G) \cap S_i] - \mathbb{E}[f(G)]).$

Summary

Theorem 5.4.4 (Azuma's Inequality)

Let $Z_0, Z_1, ..., Z_m$ be a martingale with $Z_0 = 0$ and $|Z_i - Z_{i-1}| \le 1$ for all $1 \le i \le m$. Then, for any a > 0, we have $\mathbb{P}(Z_m \ge a) \le \exp(-a^2/2m)$.

Corollary 5.4.8

Let f be a c-Lipschitz graph parameter, $G \sim G(n, p)$, $\mu = \mathbb{E}[f(G)]$, and a > 0. Then $\mathbb{P}(f(G) \ge \mu + a) \le \exp(-a^2/n^2c^2)$.

Remarks

- Same bound holds for $\mathbb{P}(f(G) \le \mu a)$
- Can also use a vertex-exposure martingale
 - Z_i is the expected value of f(G) after exposing induced subgraph of G on first i vertices

Any questions?

§5 Triangle-free Graphs

Chapter 5: Concentration

The Probabilistic Method

A Quick Review

Theorem 3.3.1

For $\ell \geq 2$, the threshold for $K_{\ell} \subseteq G(n,p)$ is $p_0(n) = n^{-2/(\ell-1)}$.

Triangle-freeness

- \Rightarrow when $p = \omega(n^{-1}), \mathbb{P}(K_3 \not\subseteq G(n, p)) = o(1)$
- Error bound from Chebyshev ⇒ only polynomially small

Exponential error bounds

• Sharper estimates by considering edge-disjoint triangles

Corollary 5.4.2

G(n,p) is triangle-free with probability at most $\exp\left(-\frac{1}{3}\binom{n-1}{2}p^3\right)$.

Corollary 5.4.8'

Let f be a c-Lipschitz graph parameter, $G \sim G(n, p)$, $\mu = \mathbb{E}[f(G)]$, and a > 0. Then $\mathbb{P}(f(G) \le \mu - a) \le \exp(-a^2/n^2c^2)$.

Counting triangles

• f(G) = # triangles in G

•
$$\mu = \binom{n}{3}p^3 = a$$

• c = n - 2

Corollary 5.5.1

G(n,p) is triangle-free with probability at most $\exp\left(\frac{-(n-1)^2p^6}{36}\right)$.

Immeasurable Disappointment

Worse exponent

- Exponent $\frac{1}{36}(n-1)^2p^6$ is worse than the $\frac{1}{3}\binom{n-1}{2}p^3$ from before
- Problems
 - Long martingale, $\binom{n}{2}$, and large Lipschitz constant, n-2
- What if we apply vertex-exposure instead?

Corollary 5.5.2

Let f be a $\overline{c_v}$ -vertex-Lipschitz parameter, $\mu = \mathbb{E}[f(G)]$, and a > 0. Then, for $G \sim G(n, p)$, $\mathbb{P}(f(G) \le \mu - a) \le \exp(-\frac{a^2}{2nc_v^2})$.

Vertex-exposure martingale

- Shorter martingale, n, but worse Lipschitz constant, $\binom{n-1}{2}$
- Yields a worse exponent, $\Theta(np^6)$

A Judicious Parameter

Reducing the Lipschitz constant

- Need to decrease the influence a single edge can have
 - Idea: edge-disjoint triangles
- Let f(G) = maximum number of pairwise edge-disjoint triangles

Corollary 5.4.8

Let f be a c-Lipschitz graph parameter, $G \sim G(n, p)$, $\mu = \mathbb{E}[f(G)]$, and a > 0. Then $\mathbb{P}(f(G) \ge \mu + a) \le \exp(-a^2/n^2c^2)$.

New bound

- This choice of f is 1-Lipschitz
- Still have G triangle-free $\Leftrightarrow f(G) = 0$, so take $a = \mathbb{E}[f(G)]$
- $\Rightarrow \mathbb{P}(G \text{ triangle}-\text{free}) \le \exp(-\mathbb{E}[f(G)]^2/n^2)$
 - How do we bound this expectation?

Edge-Disjoint Triangles

Lemma 5.5.3

Let $q \in [0,1]$, and let G be a graph with X triangles and Y pairs of triangles sharing an edge. Then G has a collection of m pairwise edge-disjoint triangles, for some $m \ge qX - q^2Y$.

Proof

- Let $\mathcal T$ be the collection of all X triangles in G
- Let $\mathcal{R}' \subseteq \mathcal{T}$ be a q-random subcollection
 - Triangle $T \in \mathcal{R}'$ with probability q, independent of all other triangles
- Let Y' be the number of pairs of overlapping triangles in \mathcal{R}'
- From each pair in \mathcal{R}' sharing an edge, remove one of the triangles
 - \Rightarrow resulting $\mathcal{R} \subseteq \mathcal{R}'$ is pairwise edge-disjoint
- $\mathbb{E}[|\mathcal{R}|] \ge \mathbb{E}[|\mathcal{R}'| Y'] = qX q^2Y$

Random Edge-Disjoint Triangles

Random graph setting

- Let $G \sim G(n, p)$, X = # triangles, Y = # overlapping pairs of triangles
- Lemma 5.5.3 \Rightarrow $f(G) \ge qX q^2Y$ for all $q \in [0,1]$
 - $\Rightarrow \mathbb{E}[f(G)] \ge q \mathbb{E}[X] q^2 \mathbb{E}[Y]$

Choosing values

- We have $\mathbb{E}[X] = \binom{n}{3}p^3$, $\mathbb{E}[Y] = \binom{n}{2}\binom{n-2}{2}p^5$
- Calculus \Rightarrow optimal $q = \frac{1}{3np^2}$

Corollary 5.5.4 Let $G \sim G(n,p)$ for $p \ge \frac{1}{\sqrt{3n}}$. Then $\mathbb{E}[f(G)] \ge \left(\frac{1}{36} - o(1)\right)n^2p$.

Immeasurable Joy

Recall

- $G \sim G(n, p)$
- f(G) = maximum number of pairwise edge-disjoint triangles in G
- Corollary 5.5.4 \Rightarrow if $p \ge 1/\sqrt{3n}$, then $\mathbb{E}[f(G)] \ge \Omega(n^2p)$
- Corollary 5.4.8 $\Rightarrow \mathbb{P}(G \text{ triangle}-\text{free}) \le \exp(-\mathbb{E}[f(G)]^2/n^2)$

Theorem 5.5.5 Let $p \ge \frac{1}{\sqrt{3n}}$ and let $G \sim G(n, p)$. Then $\mathbb{P}(K_3 \not\subseteq G) \le \exp(-\Omega(n^2 p^2))$.

• Improves previous exponent when $cn^{-1/2} \le p \le c'n$

Any questions?

§6 Chromatic Number

Chapter 5: Concentration

The Probabilistic Method

Introducing the Problem

General bounds

- What makes the chromatic number large?
- $\chi(G) \ge \omega(G)$
- $\chi(G) \geq \frac{n}{\alpha(G)}$

Complexity

- Determining chromatic number of graphs is NP-Complete
- Even deciding if a graph is 3-colourable is NP-Complete

Typical behaviour

• What can we say about $\chi\left(G\left(n,\frac{1}{2}\right)\right)$?

Colouring Random Graphs

Question

• What is $\chi\left(G\left(n,\frac{1}{2}\right)\right)$?

Applying general bounds

• Homework: with high probability, $\omega\left(G\left(n,\frac{1}{2}\right)\right) \sim 2\log n$

•
$$\Rightarrow \chi\left(G\left(n,\frac{1}{2}\right)\right) \ge \left(2+o(1)\right)\log n$$

- Symmetry $\Rightarrow \alpha \left(G\left(n, \frac{1}{2}\right) \right) \sim 2 \log n$
 - $\Rightarrow \chi\left(G\left(n,\frac{1}{2}\right)\right) \ge \frac{(1+o(1))n}{2\log n}$
 - Homework: will show this bound is sharp

Honing In

• Can we further narrow down the likely values of $\chi\left(G\left(n,\frac{1}{2}\right)\right)$?

Lemma 5.6.1

The parameter $\chi(G)$ is 1-vertex-Lipschitz.

Proof

- Let $v \in V(G)$ be arbitrary, and let $H = G[V \setminus \{v\}]$
- Chromatic number is monotone increasing
 - $\Rightarrow \chi(G) \ge \chi(H)$
- Can always assign v a new colour
 - $\Rightarrow \chi(G) \le \chi(H) + 1$
- \Rightarrow changing G at v can change $\chi(G)$ by at most one

Colouring with Martingales

Theorem 5.6.2

For $\varepsilon > 0$ there is a constant $C = C(\varepsilon)$ such that for every n there is an interval $I_n \subseteq [n]$ of length $C\sqrt{n}$ such that, for $G \sim G\left(n, \frac{1}{2}\right)$, $\mathbb{P}(\chi(G) \notin I_n) \leq \varepsilon$.

Proof

• Apply the vertex-exposure martingale to the parameter $\chi(G)$

• $Z_i = \mathbb{E}[\chi(G) | G[[i]]] - \mathbb{E}[\chi(G)], 0 \le i \le n$

- Lemma 5.6.1: $\chi(G)$ is 1-vertex-Lipschitz
- Azuma's inequality: $\mathbb{P}(|Z_i| \ge a) \le 2 \exp(-a^2/2n)$
- If $a = \sqrt{2n \ln \frac{2}{\varepsilon}}$, right-hand size is ε
- \Rightarrow can take $I_n = (\mu a, \mu + a)$, where $\mu = \mathbb{E}[G]$

Reflections on our Results

Narrow window

- Previously saw that $\chi(G) \ge \frac{(1+o(1))n}{2\log n} = n^{1-o(1)}$ almost surely
 - \Rightarrow margin of error of $O(\sqrt{n})$ is relatively small
- Theorem doesn't say anything about *where* this interval is

Sparse random graphs

- Never used that $G \sim G\left(n, \frac{1}{2}\right)$
 - Proof applies to $G \sim G(n, p)$ for any p = p(n)
- However, result is trivial for sparse graphs
 - e.g.: if $p = o\left(\frac{1}{n}\right)$, then G is bipartite with high probability
 - If $p \leq \frac{c}{\sqrt{n}}$, then with high probability $\Delta(G) \leq C\sqrt{n} \Rightarrow \chi(G) \leq C\sqrt{n} + 1$

Colouring Subgraphs of Sparse Graphs

Proposition 5.6.3

Fix $\alpha > \frac{5}{6}$ and c > 0. Then, if $p = n^{-\alpha}$ and $G \sim G(n, p)$, with high probability G has the property that, for every set S of $c\sqrt{n}$ vertices, $\chi(G[S]) \leq 3$.

Proof

- If *H* is *d*-degenerate, then $\chi(H) \leq d + 1$
 - \Rightarrow if $\chi(G[S]) > 3$ for some *S*, G[S] is *not* 2-degenerate
- \Rightarrow G contains some subgraph H with $v(H) \leq c\sqrt{n}$ and $\delta(H) \geq 3$
 - $\Rightarrow e(H) \ge \frac{3}{2}v(H)$
- Hence it suffices to show G is unlikely to contain such a subgraph

Subgraphs of Sparse Random Graphs are Sparse

Goal

• Every subgraph $H \subseteq G$ on at most $c\sqrt{n}$ vertices has at most $\frac{3v(H)}{2}$ edges

 $\binom{n}{t} \le \left(\frac{ne}{t}\right)^t$

Proof (cont'd)

- Number of choices for V(H):
- Number of choices of $\frac{3v(H)}{2}$ edges of H: $\begin{pmatrix} \binom{t}{2} \\ \frac{3t}{2} \end{pmatrix} \le \begin{pmatrix} \binom{t}{2}e \\ \frac{3t}{2} \end{pmatrix}^{\frac{3t}{2}} \le \begin{pmatrix} \frac{te}{3} \end{pmatrix}^{\frac{3t}{2}}$
- $\Rightarrow \mathbb{P}(\exists \text{ bad } H \text{ on } t \text{ vertices}) \leq \left(\frac{ne}{t}\right)^t \left(\frac{te}{3}\right)^{\frac{3t}{2}} p^{\frac{3t}{2}} \leq \left(en^{1-3\alpha/2}t^{1/2}\right)^t$
- Since $t < c\sqrt{n}$, this is at most $(c'n^{5/4-3\alpha/2})^t$
- As $\alpha > \frac{5}{6}$, exponent of *n* is negative
- \Rightarrow summing over all t, $\mathbb{P}(\exists \text{ bad } H) = o(1)$

Theorem 5.6.4 (Shamir-Spencer, 1987)

Fix $\alpha > \frac{5}{6}$ and set $p = n^{-\alpha}$. There is some u = u(n, p) such that if $G \sim G(n, p)$, then almost surely $u \le \chi(G) \le u + 3$.

Proof idea

- Enough to focus on likely values of $\chi(G)$
- Consider the smallest u such that $\mathbb{P}(\chi(G) \leq u) = \Omega(1)$
- Show that one can colour *most* vertices of *G* with *u* colours
- Use Proposition 5.6.3 for the rest

A Wise Choice of Graph Parameter

Theorem 5.6.4

Fix $\alpha > \frac{5}{6}$ and set $p = n^{-\alpha}$. There is some u = u(n, p) such that if $G \sim G(n, p)$, then almost surely $u \le \chi(G) \le u + 3$.

Proof

- Suffices to show that for any $\varepsilon > 0$, there is $u = u(n, p, \varepsilon)$ such that $\mathbb{P}(u \le \chi(G) \le u + 3) \ge 1 3\varepsilon$
- Define $u = u(n, p, \varepsilon)$ to be smallest u such that $\mathbb{P}(\chi(G) \le u) \ge \varepsilon$
 - $\Rightarrow \mathbb{P}(\chi(G) \le u 1) < \varepsilon$
- Now wish to show that most vertices can be *u*-coloured
- Define f(G) = minimum size of $S \subseteq V(G)$ such that $\chi(G[V \setminus S]) \leq u$
- $\mathbb{P}(f(G) = 0) = \mathbb{P}(\chi(G) \le u) \ge \varepsilon$

Setting Up Azuma

Recall

- u: least integer such that $\mathbb{P}(\chi(G) \le u) \ge \varepsilon$
- f(G): minimum size of S such that $\chi(G[V \setminus S]) \le u$

Lipschitz

- Fix a vertex $v \in V(G)$
- Choose a minimum set S' whose removal from $G[V \setminus \{v\}] \Rightarrow \chi \leq u$
- Worst-case: can always take $S = S' \cup \{v\}$
- \Rightarrow *f* is 1-vertex-Lipschitz

Martingale

• Run the vertex-exposure martingale on f(G)

Completing the Proof

Recall

- f(G): minimum size of S such that $\chi(G[V \setminus S]) \le u$; let $\mu = \mathbb{E}[f(G)]$
- $\mathbb{P}(f(G) = 0) \ge \varepsilon$

Concentration

• Azuma's Inequality $\Rightarrow \mathbb{P}(f(G) \le \mu - a) \le \exp(-a^2/2n)$

•
$$\Rightarrow \varepsilon \leq \mathbb{P}(f(G) = 0) \leq \exp(-\mu^2/2n)$$

- $\Rightarrow \mu \leq \sqrt{2n \ln 1/\varepsilon}$
- Azuma's Inequality $\Rightarrow \mathbb{P}(f(G) \ge \mu + a) \le \exp(-a^2/2n)$

•
$$\Rightarrow \mathbb{P}(f(G) \ge \mu + \sqrt{2n \ln 1/\varepsilon}) \le \varepsilon$$

• $\Rightarrow \mathbb{P}(f(G) \ge 2\sqrt{2n\ln 1/\varepsilon}) \le \varepsilon$

And voila

- \Rightarrow can remove $c\sqrt{n}$ vertices and u colour the rest
- Proposition 5.6.3 \Rightarrow can 3-colour removed vertices with probability 1ε

Epilogue

Location of interval

- Again, proof only shows concentration
 - Actual value of chromatic number not needed
- Concern: didn't our choice of u depend on ε ?
 - Suppose $u = u(n, p, \varepsilon)$ and $u' = u(n, p, \varepsilon')$
 - We proved $\mathbb{P}(\chi(G) \in [u, u+3]) \ge 1 \varepsilon$, $\mathbb{P}(\chi(G) \in [u', u'+3]) \ge 1 \varepsilon'$
 - $\bullet \ \Rightarrow \mathbb{P}(\chi(G) \in [u,u+3] \cap [u',u'+3]) \geq 1-\varepsilon-\varepsilon'$
 - \Rightarrow Different *u*'s give an even stronger concentration inequality

Further results

- Alon-Krivelevich (1997): if $\alpha > \frac{1}{2}$ and $p = n^{-\alpha}$, there is some u = u(n, p) such that $\chi(G(n, p)) \in \{u, u + 1\}$ with high probability
- Heckel-Riordan (2020+): if $I \subseteq [n]$ is an interval such that $\chi(G(n, 1/2)) \in I$ with high probability, then $|I| = n^{1/2-o(1)}$

Any questions?