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Chapter Overview
• Prove some strong concentration inequalities

• Improve bounds on Ramsey numbers

• Study Hamiltonicity and chromatic number of 𝐺 𝑛, 𝑝
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Domination vs Minimum Degree

Homework exercise
• Show bound is tight by consider 𝐺 𝑛, 𝑝

Degrees in 𝐺 𝑛, 𝑝
• Degree of a vertex ∼ Bin 𝑛 − 1, 𝑝

• ⇒ expected degree is 𝑛 − 1 𝑝

• Minimum degree: need to show not far from mean

• Suppose ℙ | deg 𝑣 − 𝑛 − 1 𝑝| ≥ 𝑎 <
1

2𝑛

• Union bound ⇒ℙ 𝛿 𝐺 𝑛, 𝑝 ≥ 𝑛 − 1 𝑝 − 𝑑 >
1

2

Corollary 2.2.5

Let 𝐺 be an 𝑛-vertex graph with 𝛿 𝐺 ≥ 𝛿. Then 𝐺 has a dominating 

set 𝑆 ⊆ 𝑉 𝐺 with 𝑆 ≤
ln 𝛿+1 +1

𝛿+1
𝑛.



Comparing Bounds
Concentration inequalities

• Let 𝑋 ∼ Bin 𝑛 − 1, 𝑝 , 𝑝 ≤
1

2
• 𝔼 𝑋 = 𝑛 − 1 𝑝 , Var 𝑋 = 𝑛 − 1 𝑝 1 − 𝑝 = Θ 𝑛𝑝

• Markov: ℙ 𝑋 ≥ 𝑎 ≤
𝔼 𝑋

𝑎

• ⇒ error probability <
1

2𝑛
for 𝑎 = Ω 𝑛

• Chebyshev: ℙ 𝑋 − 𝔼 𝑋 ≥ 𝑎 ≤
Var 𝑋

𝑎2

• ⇒ error probability <
1

2𝑛
for 𝑎 = Ω 𝑛 𝑝

• Central Limit Theorem: ℙ 𝑋 − 𝔼 𝑋 ≥ 𝑎 ≤ exp
−𝑐𝑎2

Var 𝑋

• ⇒ error probability <
1

2𝑛
for 𝑎 = Ω 𝑛𝑝 log𝑛



Definition 5.1.1

Let 𝑆𝑛 = σ𝑖=1
𝑛 𝑋𝑖, where the 𝑋𝑖 are independently and uniformly 

distributed on −1,1 .

The Problem With CLT
Asymptotics

• Central Limit Theorem is asymptotic, valid as 𝑛 → ∞

• We would like a quantitative bound for some given 𝑛

Binomial connection

• We have 𝑆𝑛 ∼ 2Bin 𝑛,
1

2
−

𝑛

2
• Convenient to translate so mean is zero

Goal
• Show 𝑆𝑛 is exponentially unlikely to be far from zero



Theorem 5.1.2 (Symmetric Chernoff Bound)

For every 𝑎 > 0, we have ℙ 𝑆𝑛 ≥ 𝑎 ≤ exp −
𝑎2

2𝑛
.

Chernoff Bounds

Remarks
• Concrete bounds for all 𝑛, 𝑎

• Symmetry: same bound for ℙ(𝑆𝑛 ≤ −𝑎)

• Bin 𝑛,
1

2
=

1

2
𝑆𝑛 + 𝑛

• ⇒ concentration for binomial random variables

Corollary 5.1.3

For every 𝑎 > 0, we have ℙ Bin 𝑛,
1

2
−

𝑛

2
≥ 𝑎 ≤ 2exp

−2𝑎2

𝑛
.



Proving Chernoff

Proof
• Exponential conversion

• 𝑆𝑛 ≥ 𝑎 = 𝑒𝑆𝑛 ≥ 𝑒𝑎 = 𝑒𝜆𝑆𝑛 ≥ 𝑒𝜆𝑎

• Concentration
• 𝑒𝜆𝑆𝑛 a non-negative random variable

• Markov: ℙ 𝑒𝜆𝑆𝑛 ≥ 𝑒𝜆𝑎 ≤ 𝔼 𝑒𝜆𝑆𝑛 𝑒−𝜆𝑎

• Expectation
• Recall 𝑆𝑛 = σ𝑖=1

𝑛 𝑋𝑖
• ⇒ 𝑒𝜆𝑆𝑛 = ς𝑖=1

𝑛 𝑒𝜆𝑋𝑖

• Independence ⇒ 𝔼 𝑒𝜆𝑆𝑛 = ς𝑖=1
𝑛 𝔼 𝑒𝜆𝑋𝑖 =

1

2
𝑒𝜆 + 𝑒−𝜆

𝑛

= cosh𝑛 𝜆

Theorem 5.1.2 (Symmetric Chernoff Bound)

For every 𝑎 > 0, we have ℙ 𝑆𝑛 ≥ 𝑎 ≤ exp −
𝑎2

2𝑛
.



Over the Cosh
Recall

• ℙ 𝑆𝑛 ≥ 𝑎 ≤ 𝔼 𝑒𝜆𝑆𝑛 𝑒−𝜆𝑎

• 𝔼 𝑒𝜆𝑆𝑛 = cosh𝑛 𝜆

A little calculus

• cosh 𝑥 =
1

2
𝑒𝑥 + 𝑒−𝑥

• Taylor series: 𝑒𝑥 = 1 + 𝑥 +
𝑥2

2
+

𝑥3

6
+

𝑥4

24
+⋯

• ⇒ cosh 𝑥 = 1 +
𝑥2

2
+

𝑥4

24
+

𝑥6

720
+⋯ ≤ 1 +

𝑥2

2
+

𝑥4

8
+

𝑥6

48
+⋯ = 𝑒

𝑥2

2

Finishing the proof

• ∴ ℙ 𝑆𝑛 ≥ 𝑎 ≤ exp
1

2
𝑛𝜆2 − 𝜆𝑎

• Minimise: 𝜆 =
𝑎

𝑛
⇒ ℙ 𝑆𝑛 ≥ 𝑎 ≤ exp −

𝑎2

2𝑛
∎



The General Setting

Shortcomings
• Required each 𝑋𝑖 to be uniform on −1,1

Wider Framework
• 𝑝1, 𝑝2, … , 𝑝𝑛 ∈ 0,1 , and 𝑝 = 𝑛−1σ𝑖=1

𝑛 𝑝𝑖
• 𝑋𝑖 independent with ℙ 𝑋𝑖 = 1 − 𝑝𝑖 = 𝑝𝑖 and ℙ 𝑋 = −𝑝𝑖 = 1 − 𝑝𝑖
• 𝑋 = σ𝑖=1

𝑛 𝑋𝑖

Theorem 5.1.4 (Asymmetric Chernoff Bound)

Let 𝑎 > 0 and let 𝑋 and 𝑝 be as above. Then

ℙ 𝑋 ≤ −𝑎 ≤ exp −
𝑎2

2𝑝𝑛
and ℙ 𝑋 ≥ 𝑎 ≤ exp

−𝑎2

2𝑝𝑛
+

𝑎3

2 𝑝𝑛 2 .



Theorem 5.1.4 (Asymmetric Chernoff Bound)

Let 𝑎 > 0 and let 𝑋 and 𝑝 be as above. Then

ℙ 𝑋 ≤ −𝑎 ≤ exp
−𝑎2

2𝑝𝑛
and ℙ 𝑋 ≥ 𝑎 ≤ exp

−𝑎2

2𝑝𝑛
+

𝑎3

2 𝑝𝑛 2 .

An Asymmetric Chernoff Bound

Special case
• 𝑝𝑖 = 𝑝 for all 𝑖 ⇒ 𝑋 + 𝑛𝑝 ~Bin 𝑛, 𝑝

• ⇒ ℙ Bin 𝑛, 𝑝 − 𝑛𝑝 ≥ 𝑎 ≤ 2 exp
−𝑎2

2𝑝𝑛
+

𝑎3

2 𝑝𝑛 2

Corollary 5.1.5

For every 𝜀 > 0 there is some 𝑐𝜀 > 0 such that, if 𝑌 is the sum of 
mutually independent indicator random variables and 𝜇 = 𝔼 𝑌 , then 
ℙ 𝑌 − 𝜇 ≥ 𝜀𝜇 ≤ 2 exp −𝑐𝜀𝜇 .



Any questions?
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The Story So Far

Goal
• Determine the order of magnitude of 𝑅(3, 𝑘)

Upper bound

• Erdős-Szekeres (1935): 𝑅 3, 𝑘 ≤ 𝑘+1
2

= O 𝑘2

Lower bounds

• First moment, Mantel: 𝑅 3, 𝑘 = Ω(𝑘)

• Alterations: 𝑅 3, 𝑘 = Ω
𝑘

log 𝑘

3/2

• Lovász Local Lemma: 𝑅 3, 𝑘 = Ω
𝑘

log 𝑘

2



Alterations Revisited

Proof sketch
• Take 𝐺 ∼ 𝐺 𝑛, 𝑝

• Remove one vertex from each triangle, independent set of size 𝑘
• Resulting graph 𝐺′ is Ramsey

• First moment ⇒ with positive probability 𝐺′ has many vertices

Optimisation

• Largest right-hand side can be is O
𝑘

log 𝑘

3/2

Theorem 2.1.2 (ℓ = 3)

For every 𝑛, 𝑘 ∈ ℕ and 𝑝 ∈ [0,1], we have

𝑅 3, 𝑘 > 𝑛 −
𝑛

3
𝑝3 −

𝑛

𝑘
1 − 𝑝

𝑘
2 .



Alternative Alterations
Vertex removal

• Wasteful operation
• To fix a single, small triangle, we make Ω(𝑛) changes to the graph

• Shrinks our resulting Ramsey graph too much

Edge removal

• More efficient fix
• To fix a triangle, need only remove a single edge

• Problematic
• Being triangle-free and having small independence numbers are in conflict

• Need to ensure we can destroy all triangles without creating large independent sets

• A new hope
• Can our more advanced probabilistic tools help?



Plan of Attack
Detriangulation

• Need to remove at least one edge from each triangle

• Let 𝒯 be a maximal set of edge-disjoint triangles in 𝐺
• If 𝑇 is a triangle in 𝐺, maximality ⇒ must share an edge with some 𝑇′ ∈ 𝒯

• Remove all edges of all triangles in 𝒯
• Removes 3 𝒯 edges

• Need to remove at least 𝒯 edges

Independent sets

• Cannot let a set 𝑆 of 𝑘 vertices become independent

• Would help if 𝐺 𝑆 had many edges to begin with

• Expect to see 𝑘
2
𝑝 edges

• Chernoff ⇒ very unlikely to see many fewer

• Can afford a union bound over all such sets 𝑆



Theorem 5.1.4 (Asymmetric Chernoff Bound)

Let 𝑎 > 0 and let 𝑋 and 𝑝 be as before. Then ℙ 𝑋 ≤ −𝑎 ≤ exp
−𝑎2

2𝑝𝑛
.

Local Edge Distribution
Local edge counts

• Fix a set 𝑆 of 𝑘 vertices

• 𝑒 𝐺 𝑆 ∼ Bin 𝑘
2
, 𝑝

• Expect 𝑘
2
𝑝 edges, how likely are we to see at least half of that?

Applying Chernoff

• Set 𝑋 = Bin 𝑘
2
, 𝑝 − 𝑘

2
𝑝, and let 𝑎 =

1

2

𝑘
2
𝑝

• ⇒ ℙ 𝑒 𝐺 𝑆 ≤
1

2

𝑘
2
𝑝 ≤ exp −

1

8

𝑘
2
𝑝



Local Properties Globally
Recall

• ℙ 𝑒 𝐺 𝑆 ≤
1

2

𝑘
2
𝑝 ≤ exp −

1

8

𝑘
2
𝑝

Union bound
• We need every 𝑘-set to have many edges

• Apply a union bound over choice of 𝑆

• ℙ ∃𝑆: 𝑒 𝐺 𝑆 ≤
1

2

𝑘
2
𝑝 ≤ 𝑛

𝑘
exp −

1

8

𝑘
2
𝑝 ≤ exp 𝑘 ln 𝑛 −

1

8

𝑘
2
𝑝

Setting parameters

• Small if 𝑘 ln 𝑛 ≤
1

10

𝑘
2
𝑝, say

• ⇔ 𝑝 ≥
20 ln 𝑛

𝑘−1
• To avoid too many triangles, take equality above

• Then with high probability each 𝑘-set spans at least 
1

2

𝑘
2
𝑝 = 5𝑘 ln 𝑛 edges



A Tangle of Triangles
Recall

• Setting 𝑝 =
20 ln 𝑛

𝑘−1
⇒ almost surely, every 𝑘-set has at least 5𝑘 ln 𝑛 edges

New independent sets
• Remove all edges from a maximal set 𝒯 of edge-disjoint triangles

• Need to avoid creating an independent set of 𝑘 vertices

• Fix a set 𝑆 of 𝑘 vertices

How many edges do we lose?
• Only triangles with an edge in 𝑆 are relevant

• Number of potential such triangles:

• 𝑘
3
+ 𝑘

2
𝑛 − 𝑘

• Expected number of relevant triangles

• 𝑘
3
+ 𝑘

2
𝑛 − 𝑘 𝑝3 ≈

4000

3
ln3 𝑛 + 4000

𝑛−𝑘

𝑘
ln3 𝑛 ≈ 4000

𝑛

𝑘
ln3 𝑛



Accounting for Triangles

Recall
• With high probability, each 𝑘-set 𝑆 spans at least 5𝑘 ln 𝑛 edges

• Expect there to be at most 4000
𝑛

𝑘
ln3 𝑛 triangles with an edge in 𝑆

Setting more parameters

• In order to ensure 𝑆 does not become independent, need 
𝑛

𝑘
ln3 𝑛 ≤ 𝑐𝑘 ln 𝑛

• 𝑐 > 0 some small constant

• Solving: 𝑛 ≤ 𝑐
𝑘

ln 𝑛

2
= 𝑐′

𝑘

log 𝑘

2

Large deviations
• Need to ensure that no set 𝑆 sees too many triangles

• Union bound over 𝑛
𝑘

many sets

• ⇒ need the probability that we get more triangles than expected to be small



Lemma 5.2.1 (Erdős-Tetali, 1990)

Let 𝐸1, 𝐸2, … , 𝐸𝑚 be a collection of events and set 𝜇 = σ𝑖=1
𝑚 ℙ 𝐸𝑖 . For 

any 𝑠, 

ℙ 𝐸𝑖1 ∩ 𝐸𝑖2 ∩⋯∩ 𝐸𝑖𝑠 for some independent 𝐸𝑖1 , 𝐸𝑖2 , … , 𝐸𝑖𝑠 ≤
𝜇𝑠

𝑠!
.

Too Many Triangles
Concentration inequalities

• Chernoff: probability of seeing too many triangles is exponentially small
• Problem: indicator variables for triangles are not independent

• Chebyshev: error probabilities only polynomially small

• Not enough to make up for 𝑛
𝑘

summands in union bound

Saving grace
• We only remove edges of triangles in 𝒯, edge-disjoint set of triangles



The Erdős-Tetali Lemma

Proof
• Take a union bound over all such 𝑠-sets of events

• ℙ 𝐸𝑖1 ∩⋯∩ 𝐸𝑖𝑠 for some independent events

≤ σ 𝑖1,…,𝑖𝑠 indℙ 𝐸𝑖1 ∩⋯∩ 𝐸𝑖𝑠 =
1

𝑠!
σ 𝑖1,…,𝑖𝑠 indℙ 𝐸𝑖1 ∩⋯∩ 𝐸𝑖𝑠

=
1

𝑠!
σ 𝑖1,…,𝑖𝑠 indς𝑗=1

𝑠 ℙ 𝐸𝑖𝑗 ≤
1

𝑠!
σ 𝑖1,…,𝑖𝑠 ∈ 𝑚 𝑠ς𝑗=1

𝑠 ℙ 𝐸𝑖𝑗

=
1

𝑠!
σ𝑖∈ 𝑚 ℙ 𝐸𝑖

𝑠
=

𝜇𝑠

𝑠!
∎

Lemma 5.2.1 (Erdős-Tetali, 1990)

Let 𝐸1, 𝐸2, … , 𝐸𝑚 be a collection of events and set 𝜇 = σ𝑖=1
𝑚 ℙ 𝐸𝑖 . For 

any 𝑠, 

ℙ 𝐸𝑖1 ∩ 𝐸𝑖2 ∩⋯∩ 𝐸𝑖𝑠 for some independent 𝐸𝑖1 , 𝐸𝑖2 , … , 𝐸𝑖𝑠 ≤
𝜇𝑠

𝑠!
.



Handling Triangle Errors
Recall

• With high probability, each 𝑘-set 𝑆 has at least 5𝑘 ln 𝑛 edges

• Expected number of triangles with an edge in 𝑆 at most 𝑐𝑘 ln 𝑛 for small 𝑐

Erdős-Tetali
• Events 𝐸𝑖: 𝑖th triangle meeting 𝑆 is present in 𝐺 𝑛, 𝑝

• 𝜇 ≤ 𝑐𝑘 ln 𝑛

• Let 𝑠 = 𝑘 ln 𝑛

• Lemma 5.2.1 ⇒ ℙ 𝑆 sees edges of 𝑠 disjoint triangles ≤
𝜇𝑠

𝑠!

Calculation

• Stirling: 𝑠! ≥
𝑠

𝑒

𝑠

• ⇒
𝜇𝑠

𝑠!
≤

𝜇𝑒

𝑠

𝑠
≤ 𝑐𝑒 𝑘 ln 𝑛 < 𝑛−𝑘 if 𝑐 < 𝑒−2



Theorem 5.2.2 (Erdős, 1961; Krivelevich, 1995)

As 𝑘 → ∞, 𝑅 3, 𝑘 = Ω
𝑘

log 𝑘

2
.

Completing the Proof
Union bound

• Union bound over all n
𝑘

< 𝑛𝑘 sets ⇒ with high probability, every 𝑘-set:
• Spans at least 5𝑘 ln 𝑛 edges and meets at most 𝑘 ln 𝑛 edge-disjoint triangles

Alteration

• Given 𝐺 ∼ 𝐺 𝑛, 𝑝 , where 𝑛 = 𝑐′
𝑘

log 𝑘

2
and 𝑝 =

20 ln 𝑛

𝑘−1

• Let 𝒯 be a maximal set of edge-disjoint triangles, and remove all edges in 𝒯
• Each 𝑘-set loses at most 3𝑘 ln 𝑛 edges ⇒ doesn’t become independent

• Resulting graph is therefore Ramsey. ∎



Theorem 1.5.5 (Erdős-Szekeres, 1935)

For all ℓ, 𝑘 ∈ ℕ,

𝑅 ℓ, 𝑘 ≤
ℓ + 𝑘 − 2

ℓ − 1
= 𝑂 𝑘ℓ−1 .

In particular, 𝑅 3, 𝑘 = 𝑂(𝑘2).

Closing In
Lower bounds

• Edge-alteration gave same bound as Lovász Local Lemma

• 𝑅 3, 𝑘 = Ω
𝑘

log 𝑘

2

• Could this be the truth? What can we say in the other direction?

Narrowing the gap
• Left with a log2 𝑘 gap to close



Independent Sets in Triangle-Free Graphs

Proof
• Key observation: 𝐺 triangle-free ⇒ every neighbourhood is independent

• ∴ if 𝐺 has a vertex of degree 𝑛 − 1, we are done
• Otherwise Δ 𝐺 < 𝑛 − 1

• Greedy algorithm:

• 𝛼 𝐺 ≥
𝑛

Δ 𝐺 +1
≥ 𝑛 ∎

Ramsey numbers

• Implies 𝑅 3, 𝑘 = 𝑂 𝑘2

Proposition 5.2.3

If 𝐺 is an 𝑛-vertex triangle-free graph, 𝛼 𝐺 ≥ 𝑛 − 1.



Theorem 5.2.4 (Ajtai, Komlós, Szemerédi, 1980; Shearer, 1995)

If 𝐺 is an 𝑛-vertex triangle-free graph with maximum degree Δ, then

𝛼 𝐺 ≥
𝑛 log Δ

8Δ
.

Room for Improvement

Greedy algorithm
• Order vertices arbitrarily

• Add first vertex 𝑣 to independent set

• Remove all its ≤ Δ neighbours, and repeat

• Bound is sharp only if 𝑣 never has any neighbours previously removed
• Only true for disjoint union of cliques

• ⇒ cannot be sharp for triangle-free graphs



An Improved Upper Bound

Proof

• Let 𝑛 =
8𝑘2

log 𝑘
and let 𝐺 be an 𝑛-vertex triangle-free graph

• If Δ 𝐺 ≥ 𝑘
• Let 𝑣 be a vertex of maximum degree

• 𝑁 𝑣 is an independent set of size ≥ 𝑘

• If Δ 𝐺 < 𝑘

• Theorem 5.2.4 ⇒ 𝛼 𝐺 ≥
𝑛 log Δ

8Δ
≥

𝑛 log 𝑘

8𝑘
= 𝑘 ∎

Corollary 5.2.5

As 𝑘 → ∞, 𝑅 3, 𝑘 ≤
8𝑘2

log 𝑘
.



The Big Picture
Randomness

• We show that a random independent set 𝐼 of 𝐺 has this size

• If we let 𝑌𝑣 = 1 𝑣∈𝐼 , then 𝐼 = σ𝑣 𝑌𝑣
• Would suffice to compute 𝔼 𝐼 = σ𝑣𝔼[𝑌𝑣] = σ𝑣ℙ 𝑣 ∈ 𝐼

• Computing ℙ(𝑣 ∈ 𝐼) not straightforward – depends on neighbourhood

Neighbourhoods

• How does 𝐼 meet the neighbourhood 𝑁 𝑣 ?

• If 𝑣 ∈ 𝐼:
• Must have 𝐼 ∩ 𝑁 𝑣 = ∅

• If 𝑣 ∉ 𝐼:
• Can have 𝐼 ∩ 𝑁 𝑣 ≠ ∅

• Since 𝑁(𝑣) is independent, intersection can be arbitrary

• ⇒ might expect intersection to be large



Lemma 5.2.6

If Δ ≥ 16, we have 𝔼 𝑋𝑣 ≥
log Δ

4
for every 𝑣.

New Random Variables

Local variables
• Define new variables to account for local information

• Let 𝑋𝑣 = Δ ⋅ 1 𝑣∈𝐼 + 𝐼 ∩ 𝑁 𝑣

• Heuristic justification
• Regularise contribution of 𝑣

• When 𝑣 ∈ 𝐼, have 𝑋𝑣 = Δ

• When 𝑣 ∉ 𝐼, can still have 𝑋𝑣 = Θ Δ

• Easier to get useful bounds on 𝑋𝑣



Deducing the Theorem

Proof

• If Δ ≤ 15, done by 𝛼 𝐺 ≥
𝑛

Δ+1

• Otherwise, let 𝐼 be a uniformly random independent set of 𝐺

• For each vertex 𝑣, let 𝑋𝑣 = Δ ⋅ 1 𝑣∈𝐼 + 𝐼 ∩ 𝑁 𝑣

• Let 𝑋 = σ𝑣𝑋𝑣
• Observe: 𝑋 ≤ 2Δ 𝐼

• Each 𝑣 ∈ 𝐼 contributes at most 2Δ: Δ via 𝑋𝑣, and 1 via 𝑋𝑢 for each neighbour 𝑢

• Lemma 5.2.6 ⇒𝔼 𝑋 ≥
𝑛 log Δ

4
∎

Theorem 5.2.4 (Ajtai, Komlós, Szemerédi, 1980; Shearer, 1995)

If 𝐺 is an 𝑛-vertex triangle-free graph with maximum degree Δ, then

𝛼 𝐺 ≥
𝑛 log Δ

8Δ
.



Proving the Lemma

Proof
• 𝑋𝑣 = Δ ⋅ 1 𝑣∈𝐼 + 𝐼 ∩ 𝑁 𝑣

• Which 𝑢 ∈ 𝑁 𝑣 could be in 𝐼?
• Need to know 𝐼 ∩ 𝑁 𝑁 𝑣

• Idea: condition on how 𝐼 meets the rest of the graph

• Let 𝐻 = 𝐺 ∖ 𝑣 ∪ 𝑁 𝑣

• 𝔼 𝑋𝑣 = 𝔼 𝔼 𝑋𝑣 𝐼 ∩ 𝑉 𝐻 = 𝐽

• Suffices to show 𝔼 𝑋𝑣 𝐼 ∩ 𝑉 𝐻 = 𝐽 ≥
log Δ

4
for every independent 𝐽 in 𝐻

Lemma 5.2.5

If Δ ≥ 16, we have 𝔼 𝑋𝑣 ≥
log Δ

4
for every 𝑣.



Extending Independent Sets
Goal

• 𝔼 𝑋𝑣 𝐼 ∩ 𝑉 𝐻 = 𝐽 ≥
log Δ

4

Available neighbours

• Let 𝐴 = 𝑁 𝑣 ∖ 𝑁 𝐽
• Those neighbours of 𝑣 that could be added to 𝐽

• Let 𝑎 = 𝐴

Independent extensions

• Two types of extensions of 𝐽 to 𝐼:
• 𝐼 = 𝐽 ∪ 𝑣

• 𝐼 = 𝐽 ∪ 𝑆, some 𝑆 ⊆ 𝐴

• 𝐼 is chosen uniformly at random from 2𝑎 + 1 optoins



Computing Conditional Expectations
Recall

• 𝑋𝑣 = Δ ⋅ 1 𝑣∈𝐼 + 𝐼 ∩ 𝑁 𝑣

• Want to show 𝔼 𝑋𝑣 𝐼 ∩ 𝑉 𝐻 = 𝐽 ≥
log Δ

4

Conditional Expectation

• Case: 𝑣 ∈ 𝐼

• Probability: 
1

2𝑎+1

• 𝑋𝑣 = Δ

• Case: 𝑣 ∉ 𝐼

• Probability: 
2𝑎

2𝑎+1

• 𝔼 𝑋𝑣 𝑣 ∉ 𝐼, 𝐼 ∩ 𝑉 𝐻 = 𝐽 = 𝔼 𝑆 =
𝑎

2

• ⇒ 𝔼 𝑋𝑣 𝐼 ∩ 𝑉 𝐻 = 𝐽 =
Δ

2𝑎+1
+

a2a−1

2a+1



Concluding Calculations
Recall

• 𝔼 𝑋𝑣 𝐼 ∩ 𝑉 𝐻 = 𝐽 =
Δ

2𝑎+1
+

𝑎2𝑎−1

2𝑎+1

• Want to show 𝔼 𝑋𝑣 𝐼 ∩ 𝑉 𝐻 = 𝐽 ≥
log Δ

4

Contradiction

• If not, 
log Δ

4
>

Δ

2𝑎+1
+

𝑎2𝑎−1

2𝑎+1
• ⇒ 2𝑎 + 1 logΔ > 4Δ + 2𝑎2𝑎

• ⇒ logΔ − 2𝑎 2𝑎 > 4Δ − log Δ

• Also ⇒ 𝑎 ≥ 1

• Must have 2𝑎 < log Δ
• ⇒ 2𝑎 < Δ

• ⇒ log Δ − 2 Δ > 4Δ − log Δ

• False for Δ ≥ 16 ∎



Theorem 5.2.7 (Kim, 1995)

As 𝑘 → ∞, 𝑅 3, 𝑘 = Ω
𝑘2

log 𝑘
.

Epilogue

What we know

• Ω
𝑘2

log2 𝑘
= 𝑅 3, 𝑘 = 𝑂

𝑘2

log 𝑘

Remarks
• Kim’s proof a “tour de force”

• Lower bound recently sharpened via analysis of triangle-free process

• Asymptotics of 𝑅(𝑠, 𝑘), 𝑠 ≥ 4 fixed and 𝑘 → ∞, unknown



Any questions?



§3 Hamiltonicity
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Definition 5.3.1

A Hamiltonian cycle in a graph 𝐺 is a cycle passing through every vertex 
of 𝐺. A graph is called Hamiltonian if it contains a Hamiltonian cycle.

Setting the Scene

Questions
• Are there easy ways to recognise Hamiltonian graphs?

• What happens for the average graph?

Theorem 5.3.2 (Karp, 1972)

Deciding whether a graph is Hamiltonian is NP-Complete.



Theorem 5.3.3 (Dirac, 1952)

Every 𝑛-vertex graph 𝐺 with minimum degree 𝛿 𝐺 ≥
𝑛

2
is Hamiltonian.

A Sufficient Condition

Optimal bound
• 𝑛 even: two disjoint cliques

• 𝑛 odd: two cliques sharing one vertex

Corollary 5.3.4

For every 𝜀 > 0 and 𝑝 ≥
1

2
+ 𝜀 𝑛, 𝐺 𝑛, 𝑝 is Hamiltonian w.h.p.



Proposition 5.3.5

For every 𝜀 > 0 and 𝑝 ≤
1−𝜀 log 𝑛

𝑛
, 𝐺 𝑛, 𝑝 is w.h.p. not Hamiltonian.

Threshold Lower Bound
First moment

• There are 
𝑛−1 !

2
=

𝑛

1+𝑜 1 𝑒

𝑛

possible Hamiltonian cycles

• Each appears in 𝐺 𝑛, 𝑝 with probability 𝑝𝑛

• ⇒ expected number of cycles is 
𝑛𝑝

1+𝑜 1 𝑒

𝑛

• ⇒ if 𝑝 ≤
𝑒−𝜀

𝑛
, then 𝐺 𝑛, 𝑝 has no Hamiltonian cycles w.h.p.

Connectivity
• 𝐺(𝑛, 𝑝) Hamiltonian ⇒𝐺 𝑛, 𝑝 connected



Dirac’s Theorem

Proof
• 𝐺 is connected

• If not, smaller component would not support minimum degree

• Let 𝑃 = 𝑣0𝑣1𝑣2…𝑣𝑡 be a longest path
• 𝑁 𝑣0, 𝑣𝑡 ⊆ 𝑃, as otherwise path could be extended

• Pigeonhole: ∃𝑖 such that 𝑣𝑖 , 𝑣𝑡 , 𝑣0, 𝑣𝑖+1 ∈ 𝐸 𝐺

• We have a cycle 𝐶 = 𝑣0𝑣1𝑣2…𝑣𝑖𝑣𝑡𝑣𝑡−1𝑣𝑡−2…𝑣𝑖+1𝑣0
• If 𝑡 = 𝑛, this is a Hamiltonian cycle

• If 𝑡 < 𝑛, connectivity ⇒ edge from 𝐶 to 𝐺 ∖ 𝐶
• Gives a longer path, contradiction. ∎

Theorem 5.3.3 (Dirac, 1952)

Every 𝑛-vertex graph 𝐺 with minimum degree 𝛿 𝐺 ≥
𝑛

2
is Hamiltonian.



Dirac’s Algorithm

More than existential
• Proof shows us how to find a Hamiltonian cycle

• Start with any path

• If there are edges out from the endpoints, extend path

• Otherwise by pigeonhole turn path into cycle
• Use external edge to extend path

• Repeat until cycle is Hamiltonian

Random setting

• Extremal problem:
• Need to assume worst-case graph

• Used large degree, pigeonhole to rotate path into cycle

• Can we use properties of 𝐺 𝑛, 𝑝 to do this more efficiently?



Definition 5.3.6 (Booster)

Given a graph 𝐺, a booster is a potential edge 𝑒 such that 𝐺 ∪ 𝑒
contains a longer path or a Hamiltonian cycle.

Pósa Rotations
Goal

• Given path 𝑃 = 𝑣0𝑣1…𝑣𝑡 in a graph 𝐺

• Want to find a longer path or a Hamiltonian cycle

Rotations
• If 𝐺 is connected, the pair 𝑣0, 𝑣𝑡 is a booster

• Suppose 𝑣𝑖 , 𝑣𝑡 ∈ 𝐸 𝐺 , 1 ≤ 𝑖 ≤ 𝑡 − 2
• Rotation along 𝑣𝑖 , 𝑣𝑡 : 𝑃′ = 𝑣0𝑣1…𝑣𝑖𝑣𝑡𝑣𝑡−1…𝑣𝑖+1 also a path of length 𝑡

• ⇒ the pair 𝑣0, 𝑣𝑖+1 is also a booster



Endpoint Neighbourhoods

Proof
• After rotating along {𝑣𝑖 , 𝑣𝑡}, only 𝑣𝑖, 𝑣𝑡 get new neighbours on the path
• Let 𝑣 ∈ 𝑅

• Rotate to path 𝑃′ with 𝑣 as an endpoint

• Let 𝑦 ∈ 𝑁 𝑣 ∖ 𝑅
• If 𝑦 ∉ 𝑉(𝑃), extend 𝑃′ to 𝑦 ⇒ longer path than 𝑃
• If 𝑦 ∈ 𝑉 𝑃 , rotate 𝑃′ along the edge 𝑣, 𝑦
• ⇒ a neighbour 𝑥 of 𝑦 on 𝑃′ is an endpoint of the new path, so 𝑥 ∈ 𝑅
• If 𝑥 also a neighbour of 𝑦 on 𝑃, then 𝑦 ∈ 𝑁𝑃(𝑅)
• Otherwise must have rotated along an edge incident to 𝑦 ⇒ 𝑦 ∈ 𝑁𝑃 𝑅 ∎

Lemma 5.3.7

Let 𝑃 = 𝑣0𝑣1…𝑣𝑡 be a longest path in a graph 𝐺, and let 𝑅 be the set 
of endpoints reachable from 𝑣0 by sequences of rotations. Then 
𝑁𝐺 𝑅 ⊆ 𝑁𝑃 𝑅 .



Corollary 5.3.8

Let 𝑃 be a longest path in 𝐺, and let 𝑅 be the set of endpoints 
following sequences of rotations. Then 𝑁𝐺 𝑅 ≤ 2 𝑅 − 1.

Expanders

Proof
• Lemma 5.3.7 ⇒ 𝑁𝐺 𝑅 ⊆ 𝑁𝑃 𝑅

• Each vertex in 𝑅 contributes at most two neighbours to 𝑁𝑃 𝑅

• Final vertex 𝑣𝑡 only contributes one

• ⇒ 𝑁𝑃 𝑅 ≤ 2 𝑅 − 1 ∎

Definition 5.3.9 (Expander)

A graph 𝐺 is a 𝑘, 2 -expander if, for every 𝑆 ⊆ 𝑉 𝐺 with 𝑆 ≤ 𝑘, we 
have 𝑁𝐺 𝑆 ≥ 2 𝑆 .



Expanders Have Many Boosters

Proof
• If 𝐺 is Hamiltonian, every edge is a booster.

• Otherwise let 𝑃 = 𝑣0𝑣1…𝑣𝑡 be a longest path

• Fix 𝑣0, and let 𝑅0 be the endpoints after rotations
• Corollary 5.3.8 ⇒ 𝑁𝐺 𝑅0 ≤ 2 𝑅0 − 1

• 𝐺 a 𝑘, 2 -expander ⇒ 𝑅0 ≥ 𝑘 + 1

• Given any 𝑦 ∈ 𝑅0, rotate to a 𝑣0-𝑦 path 𝑃′

• Fix 𝑦, and let 𝑅𝑦 be the endpoints of paths from 𝑦 after rotating 𝑃′

• Again, 𝑅𝑦 ≥ 𝑘 + 1

• For each 𝑧 ∈ 𝑅𝑦 , 𝑦, 𝑧 is a booster, counted at most twice ∎

Corollary 5.3.10

If 𝐺 is a connected (𝑘, 2)-expander, then 𝐺 has at least 
1

2
𝑘2 boosters.



Dirac’s Algorithm in Random Graphs

Assumptions

• 𝐺 𝑛, 𝑝 is connected – know to be true for 𝑝 ≥
1+𝜀 log 𝑛

𝑛

• 𝐺 𝑛, 𝑝 is a 𝑘, 2 -expander for 𝑘 large

Rotation-Extension process

• Start with a longest path 𝑃

• Corollary 5.3.10 ⇒ gives rise to Ω 𝑘2 boosters

• Each booster is an edge of 𝐺 𝑛, 𝑝 independently with probability 𝑝

• ⇒ Probability none of the boosters appear is 1 − 𝑝 𝑘2

• ⇒ if 𝑝 = 𝜔 𝑘−2 , then w.h.p. one of the boosters should be in 𝐺 𝑛, 𝑝

• Use it to extend path, repeat until Hamiltonian



Multiple Exposures
Recall

• Longest path gave rise to Ω 𝑘2 boosters

• Want to show w.h.p. a booster appears in 𝐺 𝑛, 𝑝

Problem

• To find the boosters, we needed to expose edges in 𝑉 𝑃
2

• Might already have found boosters are not edges

• They do not appear independently with probability 𝑝

Solution
• Split the random graph into independent subgraphs

• Let 𝑝0, 𝑞 satisfy 1 − 𝑝 = 1 − 𝑝0 1 − 𝑞

• Then 𝐺 𝑛, 𝑝 ∼ 𝐺 𝑛, 𝑝0 ∪ 𝐺 𝑛, 𝑞

• Use 𝐺 𝑛, 𝑝0 to obtain connectivity, expansion properties, find boosters

• Use 𝐺 𝑛, 𝑞 to show boosters appear in the random graph w.h.p.



Random Graphs are Expanders

Proof

• If not, there is some set 𝑆 of size 𝑠 ≔ 𝑆 ≤
𝑛

6
such that 𝑁 𝑆 < 2𝑠

• ⇒ ∃𝑊 ⊂ 𝑉 𝐺 ∖ 𝑆, 𝑊 = 2𝑠, such that we have no edges from 𝑆 to 𝑉 𝐺 ∖ 𝑆 ∪𝑊

• Probability these edges are missing is 1 − 𝑝 𝑠 𝑛−3𝑠 ≤ 𝑒−𝑝𝑠 𝑛−3𝑠 ≤ 𝑒−𝑝𝑠𝑛/2

• Count number of pairs 𝑆,𝑊

• 𝑛
𝑠
≤

𝑛𝑒

𝑠

𝑠
choices for 𝑆, 𝑛−𝑠

2𝑠
≤ 𝑛

2𝑠
≤

𝑛𝑒

2𝑠

2𝑠
choices for 𝑊

• Union bound

• ℙ 𝐺 𝑛, 𝑝 bad ≤ σ
𝑠=1

𝑛

6 𝑛3𝑒3

4𝑠3
𝑒−𝑝𝑛/2

𝑠

≤ σ
𝑠=1

𝑛

6 𝑒3

4 𝑛

𝑠

= 𝑜 1 ∎

Lemma 5.3.11

If 𝑝 ≥
7 log 𝑛

𝑛
, then 𝐺 𝑛, 𝑝 is w.h.p. an 

𝑛

6
, 2 -expander.



The Hamiltonicity Threshold

Proof

• Let 𝑝0 =
7 log 𝑛

𝑛
and 𝑞 =

73 log 𝑛

𝑛2

• Let 𝐺0 ∼ 𝐺 𝑛, 𝑝0 , and for 𝑖 ∈ [𝑛], let 𝐺𝑖 ∼ 𝐺 𝑛, 𝑞 be independent

• If 𝐺 = 𝐺0 ∪ (∪𝑖 𝐺𝑖), then 𝐺 ∼ 𝐺 𝑛, 𝑝 for 𝑝 = 1 − 1 − 𝑝0 1 − 𝑞 𝑛 ≤
80 log 𝑛

𝑛2

• Lemma 5.3.11 ⇒ 𝐺0 is w.h.p. a connected 
𝑛

6
, 2 -expander

• Corollary 5.3.10 ⇒ any supergraph of 𝐺0 has at least 
𝑛2

72
boosters

• ⇒ probability 𝐺𝑖 does not contain one of the boosters ≤ 1 − 𝑞
𝑛2

72 ≤ 𝑒
−𝑞𝑛2

72 = 𝑜
1

𝑛

• ⇒ Grow a longest path, using 𝐺𝑖 to find a booster in the 𝑖th step ∎

Theorem 5.3.12 (Pósa, 1976)

If 𝑝 ≥
80 log 𝑛

𝑛
, then 𝐺 𝑛, 𝑝 is w.h.p. Hamiltonian.



Theorem 5.3.13 (Komlós-Szemerédi, 1983)

For 𝜀 > 0 and 𝑝 ≥
1+𝜀 log 𝑛

𝑛
, 𝐺 𝑛, 𝑝 is w.h.p. Hamiltonian.

Epilogue

• Even sharper results were later proven

Theorem 5.3.14 (Bollobás, 1984; Ajtai-Komlós-Szemerédi, 1985)

In the random graph process, w.h.p. the graph becomes Hamiltonian 
precisely when the minimum degree is at least two.

• Hamiltonicity displays a very sharp threshold



Any questions?



§4 Martingales
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Threshold for Triangles

Triangular case
• ℓ = 3: threshold for containing triangles is 𝑛−1

Upper tail

• When 𝑝 ≫ 𝑛−1, how unlikely is 𝐺 𝑛, 𝑝 to be triangle-free?

• Proof of Theorem 3.3.1
• Used Chebyshev’s Inequality

• Gives polynomial error bounds

Theorem 3.3.1

For ℓ ≥ 2, the threshold for 𝐾ℓ ⊆ 𝐺 𝑛, 𝑝 is 𝑝0 𝑛 = 𝑛−2/(ℓ−1).



Exponential Dreams

Indicator random variables
• Let 𝑋 denote the number of triangles in 𝐺 ∼ 𝐺 𝑛, 𝑝

• Given 𝑇 ∈ 𝑛
3

, let 𝑋𝑇 be the indicator that 𝐺 𝑇 ≅ 𝐾3
• Then ℙ 𝑋𝑇 = 1 = 𝑝3

• Also 𝑋 = σ𝑇𝑋𝑇

Stronger concentration

• Using Chernoff would give ℙ 𝑋 = 0 ≤ exp −
1

2

𝑛
3
𝑝3

• Exponentially small error bound

• Problem: summands 𝑋𝑇 not independent
• 𝑋𝑇 , 𝑋𝑇′ positively correlated when 𝑇 ∩ 𝑇′ = 2



Lemma 5.4.1

There exists a family of 
1

3

𝑛−1
2

pairwise edge-disjoint triangles in 𝐾𝑛.

Sparse Independence

Cheap fix
• Restrict our attention to mutually independent events

• Equivalently: consider a family of edge-disjoint triangles

Proof
• Colour each triangle 𝑖, 𝑗, 𝑘 with the colour 𝑐 ≡ 𝑖 + 𝑗 + 𝑘 mod 𝑛

• Each colour class is edge-disjoint
• Given vertices 𝑖, 𝑗, third vertex 𝑘 ≡ 𝑐 − 𝑖 − 𝑗 determined

• Large colour class

• For some 𝑐, number of 𝑐-coloured triangles is at least 
1

𝑛

𝑛
3

=
1

3

𝑛−1
2

∎



Don’t Let Your Dreams Be Dreams

Proof
• Let 𝒯 be the collection of triangles from Lemma 5.4.1

• If 𝐺 𝑛, 𝑝 is triangle-free, no triangle in 𝒯 appears
• These appear independently

• Probability none appear is 1 − 𝑝3 𝒯 ≤ exp − 𝒯 𝑝3 ∎

Good news

• Exponential bound on error probability

Bad news

• Exponent 𝑛−1
2

𝑝3 = Θ 𝑛2𝑝3 is of lower order than expected

Corollary 5.4.2

𝐺 𝑛, 𝑝 is triangle-free with probability at most exp −
1

3

𝑛−1
2

𝑝3 .



Postmortem of a Proof

Improving the exponent
• Need to consider all 𝑛

3
possible triangles

• Dependencies are limited – can we recover Chernoff-type bounds?

Revisiting Chernoff

• 𝑆𝑛 = σ𝑖=1
𝑛 𝑋𝑖

• Properties of 𝑋𝑖:
• Bounded, −1,1 -variables

• 𝔼 𝑋𝑖 = 0

• 𝑋𝑖 mutually independent

• Using independence:
• Applied Markov to 𝑒𝑆𝑛

• Independence ⇒ 𝔼 𝑒𝑆𝑛 = 𝔼 𝑒σ𝑖 𝑋𝑖 = ς𝑖𝔼 𝑒𝑋𝑖



Definition 5.4.3 (Martingale)

A martingale is a sequence 𝑍0, 𝑍1, … , 𝑍𝑚 of random variables such 
that, for each 1 ≤ 𝑖 ≤ 𝑚, we have

𝔼 𝑍𝑖 𝑍𝑗: 𝑗 < 𝑖 = 𝑍𝑖−1.

Loosely speaking, given what has previously transpired, we expect 
nothing to change in the 𝑖th step.

Martingales

Conditional independence
• What if the 𝑋𝑖 are not independent?

• Recover independence by conditioning on previous variables

• Product rule: 𝔼 𝑒σ𝑖 𝑋𝑖 = ς𝑖 𝔼 𝑒𝑋𝑖 𝑋𝑗: 𝑗 < 𝑖

• ⇒ if 𝑋𝑖 𝑋𝑗: 𝑗 < 𝑖 has the right properties, can prove Chernoff-type bounds



Martingales, Tame and Wild
Boring mathsy example

• Let 𝑋𝑖 be independent and uniform on −1,1 , for 1 ≤ 𝑖 ≤ 𝑚

• Let 𝑍𝑖 = σ𝑗≤𝑖 𝑋𝑗

• 𝔼 𝑍𝑖 𝑍𝑗: 𝑗 < 𝑖 = 𝔼 𝑍𝑖−1 + 𝑋𝑖 𝑍𝑗: 𝑗 < 𝑖 = 𝑍𝑖−1 + 𝔼 𝑋𝑖| 𝑍𝑗: 𝑗 < 𝑖

• 𝔼 𝑋𝑖 𝑍𝑗: 𝑗 < 𝑖 = 𝔼 𝑋𝑖 = 0

• ⇒ Zi: 0 ≤ 𝑖 ≤ 𝑚 is a martingale

Fun real-world example
• Gambling on (fair) coin tosses

• 𝑍𝑖 = cumulative profit/loss after 𝑖th toss

• Bet 𝑏𝑖 = 𝑏𝑖 𝑍0, 𝑍1, … , 𝑍𝑖−1 on the 𝑖th toss, depending on previous outcomes

• 𝔼 𝑍𝑖 𝑍𝑗: 𝑗 < 𝑖 =
1

2
Zi−1 + bi +

1

2
Zi−1 − bi = Zi−1

• ⇒ 𝑍𝑖: 0 ≤ 𝑖 ≤ 𝑚 is a martingale
Disclaimer: gambling can be addictive and bad for your bank balance



Martingale Concentration

Proof
• Set 𝑋𝑖 = 𝑍𝑖 − 𝑍𝑖−1

• ⇒ 𝑋𝑖 ≤ 1 and 𝑍𝑚 = σ𝑖=1
𝑚 𝑋𝑖

• Martingale ⇒ 𝔼 𝑋𝑖 𝑍𝑗: 𝑗 < 𝑖 = 0

• For any 𝜆 > 0, we have 𝑍𝑚 ≥ 𝑎 ⇔ e𝜆Zm ≥ 𝑒𝜆𝑎

• ℙ 𝑒𝜆𝑍𝑚 ≥ 𝑒𝜆𝑎 ≤ 𝔼 𝑒𝜆𝑍𝑚 𝑒−𝜆𝑎

• 𝔼 𝑒𝜆𝑍𝑚 = ς𝑖=1
𝑚 𝔼 𝑒𝜆𝑋𝑖 𝑍𝑗: 𝑗 < 𝑖

Theorem 5.4.4 (Azuma’s Inequality)

Let 𝑍0, 𝑍1, … , 𝑍𝑚 be a martingale with 𝑍0 = 0 and 𝑍𝑖 − 𝑍𝑖−1 ≤ 1 for 
all 1 ≤ 𝑖 ≤ 𝑚. Then, for any a > 0, we have

ℙ 𝑍𝑚 ≥ 𝑎 ≤ exp −𝑎2/2𝑚 .



A Little Calculus

Proof

• Let 𝑓 𝑦 =
𝑒𝜆+𝑒−𝜆

2
+

𝑒𝜆−𝑒−𝜆

2
𝑦 = 𝑒𝜆

1

2
+

𝑦

2
+ 𝑒−𝜆

1

2
−

𝑦

2

• ⇒ 𝑓 represents chord between 𝑔 𝑦 = 𝑒𝜆𝑦 between 𝑦 = −1 and 𝑦 = 1

• Convexity ⇒ 𝑔 𝑦 ≤ 𝑓 𝑦 for all 𝑦 ∈ −1,1

• Thus 𝔼 𝑒𝜆𝑌 = 𝔼 𝑔 𝑌 ≤ 𝔼 𝑓 𝑌 =
𝑒𝜆+𝑒−𝜆

2
+

𝑒𝜆−𝑒−𝜆

2
𝔼 𝑌 = cosh 𝜆 ∎

Lemma 5.4.5

If 𝜆 > 0 and 𝑌 is a random variable with 𝔼 𝑌 = 0 and 𝑌 ≤ 1, then 
𝔼 𝑒𝜆𝑌 ≤ cosh 𝜆 .



Completing the Proof

Proof (cont’d)
• ℙ 𝑒𝜆𝑍𝑚 ≥ 𝑒𝜆𝑎 ≤ 𝔼 𝑒𝜆𝑍𝑚 𝑒−𝜆𝑎

• 𝔼 𝑒𝜆𝑍𝑚 = ς𝑖=1
𝑚 𝔼 𝑒𝜆𝑋𝑖 𝑍𝑗: 𝑗 < 𝑖

• By Lemma 5.4.5, 𝔼 𝑒𝜆𝑋𝑖 𝑍𝑗: 𝑗 < 𝑖 ≤ cosh 𝜆 ≤ 𝑒𝜆
2/2

• ∴ ℙ 𝑍𝑚 ≥ 𝑎 ≤ exp
𝜆2𝑚

2
− 𝜆𝑎

• Substitute 𝜆 =
𝑎

𝑚
∎

Theorem 5.4.4 (Azuma’s Inequality)

Let 𝑍0, 𝑍1, … , 𝑍𝑚 be a martingale with 𝑍0 = 0 and 𝑍𝑖 − 𝑍𝑖−1 ≤ 1 for 
all 1 ≤ 𝑖 ≤ 𝑚. Then, for any a > 0, we have

ℙ 𝑍𝑚 ≥ 𝑎 ≤ exp −𝑎2/2𝑚 .



Graph Martingales

Upper tail for triangles
• Sample 𝐺 ∼ 𝐺 𝑛, 𝑝 , 𝑋 = # triangles in 𝐺

• 𝑋 = σ
𝑇∈ 𝑛

3

𝑋𝑇, with 𝑋𝑇 the indicator that 𝐺 𝑇 ≡ 𝐾3

Where is the martingale?

• Natural candidate
• Order sets 𝑇1, 𝑇2, … , 𝑇𝑚
• Let 𝑍𝑖 = σ𝑗≤𝑖𝑋𝑇𝑗

• Problem
• Positive correlation ⇒ cannot make 𝔼 𝑋𝑇𝑖 𝑍𝑗: 𝑗 < 𝑖 = 0 for all choices of 𝑍𝑗

• Solution
• Reveal information about 𝐺 in stages

• Let 𝑍𝑖 be the expected value of 𝑋 given the information after 𝑖 rounds



The Doob Martingale

General framework
• Sample 𝐺 ∼ 𝐺 𝑛, 𝑝 , interested in graph parameter 𝑓 𝐺 ∈ ℝ

• Example: 𝑓 𝐺 = # triangles in 𝐺

Revealing 𝐺

• Order the possible edges 𝑛
2

= 𝑒1, 𝑒2, … , 𝑒𝑚 for 𝑚 = 𝑛
2

• Let 𝑆𝑖 = 𝑒𝑗: 𝑗 ≤ 𝑖

The martingale

• 𝑍𝑖 = 𝔼 𝑓 𝐺 𝐸 𝐺 ∩ 𝑆𝑖 − 𝔼 𝑓 𝐺
• Expected value of parameter given the previously revealed edges

• 𝑍0 = 𝔼 𝑓 𝐺 − 𝔼 𝑓 𝐺 = 0

• 𝑍𝑚 = 𝔼 𝑓 𝐺 𝐸 𝐺 ∩ 𝑛
2

− 𝔼 𝑓 𝐺 = 𝑓 𝐺 − 𝔼 𝑓 𝐺



A Small Example
Framework

• 𝐺 ∼ 𝐺 3,
1

2
and 𝑓 𝐺 = 𝜔 𝐺

𝐺

𝑓 𝐺 1 2 2 2 2 2 2 3

1.5 2 2 2.5

1.75 2.25

2



Verifying Martingale-ness

Recall
• 𝐺 ∼ 𝐺(𝑛, 𝑝), and we are exploring a graph parameter 𝑓(𝐺)

• 𝑆𝑖 = 𝑒𝑗: 𝑗 ≤ 𝑖

• 𝑍𝑖 = 𝔼 𝑓 𝐺 𝐸 𝐺 ∩ 𝑆𝑖

Conditional expectations

• 𝔼 𝑍𝑖+1 𝐸 𝐺 ∩ 𝑆𝑖 = 𝔼 𝔼 𝑓 𝐺 𝐸 𝐺 ∩ 𝑆𝑖+1 𝐸 𝐺 ∩ 𝑆𝑖
= 𝔼 𝑓 𝐺 𝐸 𝐺 ∩ 𝑆𝑖 = 𝑍𝑖

• ⇒ this is a martingale



Definition 5.4.6 (𝑐-Lipschitz)

Let 𝑐 > 0. A graph parameter 𝑓 is 𝑐-(edge-)Lipschitz if, for any edge 𝑒, 
𝑓 𝐺 − 𝑓 𝐺 △ 𝑒 ≤ 𝑐.

Lipschitz Properties

Bounded differences
• To apply Azuma’s Inequality, we need 𝑍𝑖 − 𝑍𝑖−1 ≤ 1 for all 𝑖

• Intuitively: changing one edge should not change 𝑓 𝐺 much

Fact 5.4.7

Given a 𝑐-Lipschitz parameter 𝑓, we have 𝑍𝑖 − 𝑍𝑖−1 ≤ 1 for the 

normalised Doob martingale 𝑍𝑖 =
1

𝑐
𝔼 𝑓 𝐺 𝐸 𝐺 ∩ 𝑆𝑖 − 𝔼 𝑓 𝐺 .



Theorem 5.4.4 (Azuma’s Inequality)

Let 𝑍0, 𝑍1, … , 𝑍𝑚 be a martingale with 𝑍0 = 0 and 𝑍𝑖 − 𝑍𝑖−1 ≤ 1 for 
all 1 ≤ 𝑖 ≤ 𝑚. Then, for any a > 0, we have

ℙ 𝑍𝑚 ≥ 𝑎 ≤ exp −𝑎2/2𝑚 .

Summary

Remarks
• Same bound holds for ℙ 𝑓 𝐺 ≤ 𝜇 − 𝑎

• Can also use a vertex-exposure martingale
• 𝑍𝑖 is the expected value of 𝑓 𝐺 after exposing induced subgraph of 𝐺 on first 𝑖 vertices

Corollary 5.4.8

Let 𝑓 be a 𝑐-Lipschitz graph parameter, 𝐺 ∼ 𝐺 𝑛, 𝑝 , 𝜇 = 𝔼 𝑓 𝐺 , and 
𝑎 > 0. Then ℙ 𝑓 𝐺 ≥ 𝜇 + 𝑎 ≤ exp −𝑎2/𝑛2𝑐2 .



Any questions?



§5 Triangle-free Graphs
Chapter 5: Concentration

The Probabilistic Method



Theorem 3.3.1

For ℓ ≥ 2, the threshold for 𝐾ℓ ⊆ 𝐺 𝑛, 𝑝 is 𝑝0 𝑛 = 𝑛−2/(ℓ−1).

A Quick Review

Triangle-freeness
• ⇒ when 𝑝 = 𝜔 𝑛−1 , ℙ 𝐾3 ⊈ 𝐺 𝑛, 𝑝 = 𝑜 1
• Error bound from Chebyshev ⇒ only polynomially small

Exponential error bounds
• Sharper estimates by considering edge-disjoint triangles

Corollary 5.4.2

𝐺 𝑛, 𝑝 is triangle-free with probability at most exp −
1

3

𝑛−1
2

𝑝3 .



Corollary 5.4.8’

Let 𝑓 be a 𝑐-Lipschitz graph parameter, 𝐺 ∼ 𝐺 𝑛, 𝑝 , 𝜇 = 𝔼 𝑓 𝐺 , and 
𝑎 > 0. Then ℙ 𝑓 𝐺 ≤ 𝜇 − 𝑎 ≤ exp −𝑎2/𝑛2𝑐2 .

Applying Azuma

Counting triangles
• 𝑓 𝐺 = # triangles in 𝐺

• 𝜇 = 𝑛
3
𝑝3 = a

• 𝑐 = 𝑛 − 2

Corollary 5.5.1

𝐺 𝑛, 𝑝 is triangle-free with probability at most exp
− 𝑛−1 2𝑝6

36
.



Corollary 5.5.2

Let 𝑓 be a 𝑐𝑣-vertex-Lipschitz parameter, 𝜇 = 𝔼 𝑓 𝐺 , and 𝑎 > 0. 
Then, for 𝐺 ∼ 𝐺(𝑛, 𝑝), ℙ 𝑓 𝐺 ≤ 𝜇 − 𝑎 ≤ exp −𝑎2/2𝑛𝑐𝑣

2 .

Immeasurable Disappointment
Worse exponent

• Exponent 
1

36
𝑛 − 1 2𝑝6 is worse than the 

1

3

𝑛−1
2

𝑝3 from before

• Problems
• Long martingale, 𝑛

2
, and large Lipschitz constant, 𝑛 − 2

• What if we apply vertex-exposure instead?

Vertex-exposure martingale

• Shorter martingale, 𝑛, but worse Lipschitz constant, 𝑛−1
2

• Yields a worse exponent, Θ 𝑛𝑝6



Corollary 5.4.8

Let 𝑓 be a 𝑐-Lipschitz graph parameter, 𝐺 ∼ 𝐺 𝑛, 𝑝 , 𝜇 = 𝔼 𝑓 𝐺 , and 
𝑎 > 0. Then ℙ 𝑓 𝐺 ≥ 𝜇 + 𝑎 ≤ exp −𝑎2/𝑛2𝑐2 .

A Judicious Parameter
Reducing the Lipschitz constant

• Need to decrease the influence a single edge can have
• Idea: edge-disjoint triangles

• Let 𝑓 𝐺 = maximum number of pairwise edge-disjoint triangles

New bound
• This choice of 𝑓 is 1-Lipschitz

• Still have 𝐺 triangle-free ⇔ 𝑓 𝐺 = 0, so take 𝑎 = 𝔼 𝑓 𝐺

• ⇒ ℙ 𝐺 triangle−free ≤ exp −𝔼 𝑓 𝐺 2/𝑛2

• How do we bound this expectation?



Edge-Disjoint Triangles

Proof
• Let 𝒯 be the collection of all 𝑋 triangles in 𝐺

• Let ℛ′ ⊆ 𝒯 be a 𝑞-random subcollection
• Triangle 𝑇 ∈ ℛ′ with probability 𝑞, independent of all other triangles

• Let 𝑌′ be the number of pairs of overlapping triangles in ℛ′

• From each pair in ℛ′ sharing an edge, remove one of the triangles
• ⇒ resulting ℛ ⊆ ℛ′ is pairwise edge-disjoint

• 𝔼 ℛ ≥ 𝔼 ℛ′ − 𝑌′ = 𝑞𝑋 − 𝑞2𝑌 ∎

Lemma 5.5.3

Let 𝑞 ∈ 0,1 , and let 𝐺 be a graph with 𝑋 triangles and 𝑌 pairs of 
triangles sharing an edge. Then 𝐺 has a collection of 𝑚 pairwise edge-
disjoint triangles, for some 𝑚 ≥ 𝑞𝑋 − 𝑞2𝑌.



Corollary 5.5.4

Let 𝐺 ∼ 𝐺 𝑛, 𝑝 for 𝑝 ≥
1

3𝑛
. Then 𝔼 𝑓 𝐺 ≥

1

36
− 𝑜 1 𝑛2𝑝.

Random Edge-Disjoint Triangles

Random graph setting
• Let 𝐺 ∼ 𝐺 𝑛, 𝑝 , 𝑋 = # triangles, 𝑌 = # overlapping pairs of triangles

• Lemma 5.5.3 ⇒ 𝑓 𝐺 ≥ 𝑞𝑋 − 𝑞2𝑌 for all 𝑞 ∈ 0,1
• ⇒ 𝔼 𝑓 𝐺 ≥ 𝑞𝔼 𝑋 − 𝑞2𝔼 𝑌

Choosing values

• We have 𝔼 𝑋 = 𝑛
3
𝑝3, 𝔼 𝑌 = 𝑛

2
𝑛−2
2

𝑝5

• Calculus ⇒ optimal 𝑞 =
1

3𝑛𝑝2



Theorem 5.5.5

Let 𝑝 ≥
1

3𝑛
and let 𝐺 ∼ 𝐺 𝑛, 𝑝 . Then

ℙ 𝐾3 ⊈ 𝐺 ≤ exp −Ω 𝑛2𝑝2 .

Immeasurable Joy

Recall
• 𝐺 ∼ 𝐺 𝑛, 𝑝

• 𝑓 𝐺 = maximum number of pairwise edge-disjoint triangles in 𝐺

• Corollary 5.5.4 ⇒ if 𝑝 ≥ 1/ 3𝑛, then 𝔼 𝑓 𝐺 ≥ Ω 𝑛2𝑝

• Corollary 5.4.8 ⇒ ℙ 𝐺 triangle−free ≤ exp −𝔼 𝑓 𝐺 2/𝑛2

• Improves previous exponent when 𝑐𝑛−1/2 ≤ 𝑝 ≤ c′n



Any questions?



§6 Chromatic Number
Chapter 5: Concentration

The Probabilistic Method



Introducing the Problem

General bounds
• What makes the chromatic number large?

• 𝜒 𝐺 ≥ 𝜔 𝐺

• 𝜒 𝐺 ≥
𝑛

𝛼 𝐺

Complexity

• Determining chromatic number of graphs is NP-Complete

• Even deciding if a graph is 3-colourable is NP-Complete

Typical behaviour

• What can we say about 𝜒 𝐺 𝑛,
1

2
?



Colouring Random Graphs

Question

• What is 𝜒 𝐺 𝑛,
1

2
?

Applying general bounds

• Homework: with high probability, 𝜔 𝐺 𝑛,
1

2
∼ 2 log 𝑛

• ⇒ 𝜒 𝐺 𝑛,
1

2
≥ 2 + 𝑜 1 log𝑛

• Symmetry ⇒ 𝛼 𝐺 𝑛,
1

2
∼ 2 log 𝑛

• ⇒ 𝜒 𝐺 𝑛,
1

2
≥

1+𝑜 1 𝑛

2 log 𝑛

• Homework: will show this bound is sharp



Lemma 5.6.1

The parameter 𝜒 𝐺 is 1-vertex-Lipschitz.

Honing In

• Can we further narrow down the likely values of 𝜒 𝐺 𝑛,
1

2
?

Proof
• Let 𝑣 ∈ 𝑉 𝐺 be arbitrary, and let 𝐻 = 𝐺 𝑉 ∖ 𝑣

• Chromatic number is monotone increasing
• ⇒ 𝜒 𝐺 ≥ 𝜒 𝐻

• Can always assign 𝑣 a new colour
• ⇒ 𝜒 𝐺 ≤ 𝜒 𝐻 + 1

• ⇒ changing 𝐺 at 𝑣 can change 𝜒(𝐺) by at most one ∎



Colouring with Martingales

Proof
• Apply the vertex-exposure martingale to the parameter 𝜒 𝐺

• 𝑍𝑖 = 𝔼 𝜒 𝐺 𝐺 𝑖 − 𝔼 𝜒 𝐺 , 0 ≤ 𝑖 ≤ 𝑛

• Lemma 5.6.1: 𝜒 𝐺 is 1-vertex-Lipschitz

• Azuma’s inequality: ℙ 𝑍𝑖 ≥ 𝑎 ≤ 2exp −𝑎2/2𝑛

• If 𝑎 = 2𝑛 ln
2

𝜀
, right-hand size is 𝜀

• ⇒ can take 𝐼𝑛 = 𝜇 − 𝑎, 𝜇 + 𝑎 , where 𝜇 = 𝔼 𝐺 ∎

Theorem 5.6.2

For 𝜀 > 0 there is a constant 𝐶 = 𝐶 𝜀 such that for every 𝑛 there is an 

interval 𝐼𝑛 ⊆ 𝑛 of length 𝐶 𝑛 such that, for 𝐺 ∼ 𝐺 𝑛,
1

2
,

ℙ 𝜒 𝐺 ∉ 𝐼𝑛 ≤ 𝜀.



Reflections on our Results

Narrow window

• Previously saw that 𝜒 𝐺 ≥
1+𝑜 1 𝑛

2 log 𝑛
= 𝑛1−𝑜 1 almost surely

• ⇒ margin of error of 𝑂 𝑛 is relatively small

• Theorem doesn’t say anything about where this interval is

Sparse random graphs

• Never used that 𝐺 ∼ 𝐺 𝑛,
1

2
• Proof applies to 𝐺 ∼ 𝐺 𝑛, 𝑝 for any 𝑝 = 𝑝 𝑛

• However, result is trivial for sparse graphs

• e.g.: if 𝑝 = 𝑜
1

𝑛
, then 𝐺 is bipartite with high probability

• If 𝑝 ≤
𝑐

𝑛
, then with high probability Δ 𝐺 ≤ 𝐶 𝑛 ⇒ 𝜒 𝐺 ≤ 𝐶 𝑛 + 1



Colouring Subgraphs of Sparse Graphs

Proof
• If 𝐻 is 𝑑-degenerate, then 𝜒 𝐻 ≤ 𝑑 + 1

• ⇒ if 𝜒 𝐺 𝑆 > 3 for some 𝑆, 𝐺 𝑆 is not 2-degenerate

• ⇒ 𝐺 contains some subgraph 𝐻 with 𝑣 𝐻 ≤ 𝑐 𝑛 and 𝛿 𝐻 ≥ 3

• ⇒ 𝑒 𝐻 ≥
3

2
𝑣 𝐻

• Hence it suffices to show 𝐺 is unlikely to contain such a subgraph

Proposition 5.6.3

Fix 𝛼 >
5

6
and 𝑐 > 0. Then, if 𝑝 = 𝑛−𝛼 and 𝐺 ∼ 𝐺 𝑛, 𝑝 , with high 

probability 𝐺 has the property that, for every set 𝑆 of 𝑐 𝑛 vertices, 
𝜒 𝐺 𝑆 ≤ 3.



Subgraphs of Sparse Random Graphs are Sparse
Goal

• Every subgraph 𝐻 ⊆ 𝐺 on at most 𝑐 𝑛 vertices has at most 
3𝑣 𝐻

2
edges

Proof (cont’d)

• Number of choices for 𝑉 𝐻 : 𝑛
𝑡
≤

𝑛𝑒

𝑡

𝑡

• Number of choices of 
3𝑣 𝐻

2
edges of 𝐻:

𝑡
2
3𝑡

2

≤
𝑡
2 𝑒
3𝑡

2

3𝑡

2

≤
𝑡𝑒

3

3𝑡

2

• ⇒ ℙ ∃ bad 𝐻 on 𝑡 vertices ≤
𝑛𝑒

𝑡

𝑡 𝑡𝑒

3

3𝑡

2
𝑝
3𝑡

2 ≤ 𝑒𝑛1−3𝛼/2𝑡1/2
𝑡

• Since 𝑡 < 𝑐 𝑛, this is at most 𝑐′𝑛5/4−3𝛼/2
𝑡

• As 𝛼 >
5

6
, exponent of 𝑛 is negative

• ⇒ summing over all 𝑡, ℙ ∃ bad 𝐻 = 𝑜 1 ∎



Wow, Much Precise

Proof idea
• Enough to focus on likely values of 𝜒 𝐺

• Consider the smallest 𝑢 such that ℙ 𝜒 𝐺 ≤ 𝑢 = Ω 1

• Show that one can colour most vertices of 𝐺 with 𝑢 colours

• Use Proposition 5.6.3 for the rest

Theorem 5.6.4 (Shamir-Spencer, 1987)

Fix 𝛼 >
5

6
and set 𝑝 = 𝑛−𝛼. There is some 𝑢 = 𝑢 𝑛, 𝑝 such that if 𝐺 ∼

𝐺 𝑛, 𝑝 , then almost surely 𝑢 ≤ 𝜒 𝐺 ≤ 𝑢 + 3.



A Wise Choice of Graph Parameter

Proof
• Suffices to show that for any 𝜀 > 0, there is 𝑢 = 𝑢 𝑛, 𝑝, 𝜀 such that 
ℙ 𝑢 ≤ 𝜒 𝐺 ≤ 𝑢 + 3 ≥ 1 − 3𝜀

• Define 𝑢 = 𝑢 𝑛, 𝑝, 𝜀 to be smallest 𝑢 such that ℙ 𝜒 𝐺 ≤ 𝑢 ≥ 𝜀
• ⇒ ℙ 𝜒 𝐺 ≤ 𝑢 − 1 < 𝜀

• Now wish to show that most vertices can be 𝑢-coloured

• Define 𝑓 𝐺 = minimum size of 𝑆 ⊆ 𝑉 𝐺 such that 𝜒 𝐺 𝑉 ∖ 𝑆 ≤ 𝑢

• ℙ 𝑓 𝐺 = 0 = ℙ 𝜒 𝐺 ≤ 𝑢 ≥ 𝜀

Theorem 5.6.4

Fix 𝛼 >
5

6
and set 𝑝 = 𝑛−𝛼. There is some 𝑢 = 𝑢 𝑛, 𝑝 such that if 𝐺 ∼

𝐺 𝑛, 𝑝 , then almost surely 𝑢 ≤ 𝜒 𝐺 ≤ 𝑢 + 3.



Setting Up Azuma

Recall
• 𝑢: least integer such that ℙ 𝜒 𝐺 ≤ 𝑢 ≥ 𝜀

• 𝑓(𝐺): minimum size of 𝑆 such that 𝜒 𝐺 𝑉 ∖ 𝑆 ≤ 𝑢

Lipschitz

• Fix a vertex 𝑣 ∈ 𝑉 𝐺

• Choose a minimum set 𝑆′ whose removal from 𝐺 𝑉 ∖ 𝑣 ⇒ 𝜒 ≤ 𝑢

• Worst-case: can always take 𝑆 = 𝑆′ ∪ 𝑣

• ⇒ 𝑓 is 1-vertex-Lipschitz

Martingale

• Run the vertex-exposure martingale on 𝑓 𝐺



Completing the Proof
Recall

• 𝑓(𝐺): minimum size of 𝑆 such that 𝜒 𝐺 𝑉 ∖ 𝑆 ≤ 𝑢; let 𝜇 = 𝔼 𝑓 𝐺

• ℙ 𝑓 𝐺 = 0 ≥ 𝜀

Concentration
• Azuma’s Inequality ⇒ ℙ 𝑓 𝐺 ≤ 𝜇 − 𝑎 ≤ exp −𝑎2/2𝑛

• ⇒ 𝜀 ≤ ℙ 𝑓 𝐺 = 0 ≤ exp −𝜇2/2𝑛

• ⇒ 𝜇 ≤ 2𝑛 ln 1/𝜀

• Azuma’s Inequality ⇒ ℙ 𝑓 𝐺 ≥ 𝜇 + 𝑎 ≤ exp −𝑎2/2𝑛

• ⇒ ℙ 𝑓 𝐺 ≥ 𝜇 + 2𝑛 ln 1/𝜀 ≤ 𝜀

• ⇒ ℙ 𝑓 𝐺 ≥ 2 2𝑛 ln 1/𝜀 ≤ 𝜀

And voila
• ⇒ can remove 𝑐 𝑛 vertices and 𝑢 colour the rest

• Proposition 5.6.3 ⇒ can 3-colour removed vertices with probability 1 − 𝜀 ∎



Epilogue
Location of interval

• Again, proof only shows concentration
• Actual value of chromatic number not needed

• Concern: didn’t our choice of 𝑢 depend on 𝜀?
• Suppose 𝑢 = 𝑢(𝑛, 𝑝, 𝜀) and 𝑢′ = 𝑢 𝑛, 𝑝, 𝜀′

• We proved ℙ 𝜒 𝐺 ∈ 𝑢, 𝑢 + 3 ≥ 1 − 𝜀, ℙ 𝜒 𝐺 ∈ 𝑢′, 𝑢′ + 3 ≥ 1 − 𝜀′

• ⇒ ℙ 𝜒 𝐺 ∈ 𝑢, 𝑢 + 3 ∩ 𝑢′, 𝑢′ + 3 ≥ 1 − 𝜀 − 𝜀′

• ⇒ Different 𝑢’s give an even stronger concentration inequality

Further results

• Alon-Krivelevich (1997): if 𝛼 >
1

2
and 𝑝 = 𝑛−𝛼, there is some 𝑢 = 𝑢 𝑛, 𝑝 such 

that 𝜒 𝐺 𝑛, 𝑝 ∈ 𝑢, 𝑢 + 1 with high probability

• Heckel-Riordan (2020+): if 𝐼 ⊆ 𝑛 is an interval such that 𝜒 𝐺 𝑛, 1/2 ∈ 𝐼
with high probability, then 𝐼 = 𝑛1/2−𝑜 1



Any questions?


