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Chapter Overview

* Introduce the Erdds-Hanani Conjecture
* Prove it with the Rod| Nibble

§1 The Erd6s-Hanani Conjecture §2 The Nibble

§3 The Lemma
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Edge-disjoint Triangles

Recall
* Bounding the probability of G(n, p) being K;-free
* Restricted our attention to mutually independent events
& edge-disjoint triangles

Lemma 5.4.1

'There exists a family ofg("gl) pairwise edge-disjoint triangles in K.

Larger cliques
* Can run the same argument for the probability of being K, -free
* Want to find a large collection of edge-disjoint k-cliques



Hypergraphs and Packings

“Graphs are for babies” - Tom Trotter, 2017

Random t-uniform hypergraph H® (n,p)
* Vertexset V = [n]

e Edges: each t-setin ([’Z]) an edge independently with probability p
Cligue containment

e Can ask for threshold for {K,Et) c H®(n, p)}
* Upper bound on probability: use edge-disjoint hypercliques

Definition 6.1.1 (Packings)

A (k, t)-packing in [n] is a family of k-sets F < ([z]) such that every t-
set is contained in at most one member of the family.




An Extremal Problem

Maximum packings

* For effective bounds, want as large a packing as possible
* m(n, k,t) = max {|F| : Fisa (k,t)—packing on [n]}

Proposition 6.1.2

n
Foralln >k >t, we have m(n, k,t) < ()

(¢)

Proof

* Given packing F, double-count pairs (F,T) with F € Fand T € (IZ)
e Each F € F has (D subsets of size t = |T|(’;) pairs
* Each t-set covered at most once = at most (’Z) pairs



The Case of Equality

Proposition 6.1.2

VR

t)

Foralln >k >t, we have m(n, k,t) < T)
t

Remarks
: : : 1/n-1 1m
e With our earlier construction, shows §( 1) <m(n,3,2) < 3 (3)

e Can we do better?
e Tightness in Proposition 6.1.2: every t-set covered exactly once

Definition 6.1.3 (Designs)

A t-(n, k,1) design is a family of k-sets F € ([Z]) such that every t-set
T € ([’Z]) is contained in exactly one set FF € F.




The Utility of Designs
Definition 6.1.3 (Designs) -

A t-(n, k, 1) design is a family of k-sets F € ( ) such that every t-set
T € ( ) is contained in exactly one set F (S

Useful objects
e Study originated in field of experiment design

Examples (k = 3,t = 2)

e e d




Divisibility Restrictions

Proposition 6.1.4

If a t-(n, k, 1) design exists, then, forevery0 <i <t — 1, (:f:ll) is
divisible by ({7}).

Proof
* Fix a design F € ([Z]), and consider [i| € [n]

* There are (’Z:ll) t-sets T with [i] E T
* Each such T is contained in exactly oneset F € F
* Each such F contains ('E:;) t-sets T with [i] E T

- = |FI(C) = (G20

e e.g.:a2-(n,3,1) design can only exist whenn = 1,3 (mod 6)



Asymptotic Designs

Difficulties

* Probabilistic method is blind to arithmetic conditions
e Suggests designs will be hard to construct

Approximation

* How large a packing can we find?
e Can we ensure that almost all t-sets are contained in a k-set from the family?

Conjecture 6.1.5 (Erdc')’s-Hanani: 1963)
Forfixedk >t > 1,asn — oo, we have

m(n, k,t) = (1 — 0(1))

()
)




A Dual Problem

Types of set families
* (k,t)-packings: k-sets that cover every t-set at most once
* t-(n, k, 1) designs: k-sets that cover every t-set exactly once

Definition 6.1.6 (Coverings)

A (k, t)-covering of [n] is a family of k-sets F < ('}') such that every ¢-|

set T € ([?]) is contained in at least one set FF € F. The size of the
smallest (k, t)-covering of [n] is denoted by M(n, k, t).

Proposition 6.1.7

Foralln >k > t, we have M(n, k, t) 2%.
t




Asymptotic Packings and Coverings

Proposition 6.1.8
For fixed k > t, we have

k) (& M(n, k,t)("
| lim min — () =1 & lim n — () = 1.
AT AT
Proof (=)
* Let F be a (k, t)-packing of size (1 — 0(1))%

* Then F covers ITI(’;) = (1-— 0(1))(’;) of the t-sets
* Form a cover F' by adding a k-set covering each uncovered t-set

C|F = (1 0(1))%+ o) = (1+ 0(1))%



Asymptotic Packings and Coverings

Proposition 6.1.8

For fixed k > t, we have ) )
m(n, k,t M(n, k,t
lim ( )(t) =1 & lim ( )(t) =

0 SN0

!

1.

Proof (&)
* Let F be a (k, t)-covering of size (1 + 0(1))%
t
* Foreacht-setT,letd; = |{F € F:T € F}| beits degree in F
* Form a (k, t)-packing F' by deleting for each t-set T any excess covering sets

* # deleted sets < ZT(dE —1) = Qrdr) — (?) — (D'ﬂ — (?) = @ ((?))
e s P = (1-0(1)) 2 .

(¢)



The Random Hypergraph

e Does H ) (n,p) form a good cover?
Covering sets

* Afixed t-setT € ([’Z’]) is contained in (Z:D sets of size k
« = P (T uncovered by H® (n, p)) =(1- P)(Zzg) > exp (—ZP (Zzi )
« = E[# uncovered t—sets] > (Ttl) exp (—ZP(ZZE )

l n
* = to cover all t-sets, need p = () ( E)"g-(tt))
k-t
Size of cover
H®) (n, p)|~ Bin ((Z) P)

« = with high probability, size of cover = () ((")(,B%(t)) = () <(t)22§’(t)>
k-t t




Summary So Far

Corollary 6.1.9

For k > t, we have gg <M(n,k,t) = O(log(n))L

(£)

Lower bound
* Double counting: each k-set covers only (’;) of the (’Z) t-sets

Upper bound
 Random hypergraph H ) (n,p) of appropriate density

Conjecture 6.1.5’ (Erdc’Ss-Hananki, 1963)

For fixed k > t,asn — oo, we have M(n, k, t) = (1 + 0(1)) (¢)

(2)




Any questions?

E— — ——
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Rodl to the Rescue

Conjecture 6.1.5’ (Erdc')'s-l'-lanaﬁi, 1963)
(&)

(¢)

'For fixed k > t, asn — oo, we have M(n, k,t) = (1 + 0(1)) y g

Theorem 6.2.1 (Rodl, 1585)
'The Erd6s-Hanani Conjecture is true.

bt et e B

Generalisation
* Rodl’s objective was to prove the Erdés-Hanani Conjecture
* His method, the Rod| Nibble, applies in more general settings
* We shall see a generalisation due to Pippinger (1989)



Hypergraph Covers

Definition 6.2.2 (Cover)

Let H = (V, E) be an r-uniform n-vertex hypergraph without isolated |
'vertices. A cover of H is a collection of edges F € E(H) that covers all
the vertices; that is, U,cr e = V(H).

Remarks
* A cover of H is an (n,r, 1)-covering, whose sets are edges of H

. n
e Each cover must contain at least - edges

* Trivial to find covers of this size when H = K,ﬁ")

* Take a maximum matching
* If needed, add one edge with remaining vertices

e Can we guarantee small covers in sparser hypergraphs?



Pippinger’s Theorem

Theorem 6.2.3 (Pippinger, 19855)

For every r = 2 and large enough D € N, any r-uniform n-vertex
hypergraph H without isolated vertices that satisfies the following
conditions:

1 Almost all vertices have degree approximately D,
12 All vertices have degree O(D),
3. Every pair of vertices have o(D) common edges,

has a cover of size (1 + 0(1)) %




A Non-example

* Bounded degrees and co-degrees are necessary

Construction

* Consider a star — all edges containing some fixed vertex v
* Almost all vertices have degree (2:2)

* Butdegv, = (Z:i) > C::;
* Most pairs of vertices have co-degree (Z}ﬁ)

)
* However, vy and any other vertex have co-degree (’7}_2

Large covers

 Each edge covers r — 1 vertices from V(H) \ {v,}

. n—1 1 n
e = each cover has size at least — =~ (1 + —) —
r—1 r—1;) r



Pippenger’s Precise Theorem

Theorem 6.2.3 (Pippinger, 198§)

For every integerr = 2andrealsk = 1 and a > 0, therearey =
y(r,x,a) > 0 and Dy = Dy(r, k, @) such that for everyn > D > D,,
any r-uniform n-vertex hypergraph H without isolated vertices that
satisfies the following conditions:

'1. All but at most yn vertices have degree (1 + y)D,

2. All vertices have degree at most kD,
3. Every pair of vertices have co-degree at most yD,

has a cover of size at most (1 + «) %




Small Coverings

Conjecture 6.1.5’ (Erdc’is—Hanaﬁi, 1963)

'For fixed k > t, asn — oo, we have M(n, k,t) = (1 + 0(1)) %
t

Proof

* Build an auxiliary r-graph H, for r := (';)
c v = () and E) = {(5):F € ()}
 Cover of H & (k, t)-covering of [n]
* Hypergraph is D-regular for D = (Z:D >k=1

e Co-degrees are at most (Z:EEIB) = (g) D < yD whennis large

 Satisfy Pippinger’s conditions for any «

« = cover (hence covering) of size at most (1 + a) )

(2)



Proving Pippinger

“There is only one way to eat an elephant, a bite at a time.”
— Desmond Tutu

The failure of randomness
e Cover some vertices several times before covering others

* Fix: prevent the random process from doing so
e Remove covered vertices from consideration

An iterative approach

* Choose a small number of edges at random
* Hope that they are mostly disjoint

 Remove the covered vertices from the hypergraph
* Hope that the remaining edges are still well-distributed

* Repeat until everything is covered



One Step at a Time

I ——

Lemma 6.2.4

For everyintegerr = 2andrealsA > 1, > 0and 6’ > 0, thereare 6 =
5(r,A,&,6") and Dy = Dy(r, A, &,8") such that, for everyn = D > D,, every
r-uniform n-vertex hypergraph H = (V, E) satisfying

1. For all vertices v € V except at most én, deg(v) = (1 + §)D,
2. Forall verticesv € V, deg(v) < AD, and
3. For any pair of vertices u, v € V, deg(u, v) < éD,

has a set E’ of edges with the properties
a |El=0zx6)(T),

b. forV' =V \ (U,cg’ €) we have |V'| = (1 + §')ne™%, and

c. Forall but at most §'|V'| vertices v € V', the degree of vin H[V'] is
(1+6)De -1,




Using the Lemma

Plan of attack

* Start with original hypergraph Hy, = H on vertexsetl/; =V

* Given a hypergraph H;, apply Lemma 6.2.4 to obtain a set of edges E;
e LetV;.1 =V; \ (UeEEi e) be the uncovered vertices
e H;., = H[V;,] the induced hypergraph

* Once I/; is sufficiently small, cover each remaining vertex greedily
* = total size of coveris V| + ;| Eil

Parameters

* With every application of the lemma, control over the distribution worsens

* Initial distribution of edges very good = lemma can be used throughout
* Work backwards to determine what is needed



Evolution of Parameters

Before applying the lemma
* n vertices, all but n have degree (1 + 6)D

 Maximum degree < AD
 Maximum codegree < 6D

After applying the lemma
* (1 + 8")ne¢ vertices, all but §' proportion have degree (1 + §')De
 Maximum degree < AD, maximum codegree < 6D

—&(r—1)

Change of parameters
* Dyypq i= Dje > Y
¢ = Ay = 1;eE0D 5 > 508D
* Need §; < 6(r,A;, & 6;41) to apply lemma



Size of Vertex and Edge Sets

Vertex sets
* By Lemma 6.2.4, |V;| < (1 + §;)|V;_1|e”®
= || < (1_[5-:1(1 +6;))ne e < (1+ Z§-=1 §;)ne~t¢
* By growing the §; fast enough, can ensure 23':1 0; < 20;

Edge sets

glVil
T

e lLemma6.2.4: |E;| < (1 + 8;41)

ene €

< (1+ 81401 + 26,)

ene L€

r

< (1+46,)

r



Size of the Cover

Recall
e |V;] < (1+ 26 )ne ¥ and |E;| < (1 + 46,)

ene €

r

Total size of cover
o Vel + BIE] < (1 + 28)ne~t + (1 + 46) = XiTj e
< (1+468,) (re~t + —=)*

1-e ¢/ r
* Choosing t large, can ensure re ¢ < ¢

. 1—8_821—(1—€+%€2)=8(1—%8)

1
¢+ > ——<—<1+¢
1-e™® 7 1—¢

* = cover has size at most (1 + 46;)(1 + 28)2

* By choosing &, §; sufficiently small, we can ensure this is at most (1 + a)g



Piecing It Together

Theorem 6.2.3 (Pippinger, 198‘5)

For every integerr = 2andrealsk = 1and a > 0, therearey = |
]y(r, k,a) > 0and Dy, = Dy(7, k, @) such that foreveryn > D > D,, |
'any r-uniform n-vertex hypergraph H with well-distributed edges has a

cover of size at most (1 + «a) g

Proof
* Choose ¢,6 sothat (1 +48)(1 +2&) <1+ a,andtsothatre ™ <¢
e Set A; = ke¥""D and D; := De "V foreach0 < i < t
Setd; :==0,and,fori =t —1,t — 2,...,0, choose §; such that
e §; <68(r, Ay € 8i41) from Lemma 6.2.4,8; < e €~D§. . and §; < %5”1
Set y := &, and D, such that D; := Dye "=V > D(r, A;, &, 6;,4) for all i
We can then iterate the lemma t times, giving the small cover u



Any questions?

E— — ——



§3 The Lemma
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Recalling the Statement

I ——

Lemma 6.2.4

For everyintegerr = 2andrealsA > 1, > 0and 6’ > 0, thereare 6 =
5(r,A,&,6") and Dy = Dy(r, A, &,8") such that, for everyn = D > D,, every
r-uniform n-vertex hypergraph H = (V, E) satisfying

1. For all vertices v € V except at most én, deg(v) = (1 + §)D,
2. Forall verticesv € V, deg(v) < AD, and

3. For any pair of vertices u, v € V, deg(u, v) < éD,

has a set E’ of edges with the properties

a |El=0zx6)(T),
b. forV' =V \ (U,cg’ €) we have |V'| = (1 + §')ne™%, and

c. Forall but at most §'|V'| vertices v € V', the degree of vin H[V'] is
(1+6)De -1,




Proof Strategy

Selection of edges
* Select each edge to be in E’ independently at random

Analysis

e Estimate |E'|,P(v € V') and P(e € H|V'])
* Concentration inequalities = hypergraph statistics close to expectations

* Quantifying over vertices
* Polynomial concentration suffices
e Can use Chebyshev’s Inequality



Proof of Lemma, Part a

lenma62Aa

A |E'=(1+68)(2) |

Proof
&

* Select each edge to be in E’ independently with probability p = -
« = |E'| ~ Bin(e(H), p)
* Handshake Lemma = e(H) = %Zv deg(v)

e Sum of degrees
e Atleast(1—8)n-(1—=8)D+6én-0=(1-6)*nD = (1—-26)nD
e Atmost(1—6)n-(1+8)D+6n-AD = (1 — 6%+ 6A)nD
e =e(H)=(1= 61)%forsome 5 =64(6,1) > 0asd -0



Proof of Lemma, Part a

lLemma 6.2.4.a

1E'T =1 +68)(2).

Proof (cont’d)
e Recall

&

* Each edge selected with probability p = >
s e(H) = (146)%

» > E[|E'|] = e(H)p = (1 £ 6,)—

» Var(|E']) = e(H)p(1 —p) < E[|E']] = o(E[|E"[]*)

e - Chebyshev = with high probability, |[E'| = (1 + 261)%



Proof of Lemma, Part b

lLemma624b
‘ForV' =V \ (U,cpr €) we have [V'| = (1 + 6 )ne £

Proof
* V'] = Xver 1{veV’}
E|1pen| = P e V) = (1 - p)des®
 When deg(v) = (1 +6)D:

* E|1pe| = (1~ —)(1i5)D

* At most dn exceptional vertices, for which 0 < [E [1{vevr}] <1
« > E[|V'|]] = (1 £ 63)ne ¢ for some 63 = §5(¢,6) = 0

= (1+45,)e ¢ forsomed, = 5,(g,6) » 0and D large



Proof of Lemma, Part b

lLemma624b
‘ForV' =V \ (U,cpr €) we have [V'| = (1 + 6 )ne £

Proof (cont’d)
+ Var([V']) = Zyey Var (1) + Zusr CoV (Leyry Lpern)
* Lyey Var (1{vev’}) < Zvev E ll{vev’}] = E[|V]]

* Cov (v Lper)) = E [ Luer Lpev| = B [Tpuery] B[ 1pevs]
— (1 _ p)deg(u)+deg(v)—deg(u,v) . (1 . p)deg(u)+deg(v)
—6D
_\—deg(uv) _ _ £ _
<(1-p) 1< (1 D) 1
* = Cov (1{uevr}, 1{vEV’}) < 6, forsome &, = 6,(¢,6) > 0



Proof of Lemma, Part b

lLemma624b
‘ForV' =V \ (U,cpr €) we have [V'| = (1 + 5 )ne £

Proof (cont’d)

e Recall
E[IV']] = (1 £ 63)ne™®

: Cov(l{uevf}, 1{vev’}) <9,
e = Var(|V']) < E[|V'|] + 6,n% < 26,12
284712

. ) / —&
Chebyshev: P([V'| # (1 & d5)ne™) < — =75

* This can be made arbitrarily small for appropriate choice of 5 = 0




Proof of Lemma, Part c

Lemma 6.2.4.C

For all but at most §'|V'| vertices v € V', the degree of vin H[V'] is
(1+6)De -1,

Proof (outline)

* Fix a vertex v € IV, and conditionon v € V'

Need to study how many edges e 3 v survive in H[V']
* Edge e survivesifandonlyifu € V' forallu € e

* We have good control over vertices of degree (1 + §)D
* = can control edges whose vertices are all of typical degree
e Call such edges good, and bad otherwise

» = can control deg(v) if most edges e 3 v are good
Shall show that degree conditions = most vertices are mostly in good edges



Good Edges

P —

Claim 6.3.1
There is some §; — 0 such that:

all but at most dgn vertices have deg(v) = (1 + 65)D, and are in
at most 0, D bad edges.

if an edge e is good, then given some v € e, we have
WfEEveEf,fne+0}=0+8)r—1)D.

l

Proof of i.

* At most én vertices have deg(v) # (1 + 8)D
* = there are at most on - AD bad edges.
6AnD
8D
* For a suitable choice of §; — 0, this is less than (6, — d)n

* = at most vertices can be in more than ;D bad edges



Good Edges

Claim 6.3.1
There is some §; — 0 such that:

i. all but at most 64n vertices have deg(v) = (1 + 6,)D, and are in ;
. atmost §.D bad edges. |

ii. ifan edge e is good, then given some v € e, we have

HfEE:vESf,fne+ 0} fh(l + 6,)(r — 1)D.

Proof of ii.
e good = for the r — 1 vertices u € e,u # v, we have deg(u) = (1 +6)D
cs>|{feEEvef,fnexd}<(A+8(@r—1)D
* Overcounted: edges f that meet two vertices of e
* Co-degree bound = at most (Z)dD such edges

> |{feEvef,fne+ 0} =1—-8)F—-1)D—(})éD _



Survival of Good Edges

Claim 6.3.2

There is some §, — 0 such that, if we conditiononv € V', and e is a
‘good edge containing v, then P(e € V') = (1 + §,)e ("1,

Proof

v € V' = no edge containing v was selected in E’

ceCV' =everyu€eisalsoinV’
* = noedgef € Ewith f Ne + @isselected in E’

* By assumption, this is true for every f 3 v
> needonlyconsider{f EE:v & f,f Nne + @}
Claim 6.3.1.ii = there are (1 + §¢)(r — 1)D such edges

Probability none are selected in E' is (1 — p)(1386)(r—1)D
= % = thisis (1 + 57)e‘€(r‘1)



Expected Degrees

Claim 6.3.3

There is some 6g — 0 such that, if v is a vertex as in Claim 6.3.1.i and
'we condition on v € V', then the expected degree deg'(v) of v in

H[V']is (1 + 6g)De¢0r—1),

Proof
* Foreachedge e € E, let 1, be the indicator for the evente € IV’

= degree of vin H[V']is Y05, 1,
At most ;D bad edges containing v

* deg'(v) = Zeav,e good 1o + 66D
Number of good edges containing vis (1 + 6 + 64)D
Claim 6.3.2 = E[1,] = (1 + 8,)e "1 for every good e 3 v
= E[deg’ ()] = (1+ 6+ 6,)(1+68,)De ¢~V +5.D



Variance in Degrees

Claim 6.3.4

There is some 69 — 0 such that, if v is a vertex as in Claim 6.3.1.i and
‘we condition on v € V', then Var(deg'(v)) < 64D*.

Proof
* As usual, Var(deg'(v)) < E[deg'(v)] + Xyee fie=f Cov(le, 1f)
e Contribution to sum from bad edges is at most §¢(1 + 6)D?
* Fixgood e 3 v, and estimate ), ¢ go0d.vefe Cov(le, 1f)
e letT(e) ={heE:ve& hvne = @}, andlett(e,f) = |T(e) NT(f)|
* Cov(1,,15) = E[1,1¢| — E[1,]E[1/]
= (1 — p)IT@UTOI _ (1 — p)ITE@HITE)I
<A -p) e -1



Variance in Degrees

Claim 6.3.4

There is some 69 — 0 such that, if v is a vertex as in Claim 6.3.1.i and
‘we condition on v € V', then Var(deg'(v)) < 64D*.

Proof (cont’d)

e Recall
« T(e)={heE:vehvne=0}andt(e ) =|T(e) NT(f)|
» Cov(1le, 1)< (1 —p)ten) -1

* Foreachu € e, deg(u,v) < 6D
e = at most (r — 1)8D edges f with |e N f| = 2

* Otherwisee N f = {v}
« o>forallh € T(e) NT(f) thereareu € e\ {v}u' € f\ {v}withu,u" €h
« > t(e,f) < (r—1)2%6D

—(r—1)%6D
)(7‘ 1)

« = Cov(1,, 1) < (1 —% —1<r%6



Variance in Degrees

Claim 6.3.4

There is some 69 — 0 such that, if v is a vertex as in Claim 6.3.1.i and
‘we condition on v € V', then Var(deg'(v)) < 64D*.

Proof (cont’d)
» Var(deg'(v)) < 266D? + X, ce.e good 2ver.f good Cov(1e, 1f)
< 286D + Y cee good ((7" — 1)6D + Xt g00d,fne=(v) Cov(1e, 1f))
< 26602 + Tyeee good (7 = 8D + X1 go0d re=(u) 72E0)

<28¢D%>+ (1+8)D - ((r—1)6D + (1 +68)D - r2&6)
* For appropriate 89 — 0, this is at most §qD*



Completing the Proof

Lemma 6.2.4.C

For all but at most §'|V'| vertices v € V', the degree of vin H[V'] is
(1+6)De -1,

Proof

* All but at most dgn vertices are as in Claim 6.3.1.i; can ignore the rest
* For such a vertex v, conditioningon v € V/':
e Claim 6.3.3: E[deg’(v)] = (1 + 8g)De~¢("—1)
e Claim 6.3.4: Var(deg'(v)) < §4D?
* Chebyshev: for some §;;, — 0, P(deg(v) + (1+ 510)De“9(r‘1)) < g
* Markov: the probability of having more than 26¢|V’| such vertices in V'
whose degree is not (1 + &;9)De 7~V is less than %



Epilogue

Central question
* For which n does a t-(n, k, 1) design exist?
 Divisibility conditions = infinite sequence of possible values
* These conditions are necessary, but not sufficient

Erd6s-Hanani Conjecture / Rodl’s Theorem

* = for all large n, asymptotic designs exist

Exact results

* Wilson (1972-1975): t = 2,k = 3,n large and satisfying divisibility conditions
e Keevash (2014+): generalised Wilson to all t
* Follows the steps of Rodl Nibble, but uses an algebraic construction to complete design

* Glock, Kithn, Lo and Osthus (2016+): new proof of existence of designs
* Proof is purely combinatorial/probabilistic



Any questions?

E— — ——



