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Chapter Overview

• Introduce the Erdős-Hanani Conjecture

• Prove it with the Rödl Nibble
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Lemma 5.4.1

There exists a family of 
1

3

𝑛−1
2

pairwise edge-disjoint triangles in 𝐾𝑛.

Edge-disjoint Triangles

Recall
• Bounding the probability of 𝐺 𝑛, 𝑝 being 𝐾3-free

• Restricted our attention to mutually independent events

• ⇔ edge-disjoint triangles

Larger cliques
• Can run the same argument for the probability of being 𝐾𝑘-free

• Want to find a large collection of edge-disjoint 𝑘-cliques



Definition 6.1.1 (Packings)

A (𝑘, 𝑡)-packing in [𝑛] is a family of 𝑘-sets ℱ ⊆ 𝑛
𝑘

such that every 𝑡-
set is contained in at most one member of the family.

Hypergraphs and Packings
“Graphs are for babies” - Tom Trotter, 2017

Random 𝑡-uniform hypergraph 𝐻 𝑡 𝑛, 𝑝
• Vertex set 𝑉 = 𝑛

• Edges: each 𝑡-set in 𝑛
𝑡

an edge independently with probability 𝑝

Clique containment

• Can ask for threshold for 𝐾𝑘
𝑡
⊆ 𝐻 𝑡 𝑛, 𝑝

• Upper bound on probability: use edge-disjoint hypercliques



Proposition 6.1.2

For all 𝑛 ≥ 𝑘 ≥ 𝑡, we have 𝑚 𝑛, 𝑘, 𝑡 ≤
𝑛
𝑡
𝑘
𝑡

.

An Extremal Problem

Maximum packings
• For effective bounds, want as large a packing as possible

• 𝑚 𝑛, 𝑘, 𝑡 = max ℱ ∶ ℱ is a 𝑘, 𝑡 −packing on 𝑛

Proof

• Given packing ℱ, double-count pairs (𝐹, 𝑇) with 𝐹 ∈ ℱ and 𝑇 ∈ 𝐹
𝑡

• Each 𝐹 ∈ ℱ has 𝑘
𝑡

subsets of size 𝑡 ⇒ ℱ 𝑘
𝑡

pairs

• Each 𝑡-set covered at most once ⇒ at most 𝑛
𝑡

pairs ∎



Proposition 6.1.2

For all 𝑛 ≥ 𝑘 ≥ 𝑡, we have 𝑚 𝑛, 𝑘, 𝑡 ≤
𝑛
𝑡
𝑘
𝑡

.

The Case of Equality

Remarks

• With our earlier construction, shows 
1

3

𝑛−1
2

≤ 𝑚 𝑛, 3,2 ≤
1

3

𝑛
2

• Can we do better?

• Tightness in Proposition 6.1.2: every 𝑡-set covered exactly once

Definition 6.1.3 (Designs)

A 𝑡- 𝑛, 𝑘, 1 design is a family of 𝑘-sets ℱ ⊆ 𝑛
𝑘

such that every 𝑡-set 

𝑇 ∈ 𝑛
𝑡

is contained in exactly one set 𝐹 ∈ ℱ.



The Utility of Designs

Useful objects
• Study originated in field of experiment design

Examples (𝑘 = 3, 𝑡 = 2)

Definition 6.1.3 (Designs)

A 𝑡- 𝑛, 𝑘, 1 design is a family of 𝑘-sets ℱ ⊆ 𝑛
𝑘

such that every 𝑡-set 

𝑇 ∈ 𝑛
𝑡

is contained in exactly one set 𝐹 ∈ ℱ.

𝑛 = 7 𝑛 = 9



Divisibility Restrictions

Proof

• Fix a design ℱ ⊆ 𝑛
𝑘

, and consider 𝑖 ⊆ 𝑛

• There are 𝑛−𝑖
𝑡−𝑖

𝑡-sets 𝑇 with 𝑖 ⊆ 𝑇
• Each such 𝑇 is contained in exactly one set 𝐹 ∈ ℱ

• Each such 𝐹 contains 𝑘−𝑖
𝑡−𝑖

𝑡-sets 𝑇 with 𝑖 ⊆ 𝑇

• ⇒ ℱ 𝑘−𝑖
𝑡−𝑖

= 𝑛−𝑖
𝑡−𝑖

∎

• e.g.: a 2- 𝑛, 3,1 design can only exist when 𝑛 ≡ 1,3 mod6

Proposition 6.1.4

If a 𝑡-(𝑛, 𝑘, 1) design exists, then, for every 0 ≤ 𝑖 ≤ 𝑡 − 1, 𝑛−𝑖
𝑡−𝑖

is 

divisible by 𝑘−𝑖
𝑡−𝑖

.



Conjecture 6.1.5 (Erdős-Hanani, 1963)

For fixed 𝑘 ≥ 𝑡 ≥ 1, as 𝑛 → ∞, we have

𝑚 𝑛, 𝑘, 𝑡 = 1 − 𝑜 1

𝑛
𝑡
𝑘
𝑡

.

Asymptotic Designs

Difficulties
• Probabilistic method is blind to arithmetic conditions

• Suggests designs will be hard to construct

Approximation
• How large a packing can we find?

• Can we ensure that almost all 𝑡-sets are contained in a 𝑘-set from the family?



Definition 6.1.6 (Coverings)

A 𝑘, 𝑡 -covering of 𝑛 is a family of 𝑘-sets ℱ ⊆ 𝑛
𝑘

such that every 𝑡-

set 𝑇 ∈ 𝑛
𝑡

is contained in at least one set 𝐹 ∈ ℱ. The size of the 
smallest 𝑘, 𝑡 -covering of 𝑛 is denoted by 𝑀 𝑛, 𝑘, 𝑡 .

A Dual Problem

Types of set families
• 𝑘, 𝑡 -packings: 𝑘-sets that cover every 𝑡-set at most once

• 𝑡-(𝑛, 𝑘, 1) designs: 𝑘-sets that cover every 𝑡-set exactly once

Proposition 6.1.7

For all 𝑛 ≥ 𝑘 ≥ 𝑡, we have 𝑀 𝑛, 𝑘, 𝑡 ≥
𝑛
𝑡
𝑘
𝑡

. 



Asymptotic Packings and Coverings

Proof ⇒

• Let ℱ be a 𝑘, 𝑡 -packing of size 1 − o 1
𝑛
𝑡
𝑘
𝑡

• Then ℱ covers ℱ 𝑘
𝑡
= 1 − 𝑜 1 𝑛

𝑡
of the 𝑡-sets

• Form a cover ℱ′ by adding a 𝑘-set covering each uncovered 𝑡-set

• ℱ′ = 1 − 𝑜 1
𝑛
𝑡
𝑘
𝑡

+ 𝑜 1 𝑛
𝑡
= 1 + 𝑜 1

𝑛
𝑡
𝑘
𝑡

∎

Proposition 6.1.8

For fixed 𝑘 ≥ 𝑡, we have

lim
𝑛→∞

𝑚 𝑛, 𝑘, 𝑡 𝑘
𝑡

𝑛
𝑡

= 1 ⇔ lim
𝑛→∞

𝑀 𝑛, 𝑘, 𝑡 𝑘
𝑡

𝑛
𝑡

= 1.



Asymptotic Packings and Coverings

Proof ⇐

• Let ℱ be a 𝑘, 𝑡 -covering of size 1 + o 1
𝑛
𝑡
𝑘
𝑡

• For each 𝑡-set 𝑇, let 𝑑𝑇 = 𝐹 ∈ ℱ: 𝑇 ⊆ 𝐹 be its degree in ℱ
• Form a 𝑘, 𝑡 -packing ℱ′ by deleting for each 𝑡-set 𝑇 any excess covering sets

• # deleted sets ≤ σ𝑇 𝑑𝑇 − 1 = σ𝑇 𝑑𝑇 − 𝑛
𝑡
= 𝑘

𝑡
ℱ − 𝑛

𝑡
= 𝑜 𝑛

𝑡

• ⇒ ℱ′ = 1 − 𝑜 1
𝑛
𝑡
𝑘
𝑡

∎

Proposition 6.1.8

For fixed 𝑘 ≥ 𝑡, we have

lim
𝑛→∞

𝑚 𝑛, 𝑘, 𝑡 𝑘
𝑡

𝑛
𝑡

= 1 ⇔ lim
𝑛→∞

𝑀 𝑛, 𝑘, 𝑡 𝑘
𝑡

𝑛
𝑡

= 1.



The Random Hypergraph

• Does 𝐻 𝑘 (𝑛, 𝑝) form a good cover?

Covering sets

• A fixed 𝑡-set 𝑇 ∈ 𝑛
𝑡

is contained in 𝑛−𝑡
𝑘−𝑡

sets of size 𝑘

• ⇒ ℙ 𝑇 uncovered by 𝐻 𝑘 𝑛, 𝑝 = 1 − 𝑝
𝑛−𝑡
𝑘−𝑡 ≥ exp −2𝑝 𝑛−𝑡

𝑘−𝑡

• ⇒ 𝔼 # uncovered 𝑡−sets ≥ 𝑛
𝑡
exp −2𝑝 𝑛−𝑡

𝑘−𝑡

• ⇒ to cover all 𝑡-sets, need 𝑝 = Ω
log 𝑛

𝑡
𝑛−𝑡
𝑘−𝑡

Size of cover

• 𝐻 𝑘 𝑛, 𝑝 ~Bin 𝑛
𝑘
, 𝑝

• ⇒ with high probability, size of cover = Ω
𝑛
𝑘 log 𝑛

𝑡
𝑛−𝑡
𝑘−𝑡

= Ω
𝑛
𝑡 log 𝑛

𝑡
𝑘
𝑡



Corollary 6.1.9

For 𝑘 ≥ 𝑡, we have 
𝑛
𝑡
𝑘
𝑡

≤ 𝑀 𝑛, 𝑘, 𝑡 = 𝑂 log 𝑛
𝑡

𝑛
𝑡
𝑘
𝑡

.

Summary So Far

Lower bound

• Double counting: each 𝑘-set covers only 𝑘
𝑡

of the 𝑛
𝑡
𝑡-sets

Upper bound
• Random hypergraph 𝐻 𝑘 𝑛, 𝑝 of appropriate density

Conjecture 6.1.5’ (Erdős-Hanani, 1963)

For fixed 𝑘 ≥ 𝑡, as 𝑛 → ∞, we have 𝑀 𝑛, 𝑘, 𝑡 = 1 + 𝑜 1
𝑛
𝑡
𝑘
𝑡

.



Any questions?



§2 The Nibble
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Conjecture 6.1.5’ (Erdős-Hanani, 1963)

For fixed 𝑘 ≥ 𝑡, as 𝑛 → ∞, we have 𝑀 𝑛, 𝑘, 𝑡 = 1 + 𝑜 1
𝑛
𝑡
𝑘
𝑡

.

Rödl to the Rescue

Generalisation
• Rödl’s objective was to prove the Erdős-Hanani Conjecture

• His method, the Rödl Nibble, applies in more general settings

• We shall see a generalisation due to Pippinger (1989)

Theorem 6.2.1 (Rödl, 1985)

The Erdős-Hanani Conjecture is true.



Hypergraph Covers

Remarks
• A cover of 𝐻 is an 𝑛, 𝑟, 1 -covering, whose sets are edges of 𝐻

• Each cover must contain at least 
𝑛

𝑟
edges

• Trivial to find covers of this size when 𝐻 = 𝐾𝑛
𝑟

• Take a maximum matching

• If needed, add one edge with remaining vertices

• Can we guarantee small covers in sparser hypergraphs?

Definition 6.2.2 (Cover)

Let 𝐻 = 𝑉, 𝐸 be an 𝑟-uniform 𝑛-vertex hypergraph without isolated 
vertices. A cover of 𝐻 is a collection of edges ℱ ⊆ 𝐸(𝐻) that covers all 
the vertices; that is, ∪𝑒∈ℱ 𝑒 = 𝑉 𝐻 .



Pippinger’s Theorem

Theorem 6.2.3 (Pippinger, 1989)

For every 𝑟 ≥ 2 and large enough 𝐷 ∈ ℕ, any 𝑟-uniform 𝑛-vertex 
hypergraph 𝐻 without isolated vertices that satisfies the following 
conditions:

1. Almost all vertices have degree approximately 𝐷,

2. All vertices have degree 𝑂 𝐷 ,

3. Every pair of vertices have 𝑜 𝐷 common edges,

has a cover of size 1 + 𝑜 1
𝑛

𝑟
.



A Non-example

• Bounded degrees and co-degrees are necessary

Construction

• Consider a star – all edges containing some fixed vertex 𝑣0
• Almost all vertices have degree 𝑛−2

𝑟−2

• But deg 𝑣0 =
𝑛−1
𝑟−1

≫ 𝑛−2
𝑟−2

• Most pairs of vertices have co-degree 𝑛−3
𝑟−3

• However, 𝑣0 and any other vertex have co-degree 𝑛−2
𝑟−2

Large covers

• Each edge covers 𝑟 − 1 vertices from 𝑉 𝐻 ∖ 𝑣0
• ⇒ each cover has size at least 

𝑛−1

𝑟−1
≈ 1 +

1

𝑟−1

𝑛

𝑟



Pippenger’s Precise Theorem

Theorem 6.2.3 (Pippinger, 1989)

For every integer 𝑟 ≥ 2 and reals 𝜅 ≥ 1 and 𝛼 > 0, there are 𝛾 =
𝛾 𝑟, 𝜅, 𝛼 > 0 and 𝐷0 = 𝐷0(𝑟, 𝜅, 𝛼) such that for every 𝑛 ≥ 𝐷 ≥ 𝐷0, 
any 𝑟-uniform 𝑛-vertex hypergraph 𝐻 without isolated vertices that 
satisfies the following conditions:

1. All but at most 𝛾𝑛 vertices have degree 1 ± 𝛾 𝐷,

2. All vertices have degree at most 𝜅𝐷,

3. Every pair of vertices have co-degree at most 𝛾𝐷,

has a cover of size at most 1 + 𝛼
𝑛

𝑟
.



Small Coverings

Proof

• Build an auxiliary 𝑟-graph 𝐻, for 𝑟 ≔ 𝑘
𝑡

• 𝑉 𝐻 = 𝑛
𝑡

and 𝐸 𝐻 = 𝐹
𝑡
: 𝐹 ∈ 𝑛

𝑘

• Cover of 𝐻 ↔ (𝑘, 𝑡)-covering of 𝑛

• Hypergraph is 𝐷-regular for 𝐷 ≔ 𝑛−𝑡
𝑘−𝑡

⇒ 𝜅 = 1

• Co-degrees are at most 𝑛− 𝑡+1
𝑘− 𝑡+1

=
𝑘−𝑡

𝑛−𝑡
𝐷 ≤ 𝛾𝐷 when 𝑛 is large

• Satisfy Pippinger’s conditions for any 𝛼

• ⇒ cover (hence covering) of size at most 1 + 𝛼
𝑛
𝑡
𝑘
𝑡

∎

Conjecture 6.1.5’ (Erdős-Hanani, 1963)

For fixed 𝑘 ≥ 𝑡, as 𝑛 → ∞, we have 𝑀 𝑛, 𝑘, 𝑡 = 1 + 𝑜 1
𝑛
𝑡
𝑘
𝑡

.



Proving Pippinger
“There is only one way to eat an elephant, a bite at a time.”

– Desmond Tutu

The failure of randomness
• Cover some vertices several times before covering others

• Fix: prevent the random process from doing so
• Remove covered vertices from consideration

An iterative approach

• Choose a small number of edges at random
• Hope that they are mostly disjoint

• Remove the covered vertices from the hypergraph
• Hope that the remaining edges are still well-distributed

• Repeat until everything is covered



One Step at a Time
Lemma 6.2.4

For every integer 𝑟 ≥ 2 and reals 𝜆 ≥ 1, 𝜀 > 0 and 𝛿′ > 0, there are 𝛿 =
𝛿 𝑟, 𝜆, 𝜀, 𝛿′ and 𝐷0 = 𝐷0 𝑟, 𝜆, 𝜀, 𝛿′ such that, for every 𝑛 ≥ 𝐷 ≥ 𝐷0, every 
𝑟-uniform 𝑛-vertex hypergraph 𝐻 = 𝑉, 𝐸 satisfying

1. For all vertices 𝑣 ∈ 𝑉 except at most 𝛿𝑛, deg 𝑣 = 1 ± 𝛿 𝐷,

2. For all vertices 𝑣 ∈ 𝑉, deg 𝑣 < 𝜆𝐷, and

3. For any pair of vertices 𝑢, 𝑣 ∈ 𝑉, deg 𝑢, 𝑣 < 𝛿𝐷,

has a set 𝐸′ of edges with the properties

a. 𝐸′ = 1 ± 𝛿′
𝜀𝑛

𝑟
,

b. for 𝑉′ = 𝑉 ∖ ∪𝑒∈𝐸′ 𝑒 we have 𝑉′ = 1 ± 𝛿′ 𝑛𝑒−𝜀, and

c. For all but at most 𝛿′ 𝑉′ vertices 𝑣 ∈ 𝑉′, the degree of 𝑣 in 𝐻 𝑉′ is 
1 ± 𝛿′ 𝐷𝑒−𝜀 𝑟−1 .



Using the Lemma
Plan of attack

• Start with original hypergraph 𝐻0 = 𝐻 on vertex set 𝑉0 = V

• Given a hypergraph 𝐻𝑖, apply Lemma 6.2.4 to obtain a set of edges 𝐸𝑖
• Let 𝑉𝑖+1 = 𝑉𝑖 ∖ ∪𝑒∈𝐸𝑖 𝑒 be the uncovered vertices

• 𝐻𝑖+1 = 𝐻 𝑉𝑖+1 the induced hypergraph

• Once 𝑉𝑡 is sufficiently small, cover each remaining vertex greedily
• ⇒ total size of cover is 𝑉𝑡 + σ𝑖<𝑡 𝐸𝑖

Parameters

• With every application of the lemma, control over the distribution worsens

• Initial distribution of edges very good ⇒ lemma can be used throughout
• Work backwards to determine what is needed



Evolution of Parameters
Before applying the lemma

• 𝑛 vertices, all but 𝛿𝑛 have degree 1 ± 𝛿 𝐷

• Maximum degree < 𝜆𝐷

• Maximum codegree < 𝛿𝐷

After applying the lemma

• 1 ± 𝛿′ 𝑛𝑒−𝜀 vertices, all but 𝛿′ proportion have degree 1 ± 𝛿′ 𝐷𝑒−𝜀 𝑟−1

• Maximum degree < 𝜆𝐷, maximum codegree < 𝛿𝐷

Change of parameters

• 𝐷𝑖+1 ≔ 𝐷𝑖𝑒
−𝜀 𝑟−1

• ⇒ 𝜆𝑖+1 ≔ 𝜆𝑖𝑒
𝜀 𝑟−1 , 𝛿𝑖+1 ≥ 𝛿𝑖𝑒

𝜀 𝑟−1

• Need 𝛿𝑖 ≤ 𝛿 𝑟, 𝜆𝑖 , 𝜀, 𝛿𝑖+1 to apply lemma



Size of Vertex and Edge Sets
Vertex sets

• By Lemma 6.2.4, 𝑉𝑖 ≤ 1 + 𝛿𝑖 𝑉𝑖−1 𝑒
−ε

• ⇒ 𝑉𝑖 ≤ ς𝑗=1
𝑖 1 + 𝛿𝑗 𝑛𝑒−𝑖𝜀 ≤ 1 + σ𝑗=1

𝑖 𝛿𝑗 𝑛𝑒−𝑖𝜀

• By growing the 𝛿𝑖 fast enough, can ensure σ𝑗=1
𝑖 𝛿𝑗 ≤ 2𝛿𝑡

Edge sets

• Lemma 6.2.4: 𝐸𝑖 ≤ 1 + 𝛿𝑖+1
𝜀 𝑉𝑖

𝑟

≤ 1 + 𝛿𝑖+1 1 + 2𝛿𝑡
𝜀𝑛𝑒−𝑖𝜀

𝑟

≤ 1 + 4𝛿𝑡
𝜀𝑛𝑒−𝑖𝜀

𝑟



Size of the Cover
Recall

• 𝑉𝑖 ≤ 1 + 2𝛿𝑡 𝑛𝑒
−𝑖𝜀 and 𝐸𝑖 ≤ 1 + 4𝛿𝑡

𝜀𝑛𝑒−𝑖𝜀

𝑟

Total size of cover

• 𝑉𝑡 + σ𝑖=0
𝑡−1 𝐸𝑖 ≤ 1 + 2𝛿𝑡 𝑛𝑒

−𝑡𝜀 + 1 + 4𝛿𝑡
𝜀𝑛

𝑟
σ𝑖=0
𝑡−1 𝑒−𝑖𝜀

≤ 1 + 4𝛿𝑡 𝑟𝑒−𝑡𝜀 +
𝜀

1−𝑒−𝜀
𝑛

𝑟

• Choosing 𝑡 large, can ensure 𝑟𝑒−𝑡𝜀 ≤ 𝜀

• 1 − 𝑒−𝜀 ≥ 1 − 1 − 𝜀 +
1

2
𝜀2 = 𝜀 1 −

1

2
𝜀

• ⇒
𝜀

1−𝑒−𝜀
≤

1

1−
1

2
𝜀
≤ 1 + 𝜀

• ⇒ cover has size at most 1 + 4𝛿𝑡 1 + 2𝜀
𝑛

𝑟

• By choosing 𝜀, 𝛿𝑡 sufficiently small, we can ensure this is at most 1 + 𝛼
𝑛

𝑟



Piecing It Together

Proof
• Choose 𝜀, 𝛿 so that 1 + 4𝛿 1 + 2𝜀 < 1 + 𝛼, and 𝑡 so that 𝑟𝑒−𝑡𝜀 ≤ 𝜀

• Set 𝜆𝑖 ≔ 𝜅𝑒𝑖𝜀 𝑟−1 and 𝐷𝑖 ≔ 𝐷𝑒−𝑖𝜀 𝑟−1 for each 0 ≤ 𝑖 ≤ 𝑡

• Set 𝛿𝑡 ≔ 𝛿, and, for 𝑖 = 𝑡 − 1, 𝑡 − 2,… , 0, choose 𝛿𝑖 such that

• 𝛿𝑖 ≤ 𝛿 𝑟, 𝜆𝑖 , 𝜀, 𝛿𝑖+1 from Lemma 6.2.4, 𝛿𝑖 ≤ 𝑒−𝜀 𝑟−1 𝛿𝑖+1 and 𝛿𝑖 ≤
1

2
𝛿𝑖+1

• Set 𝛾 ≔ 𝛿0 and 𝐷0 such that 𝐷𝑖 ≔ 𝐷0𝑒
−𝑖𝜀 𝑟−1 ≥ 𝐷 𝑟, 𝜆𝑖 , 𝜀, 𝛿𝑖+1 for all 𝑖

• We can then iterate the lemma 𝑡 times, giving the small cover ∎

Theorem 6.2.3 (Pippinger, 1989)

For every integer 𝑟 ≥ 2 and reals 𝜅 ≥ 1 and 𝛼 > 0, there are 𝛾 =
𝛾 𝑟, 𝜅, 𝛼 > 0 and 𝐷0 = 𝐷0(𝑟, 𝜅, 𝛼) such that for every 𝑛 ≥ 𝐷 ≥ 𝐷0, 
any 𝑟-uniform 𝑛-vertex hypergraph 𝐻 with well-distributed edges has a 
cover of size at most 1 + 𝛼

𝑛

𝑟
.



Any questions?



§3 The Lemma
Chapter 6: The Rödl Nibble

The Probabilistic Method



Recalling the Statement
Lemma 6.2.4

For every integer 𝑟 ≥ 2 and reals 𝜆 ≥ 1, 𝜀 > 0 and 𝛿′ > 0, there are 𝛿 =
𝛿 𝑟, 𝜆, 𝜀, 𝛿′ and 𝐷0 = 𝐷0 𝑟, 𝜆, 𝜀, 𝛿′ such that, for every 𝑛 ≥ 𝐷 ≥ 𝐷0, every 
𝑟-uniform 𝑛-vertex hypergraph 𝐻 = 𝑉, 𝐸 satisfying

1. For all vertices 𝑣 ∈ 𝑉 except at most 𝛿𝑛, deg 𝑣 = 1 ± 𝛿 𝐷,

2. For all vertices 𝑣 ∈ 𝑉, deg 𝑣 < 𝜆𝐷, and

3. For any pair of vertices 𝑢, 𝑣 ∈ 𝑉, deg 𝑢, 𝑣 < 𝛿𝐷,

has a set 𝐸′ of edges with the properties

a. 𝐸′ = 1 ± 𝛿′
𝜀𝑛

𝑟
,

b. for 𝑉′ = 𝑉 ∖ ∪𝑒∈𝐸′ 𝑒 we have 𝑉′ = 1 ± 𝛿′ 𝑛𝑒−𝜀, and

c. For all but at most 𝛿′ 𝑉′ vertices 𝑣 ∈ 𝑉′, the degree of 𝑣 in 𝐻 𝑉′ is 
1 ± 𝛿′ 𝐷𝑒−𝜀 𝑟−1 .



Proof Strategy

Selection of edges
• Select each edge to be in 𝐸′ independently at random

Analysis

• Estimate 𝐸′ , ℙ 𝑣 ∈ 𝑉′ and ℙ 𝑒 ∈ 𝐻 𝑉′

• Concentration inequalities ⇒ hypergraph statistics close to expectations

• Quantifying over vertices
• Polynomial concentration suffices

• Can use Chebyshev’s Inequality



Proof of Lemma, Part a

Proof

• Select each edge to be in 𝐸′ independently with probability 𝑝 =
𝜀

𝐷

• ⇒ 𝐸′ ∼ Bin 𝑒 𝐻 , 𝑝

• Handshake Lemma ⇒ 𝑒 𝐻 =
1

𝑟
σ𝑣 deg 𝑣

• Sum of degrees
• At least 1 − 𝛿 𝑛 ⋅ 1 − 𝛿 𝐷 + 𝛿𝑛 ⋅ 0 = 1 − 𝛿 2𝑛𝐷 ≥ 1 − 2𝛿 𝑛𝐷

• At most 1 − 𝛿 𝑛 ⋅ 1 + 𝛿 𝐷 + 𝛿𝑛 ⋅ 𝜆𝐷 = 1 − 𝛿2 + 𝛿𝜆 𝑛𝐷

• ⇒ 𝑒 𝐻 = 1 ± 𝛿1
𝑛𝐷

𝑟
for some 𝛿1 = 𝛿1 𝛿, 𝜆 → 0 as 𝛿 → 0

Lemma 6.2.4.a

a. 𝐸′ = 1 ± 𝛿′
𝜀𝑛

𝑟



Proof of Lemma, Part a

Proof (cont’d)
• Recall

• Each edge selected with probability 𝑝 =
𝜀

𝐷

• 𝑒 𝐻 = 1 ± 𝛿1
𝑛𝐷

𝑟

• ⇒ 𝔼 𝐸′ = 𝑒 𝐻 𝑝 = 1 ± 𝛿1
𝜀𝑛

𝑟

• Var 𝐸′ = 𝑒 𝐻 𝑝 1 − 𝑝 ≤ 𝔼 𝐸′ = 𝑜 𝔼 𝐸′ 2

• ∴ Chebyshev ⇒ with high probability, 𝐸′ = 1 ± 2𝛿1
𝜀𝑛

𝑟
∎

Lemma 6.2.4.a

𝐸′ = 1 ± 𝛿′
𝜀𝑛

𝑟
. 



Proof of Lemma, Part b

Proof
• 𝑉′ = σ𝑣∈𝑉 1 𝑣∈𝑉′

• 𝔼 1 𝑣∈𝑉′ = ℙ 𝑣 ∈ 𝑉′ = 1 − 𝑝 deg 𝑣

• When deg 𝑣 = 1 ± 𝛿 𝐷:

• 𝔼 1 𝑣∈𝑉′ = 1 −
𝜀

𝐷

1±𝛿 𝐷
= 1 ± 𝛿2 𝑒−𝜀 for some 𝛿2 = 𝛿2 𝜀, 𝛿 → 0 and 𝐷 large

• At most 𝛿𝑛 exceptional vertices, for which 0 ≤ 𝔼 1 𝑣∈𝑉′ ≤ 1

• ⇒ 𝔼 𝑉′ = 1 ± 𝛿3 𝑛𝑒−𝜀 for some 𝛿3 = 𝛿3 𝜀, 𝛿 → 0

Lemma 6.2.4.b

For 𝑉′ = 𝑉 ∖ ∪𝑒∈𝐸′ 𝑒 we have 𝑉′ = 1 ± 𝛿′ 𝑛𝑒−𝜀.



Proof of Lemma, Part b

Proof (cont’d)

• Var 𝑉′ = σ𝑣∈𝑉 Var 1 𝑣∈𝑉′ +σ𝑢≠𝑣 Cov 1 𝑢∈𝑉′ , 1 𝑣∈𝑉′

• σ𝑣∈𝑉 Var 1 𝑣∈𝑉′ ≤ σ𝑣∈𝑉𝔼 1 𝑣∈𝑉′ = 𝔼 𝑉′

• Cov 1 𝑢∈𝑉′ , 1 𝑣∈𝑉′ = 𝔼 1 𝑢∈𝑉′ 1 𝑣∈𝑉′ − 𝔼 1 𝑢∈𝑉′ 𝔼 1 𝑣∈𝑉′

= 1 − 𝑝 deg 𝑢 +deg 𝑣 −deg 𝑢,𝑣 − 1 − 𝑝 deg 𝑢 +deg 𝑣

≤ 1 − 𝑝 − deg 𝑢,𝑣 − 1 ≤ 1 −
𝜀

𝐷

−𝛿𝐷
− 1

• ⇒ Cov 1 𝑢∈𝑉′ , 1 𝑣∈𝑉′ ≤ 𝛿4 for some 𝛿4 = 𝛿4 𝜀, 𝛿 → 0

Lemma 6.2.4.b

For 𝑉′ = 𝑉 ∖ ∪𝑒∈𝐸′ 𝑒 we have 𝑉′ = 1 ± 𝛿′ 𝑛𝑒−𝜀.



Proof of Lemma, Part b

Proof (cont’d)
• Recall

• 𝔼 𝑉′ = 1 ± 𝛿3 𝑛𝑒−𝜀

• Cov 1 𝑢∈𝑉′ , 1 𝑣∈𝑉′ ≤ 𝛿4

• ⇒ Var 𝑉′ ≤ 𝔼 𝑉′ + 𝛿4𝑛
2 ≤ 2𝛿4𝑛

2

• Chebyshev: ℙ 𝑉′ ≠ 1 ± 𝛿5 𝑛𝑒−𝜀 ≤
2𝛿4𝑛

2

𝛿5−𝛿3
2𝑛2𝑒−2𝜀

• This can be made arbitrarily small for appropriate choice of 𝛿5 → 0 ∎

Lemma 6.2.4.b

For 𝑉′ = 𝑉 ∖ ∪𝑒∈𝐸′ 𝑒 we have 𝑉′ = 1 ± 𝛿′ 𝑛𝑒−𝜀.



Proof of Lemma, Part c

Proof (outline)
• Fix a vertex 𝑣 ∈ 𝑉, and condition on 𝑣 ∈ 𝑉′

• Need to study how many edges 𝑒 ∋ 𝑣 survive in 𝐻 𝑉′

• Edge 𝑒 survives if and only if 𝑢 ∈ 𝑉′ for all 𝑢 ∈ 𝑒

• We have good control over vertices of degree 1 ± 𝛿 𝐷
• ⇒ can control edges whose vertices are all of typical degree

• Call such edges good, and bad otherwise

• ⇒ can control deg 𝑣 if most edges 𝑒 ∋ 𝑣 are good

• Shall show that degree conditions ⇒ most vertices are mostly in good edges

Lemma 6.2.4.c

For all but at most 𝛿′ 𝑉′ vertices 𝑣 ∈ 𝑉′, the degree of 𝑣 in 𝐻 𝑉′ is 
1 ± 𝛿′ 𝐷𝑒−𝜀 𝑟−1 .



Good Edges

Proof of i.
• At most 𝛿𝑛 vertices have deg 𝑣 ≠ 1 ± 𝛿 𝐷

• ⇒ there are at most 𝛿𝑛 ⋅ 𝜆𝐷 bad edges.

• ⇒ at most 
𝛿𝜆𝑛𝐷

𝛿6𝐷
vertices can be in more than 𝛿6𝐷 bad edges

• For a suitable choice of 𝛿6 → 0, this is less than 𝛿6 − 𝛿 𝑛 ∎

Claim 6.3.1

There is some 𝛿6 → 0 such that:

i. all but at most 𝛿6𝑛 vertices have deg 𝑣 = 1 ± 𝛿6 𝐷, and are in 
at most 𝛿6𝐷 bad edges.

ii. if an edge 𝑒 is good, then given some 𝑣 ∈ 𝑒, we have
𝑓 ∈ 𝐸: 𝑣 ∉ 𝑓, 𝑓 ∩ 𝑒 ≠ ∅ = 1 ± 𝛿6 𝑟 − 1 𝐷.



Good Edges

Proof of ii.
• 𝑒 good ⇒ for the 𝑟 − 1 vertices 𝑢 ∈ 𝑒, 𝑢 ≠ 𝑣, we have deg 𝑢 = 1 ± 𝛿 𝐷

• ⇒ 𝑓 ∈ 𝐸: 𝑣 ∉ 𝑓, 𝑓 ∩ 𝑒 ≠ ∅ ≤ 1 + 𝛿 𝑟 − 1 𝐷

• Overcounted: edges 𝑓 that meet two vertices of 𝑒
• Co-degree bound ⇒ at most 𝑟

2
𝛿𝐷 such edges

• ⇒ 𝑓 ∈ 𝐸: 𝑣 ∉ 𝑓, 𝑓 ∩ 𝑒 ≠ ∅ ≥ 1 − 𝛿 𝑟 − 1 𝐷 − 𝑟
2
𝛿𝐷 ∎

Claim 6.3.1

There is some 𝛿6 → 0 such that:

i. all but at most 𝛿6𝑛 vertices have deg 𝑣 = 1 ± 𝛿6 𝐷, and are in 
at most 𝛿6𝐷 bad edges.

ii. if an edge 𝑒 is good, then given some 𝑣 ∈ 𝑒, we have
𝑓 ∈ 𝐸: 𝑣 ∉ 𝑓, 𝑓 ∩ 𝑒 ≠ ∅ = 1 ± 𝛿6 𝑟 − 1 𝐷.



Survival of Good Edges

Proof
• 𝑣 ∈ 𝑉′ ⇒ no edge containing 𝑣 was selected in 𝐸′

• 𝑒 ⊆ 𝑉′ ⇒ every 𝑢 ∈ 𝑒 is also in 𝑉′

• ⇒ no edge 𝑓 ∈ 𝐸 with 𝑓 ∩ 𝑒 ≠ ∅ is selected in 𝐸′

• By assumption, this is true for every 𝑓 ∋ 𝑣
• ⇒ need only consider 𝑓 ∈ 𝐸: 𝑣 ∉ 𝑓, 𝑓 ∩ 𝑒 ≠ ∅

• Claim 6.3.1.ii ⇒ there are 1 ± 𝛿6 𝑟 − 1 𝐷 such edges

• Probability none are selected in 𝐸′ is 1 − 𝑝 1±𝛿6 𝑟−1 𝐷

• 𝑝 =
𝜀

𝐷
⇒ this is 1 ± 𝛿7 𝑒−𝜀 𝑟−1 ∎

Claim 6.3.2

There is some 𝛿7 → 0 such that, if we condition on 𝑣 ∈ 𝑉′, and 𝑒 is a 
good edge containing 𝑣, then ℙ 𝑒 ⊆ 𝑉′ = 1 ± 𝛿7 𝑒−𝜀 𝑟−1 .



Expected Degrees

Proof
• For each edge 𝑒 ∈ 𝐸, let 1𝑒 be the indicator for the event 𝑒 ⊆ 𝑉′

• ⇒ degree of 𝑣 in 𝐻 𝑉′ is σ𝑒∋𝑣 1𝑒
• At most 𝛿6𝐷 bad edges containing 𝑣

• deg′ 𝑣 = σ𝑒∋𝑣,𝑒 good1𝑒 ± 𝛿6𝐷

• Number of good edges containing 𝑣 is 1 ± 𝛿 ± 𝛿6 𝐷

• Claim 6.3.2 ⇒ 𝔼 1𝑒 = 1 ± 𝛿7 𝑒−𝜀 𝑟−1 for every good 𝑒 ∋ 𝑣

• ⇒ 𝔼 deg′ 𝑣 = 1 ± 𝛿 ± 𝛿6 1 ± 𝛿7 𝐷𝑒−𝜀 𝑟−1 ± 𝛿6𝐷 ∎

Claim 6.3.3

There is some 𝛿8 → 0 such that, if 𝑣 is a vertex as in Claim 6.3.1.i and 
we condition on 𝑣 ∈ 𝑉′, then the expected degree deg′ 𝑣 of 𝑣 in 
𝐻 𝑉′ is 1 ± 𝛿8 𝐷𝑒−𝜀 𝑟−1 .



Variance in Degrees

Proof
• As usual, Var deg′ 𝑣 ≤ 𝔼 deg′ 𝑣 + σ𝑣∈𝑒,𝑓;𝑒≠𝑓 Cov 1𝑒, 1𝑓
• Contribution to sum from bad edges is at most 𝛿6 1 + 𝛿 𝐷2

• Fix good 𝑒 ∋ 𝑣, and estimate σ𝑓 good:𝑣∈𝑓≠𝑒 Cov 1𝑒, 1𝑓
• Let 𝑇 𝑒 = ℎ ∈ 𝐸: 𝑣 ∉ ℎ, 𝑣 ∩ 𝑒 ≠ ∅ , and let 𝑡 𝑒, 𝑓 = 𝑇 𝑒 ∩ 𝑇 𝑓

• Cov 1𝑒, 1𝑓 = 𝔼 1𝑒1𝑓 − 𝔼 1𝑒 𝔼 1𝑓
= 1 − 𝑝 𝑇 𝑒 ∪𝑇 𝑓 − 1 − 𝑝 𝑇 𝑒 + 𝑇 𝑓

≤ 1 − 𝑝 −𝑡 𝑒,𝑓 − 1

Claim 6.3.4

There is some 𝛿9 → 0 such that, if 𝑣 is a vertex as in Claim 6.3.1.i and 
we condition on 𝑣 ∈ 𝑉′, then Var deg′ 𝑣 ≤ 𝛿9𝐷

2.



Variance in Degrees

Proof (cont’d)
• Recall

• 𝑇 𝑒 = ℎ ∈ 𝐸: 𝑣 ∉ ℎ, 𝑣 ∩ 𝑒 ≠ ∅ and 𝑡 𝑒, 𝑓 = 𝑇 𝑒 ∩ 𝑇 𝑓

• Cov 1𝑒 , 1𝑓 ≤ 1 − 𝑝 −𝑡 𝑒,𝑓 − 1

• For each 𝑢 ∈ 𝑒, deg 𝑢, 𝑣 ≤ 𝛿𝐷
• ⇒ at most 𝑟 − 1 𝛿𝐷 edges 𝑓 with 𝑒 ∩ 𝑓 ≥ 2

• Otherwise 𝑒 ∩ 𝑓 = 𝑣
• ⇒ for all ℎ ∈ 𝑇 𝑒 ∩ 𝑇 𝑓 there are 𝑢 ∈ 𝑒 ∖ 𝑣 , 𝑢′ ∈ 𝑓 ∖ 𝑣 with 𝑢, 𝑢′ ∈ ℎ

• ⇒ 𝑡 𝑒, 𝑓 ≤ 𝑟 − 1 2𝛿𝐷

• ⇒ Cov 1𝑒 , 1𝑓 ≤ 1 −
𝜀

𝐷

− 𝑟−1 2𝛿𝐷
− 1 ≤ 𝑟2𝜀𝛿

Claim 6.3.4

There is some 𝛿9 → 0 such that, if 𝑣 is a vertex as in Claim 6.3.1.i and 
we condition on 𝑣 ∈ 𝑉′, then Var deg′ 𝑣 ≤ 𝛿9𝐷

2.



Variance in Degrees

Proof (cont’d)
• Var deg′ 𝑣 ≤ 2𝛿6𝐷

2 +σ𝑣∈𝑒,𝑒 goodσ𝑣∈𝑓,𝑓 good Cov 1𝑒, 1𝑓

≤ 2𝛿6𝐷
2 + σ𝑣∈𝑒,𝑒 good 𝑟 − 1 𝛿𝐷 + σ𝑓 good,𝑓∩𝑒= 𝑣 Cov 1𝑒, 1𝑓

≤ 2𝛿6𝐷
2 + σ𝑣∈𝑒,𝑒 good 𝑟 − 1 𝛿𝐷 + σ𝑓 good,𝑓∩𝑒= 𝑣 𝑟2𝜀𝛿

≤ 2𝛿6𝐷
2 + 1 + 𝛿 𝐷 ⋅ 𝑟 − 1 𝛿𝐷 + 1 + 𝛿 𝐷 ⋅ 𝑟2𝜀𝛿

• For appropriate 𝛿9 → 0, this is at most 𝛿9𝐷
2 ∎

Claim 6.3.4

There is some 𝛿9 → 0 such that, if 𝑣 is a vertex as in Claim 6.3.1.i and 
we condition on 𝑣 ∈ 𝑉′, then Var deg′ 𝑣 ≤ 𝛿9𝐷

2.



Completing the Proof

Proof
• All but at most 𝛿6𝑛 vertices are as in Claim 6.3.1.i; can ignore the rest

• For such a vertex 𝑣, conditioning on 𝑣 ∈ 𝑉′:
• Claim 6.3.3: 𝔼 deg′ 𝑣 = 1 ± 𝛿8 𝐷𝑒−𝜀 𝑟−1

• Claim 6.3.4: Var deg′ 𝑣 ≤ 𝛿9𝐷
2

• Chebyshev: for some 𝛿10 → 0, ℙ deg 𝑣 ≠ 1 ± 𝛿10 𝐷𝑒−𝜀 𝑟−1 ≤ 𝛿6
• Markov: the probability of having more than 2𝛿6 𝑉

′ such vertices in 𝑉′

whose degree is not 1 ± 𝛿10 𝐷𝑒−𝜀 𝑟−1 is less than 
1

2
∎

Lemma 6.2.4.c

For all but at most 𝛿′ 𝑉′ vertices 𝑣 ∈ 𝑉′, the degree of 𝑣 in 𝐻 𝑉′ is 
1 ± 𝛿′ 𝐷𝑒−𝜀 𝑟−1 .



Epilogue
Central question

• For which 𝑛 does a 𝑡-(𝑛, 𝑘, 1) design exist?

• Divisibility conditions ⇒ infinite sequence of possible values
• These conditions are necessary, but not sufficient

Erdős-Hanani Conjecture / Rödl’s Theorem

• ⇒ for all large 𝑛, asymptotic designs exist

Exact results

• Wilson (1972-1975): 𝑡 = 2, 𝑘 ≥ 3, 𝑛 large and satisfying divisibility conditions

• Keevash (2014+): generalised Wilson to all 𝑡
• Follows the steps of Rödl Nibble, but uses an algebraic construction to complete design

• Glock, Kühn, Lo and Osthus (2016+): new proof of existence of designs
• Proof is purely combinatorial/probabilistic



Any questions?


