Chapter 6: The Rödl Nibble

The Probabilistic Method Summer 2020 Freie Universität Berlin

Chapter Overview

- Introduce the Erdős-Hanani Conjecture
- Prove it with the Rödl Nibble

§1 The Erdős-Hanani Conjecture

Chapter 6: The Rödl Nibble The Probabilistic Method

§2 The Nibble

Chapter 6: The Rödl Nibble The Probabilistic Method

§3 The Lemma

Chapter 6: The Rödl Nibble The Probabilistic Method

§1 The Erdős-Hanani Conjecture

Chapter 6: The Rödl Nibble

The Probabilistic Method

Edge-disjoint Triangles

Recall

- Bounding the probability of G(n, p) being K_3 -free
- Restricted our attention to mutually independent events
- ↔ edge-disjoint triangles

Lemma 5.4.1

There exists a family of $\frac{1}{3} \binom{n-1}{2}$ pairwise edge-disjoint triangles in K_n .

Larger cliques

- Can run the same argument for the probability of being K_k -free
- Want to find a large collection of edge-disjoint k-cliques

Hypergraphs and Packings

"Graphs are for babies" - Tom Trotter, 2017

Random t-uniform hypergraph $H^{(t)}(n,p)$

- Vertex set V = [n]
- Edges: each *t*-set in $\binom{[n]}{t}$ an edge independently with probability p

Clique containment

- Can ask for threshold for $\{K_k^{(t)} \subseteq H^{(t)}(n,p)\}$
- Upper bound on probability: use edge-disjoint hypercliques

Definition 6.1.1 (Packings)

A (k, t)-packing in [n] is a family of k-sets $\mathcal{F} \subseteq {\binom{[n]}{k}}$ such that every t-set is contained in at most one member of the family.

An Extremal Problem

Maximum packings

- For effective bounds, want as large a packing as possible
- $m(n,k,t) = \max \{ |\mathcal{F}| : \mathcal{F} \text{ is a } (k,t) \text{packing on } [n] \}$

Proposition 6.1.2

For all $n \ge k \ge t$, we have $m(n, k, t) \le \frac{\binom{n}{t}}{\binom{k}{t}}$.

Proof

- Given packing \mathcal{F} , double-count pairs (F, T) with $F \in \mathcal{F}$ and $T \in {F \choose t}$
- Each $F \in \mathcal{F}$ has $\binom{k}{t}$ subsets of size $t \Rightarrow |\mathcal{F}|\binom{k}{t}$ pairs
- Each *t*-set covered at most once \Rightarrow at most $\binom{n}{t}$ pairs

The Case of Equality

Proposition 6.1.2

For all $n \ge k \ge t$, we have $m(n, k, t) \le \frac{\binom{n}{t}}{\binom{k}{t}}$.

Remarks

- With our earlier construction, shows $\frac{1}{3} \binom{n-1}{2} \le m(n, 3, 2) \le \frac{1}{3} \binom{n}{2}$
- Can we do better?
- Tightness in Proposition 6.1.2: every *t*-set covered exactly once

Definition 6.1.3 (Designs)

A t-(n, k, 1) design is a family of k-sets $\mathcal{F} \subseteq {\binom{[n]}{k}}$ such that every t-set $T \in {\binom{[n]}{t}}$ is contained in exactly one set $F \in \mathcal{F}$.

The Utility of Designs

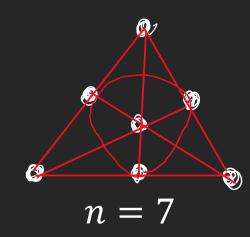
Definition 6.1.3 (Designs)

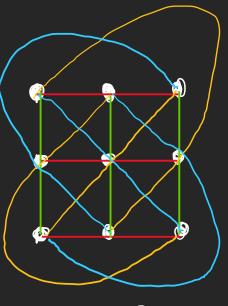
A t-(n, k, 1) design is a family of k-sets $\mathcal{F} \subseteq {\binom{[n]}{k}}$ such that every t-set $T \in {\binom{[n]}{t}}$ is contained in exactly one set $F \in \mathcal{F}$.

Useful objects

• Study originated in field of experiment design

Examples (k = 3, t = 2)





n = 9

Divisibility Restrictions

Proposition 6.1.4

If a t-(n, k, 1) design exists, then, for every $0 \le i \le t - 1$, $\binom{n-i}{t-i}$ is divisible by $\binom{k-i}{t-i}$.

Proof

- Fix a design $\mathcal{F} \subseteq {[n] \choose k}$, and consider $[i] \subseteq [n]$
- There are $\binom{n-i}{t-i}$ *t*-sets *T* with $[i] \subseteq T$
 - Each such T is contained in exactly one set $F \in \mathcal{F}$
- Each such F contains $\binom{k-i}{t-i}$ t-sets T with $[i] \subseteq T$
- $\Rightarrow |\mathcal{F}|\binom{k-i}{t-i} = \binom{n-i}{t-i}$
- e.g.: a 2-(n, 3,1) design can only exist when $n \equiv 1,3 \pmod{6}$

Asymptotic Designs

Difficulties

- Probabilistic method is blind to arithmetic conditions
 - Suggests designs will be hard to construct

Approximation

- How large a packing can we find?
- Can we ensure that almost all *t*-sets are contained in a *k*-set from the family?

Conjecture 6.1.5 (Erdős-Hanani, 1963) For fixed $k \ge t \ge 1$, as $n \to \infty$, we have $m(n,k,t) = (1 - o(1)) \frac{\binom{n}{t}}{\binom{k}{t}}.$

A Dual Problem

Types of set families

- (k, t)-packings: k-sets that cover every t-set at most once
- *t*-(*n*, *k*, 1) designs: *k*-sets that cover every *t*-set *exactly* once

Definition 6.1.6 (Coverings)

A (k, t)-covering of [n] is a family of k-sets $\mathcal{F} \subseteq {\binom{[n]}{k}}$ such that every t-set $T \in {\binom{[n]}{t}}$ is contained in at least one set $F \in \mathcal{F}$. The size of the smallest (k, t)-covering of [n] is denoted by M(n, k, t).

Proposition 6.1.7

For all $n \ge k \ge t$, we have $M(n, k, t) \ge \frac{\binom{n}{t}}{\binom{k}{t}}$.

Asymptotic Packings and Coverings

Proposition 6.1.8

For fixed $k \ge t$, we have $\lim_{n \to \infty} \frac{m(n, k, t)\binom{k}{t}}{\binom{n}{t}} = 1 \Leftrightarrow \lim_{n \to \infty} \frac{M(n, k, t)\binom{k}{t}}{\binom{n}{t}} = 1.$

$\mathsf{Proof}\,(\Rightarrow)$

- Let \mathcal{F} be a (k, t)-packing of size $\left(1 o(1)\right) \frac{\binom{n}{t}}{\binom{k}{t}}$
- Then \mathcal{F} covers $|\mathcal{F}|\binom{k}{t} = (1 o(1))\binom{n}{t}$ of the *t*-sets
- Form a cover \mathcal{F}' by adding a k-set covering each uncovered t-set

•
$$|\mathcal{F}'| = (1 - o(1)) \frac{\binom{n}{t}}{\binom{k}{t}} + o(1)\binom{n}{t} = (1 + o(1)) \frac{\binom{n}{t}}{\binom{k}{t}}$$

Asymptotic Packings and Coverings

Proposition 6.1.8

For fixed $k \ge t$, we have $\lim_{n \to \infty} \frac{m(n, k, t)\binom{k}{t}}{\binom{n}{t}} = 1 \Leftrightarrow \lim_{n \to \infty} \frac{M(n, k, t)\binom{k}{t}}{\binom{n}{t}} = 1.$

 $Proof (\Leftarrow)$

- Let \mathcal{F} be a (k, t)-covering of size $\left(1 + o(1)\right) \frac{\binom{n}{t}}{\binom{k}{t}}$
- For each *t*-set *T*, let $d_T = |\{F \in \mathcal{F}: T \subseteq F\}|$ be its degree in \mathcal{F}
- Form a (k, t)-packing \mathcal{F}' by deleting for each t-set T any excess covering sets
- # deleted sets $\leq \sum_T (d_T 1) = (\sum_T d_T) \binom{n}{t} = \binom{k}{t} |\mathcal{F}| \binom{n}{t} = o\left(\binom{n}{t}\right)$

•
$$\Rightarrow |\mathcal{F}'| = (1 - o(1)) \frac{\binom{n}{t}}{\binom{k}{t}}$$

The Random Hypergraph

- Does H^(k)(n, p) form a good cover?
 Covering sets
 - A fixed *t*-set $T \in {\binom{[n]}{t}}$ is contained in ${\binom{n-t}{k-t}}$ sets of size *k*
 - $\Rightarrow \mathbb{P}\left(T \text{ uncovered by } H^{(k)}(n,p)\right) = (1-p)^{\binom{n-t}{k-t}} \ge \exp\left(-2p\binom{n-t}{k-t}\right)^{\binom{n-t}{k-t}}$
 - $\Rightarrow \mathbb{E}[\text{# uncovered } t \text{sets}] \ge {n \choose t} \exp\left(-2p{n-t \choose k-t}\right)$
 - \Rightarrow to cover all *t*-sets, need $p = \Omega\left(\frac{\log\binom{n}{t}}{\binom{n-t}{t}}\right)$

Size of cover

- $|H^{(k)}(n,p)| \sim \operatorname{Bin}\left(\binom{n}{k},p\right)$
- $|\bullet \Rightarrow$ with high probability, size of cover $= \Omega\left(\frac{\binom{n}{k}\log\binom{n}{t}}{\binom{n-t}{k-t}}\right) = \Omega\left(\frac{\binom{n}{t}\log\binom{n}{t}}{\binom{k}{t}}\right)$

Summary So Far

Corollary 6.1.9 For $k \ge t$, we have $\frac{\binom{n}{t}}{\binom{k}{t}} \le M(n,k,t) = O(\log\binom{n}{t})\frac{\binom{n}{t}}{\binom{k}{t}}$.

Lower bound

• Double counting: each k-set covers only $\binom{k}{t}$ of the $\binom{n}{t}$ t-sets

Upper bound

• Random hypergraph $H^{(k)}(n,p)$ of appropriate density

Conjecture 6.1.5' (Erdős-Hanani, 1963)
For fixed
$$k \ge t$$
, as $n \to \infty$, we have $M(n, k, t) = (1 + o(1)) \frac{\binom{n}{t}}{\binom{k}{t}}$.

Any questions?

§2 The Nibble

Chapter 6: The Rödl Nibble The Probabilistic Method Conjecture 6.1.5' (Erdős-Hanani, 1963)

For fixed
$$k \ge t$$
, as $n \to \infty$, we have $M(n, k, t) = (1 + o(1)) \frac{\binom{n}{t}}{\binom{k}{t}}$.

Theorem 6.2.1 (Rödl, 1985)

The Erdős-Hanani Conjecture is true.

Generalisation

- Rödl's objective was to prove the Erdős-Hanani Conjecture
- His method, the Rödl Nibble, applies in more general settings
- We shall see a generalisation due to Pippinger (1989)

Hypergraph Covers

Definition 6.2.2 (Cover)

Let H = (V, E) be an r-uniform n-vertex hypergraph without isolated vertices. A *cover* of H is a collection of edges $\mathcal{F} \subseteq E(H)$ that covers all the vertices; that is, $\bigcup_{e \in \mathcal{F}} e = V(H)$.

Remarks

- A cover of H is an (n, r, 1)-covering, whose sets are edges of H
- Each cover must contain at least $\frac{n}{r}$ edges
- Trivial to find covers of this size when $H = K_n^{(r)}$
 - Take a maximum matching
 - If needed, add one edge with remaining vertices
- Can we guarantee small covers in sparser hypergraphs?

Theorem 6.2.3 (Pippinger, 1989)

For every $r \ge 2$ and large enough $D \in \mathbb{N}$, any r-uniform n-vertex hypergraph H without isolated vertices that satisfies the following conditions:

- 1. Almost all vertices have degree approximately D,
- 2. All vertices have degree O(D),
- 3. Every pair of vertices have o(D) common edges,

has a cover of size $(1 + o(1))\frac{n}{r}$.

A Non-example

Bounded degrees and co-degrees are necessary

Construction

- Consider a star all edges containing some fixed vertex v_0
- Almost all vertices have degree $\binom{n-2}{r-2}$
 - But deg $v_0 = \binom{n-1}{r-1} \gg \binom{n-2}{r-2}$
- Most pairs of vertices have co-degree $\binom{n-3}{r-3}$
 - However, v_0 and any other vertex have co-degree $\binom{n-2}{r-2}$

Large covers

• Each edge covers r - 1 vertices from $V(H) \setminus \{v_0\}$

•
$$\Rightarrow$$
 each cover has size at least $\frac{n-1}{r-1} \approx \left(1 + \frac{1}{r-1}\right) \frac{n}{r}$

Theorem 6.2.3 (Pippinger, 1989)

For every integer $r \ge 2$ and reals $\kappa \ge 1$ and $\alpha > 0$, there are $\gamma = \gamma(r, \kappa, \alpha) > 0$ and $D_0 = D_0(r, \kappa, \alpha)$ such that for every $n \ge D \ge D_0$, any r-uniform n-vertex hypergraph H without isolated vertices that satisfies the following conditions:

- 1. All but at most γn vertices have degree $(1 \pm \gamma)D$,
- 2. All vertices have degree at most κD ,
- 3. Every pair of vertices have co-degree at most γD ,

has a cover of size at most $(1 + \alpha) \frac{n}{r}$.

Small Coverings

Conjecture 6.1.5' (Erdős-Hanani, 1963)

For fixed $k \ge t$, as $n \to \infty$, we have $M(n, k, t) = (1 + o(1)) \frac{\binom{n}{t}}{\binom{k}{t}}$.

Proof

- Build an auxiliary r-graph H, for $r \coloneqq \binom{k}{t}$
 - $V(H) = {\binom{[n]}{t}}$ and $E(H) = \left\{ {\binom{F}{t} : F \in {\binom{[n]}{k}} \right\}$
 - Cover of $H \leftrightarrow (k, t)$ -covering of [n]
- Hypergraph is *D*-regular for $D \coloneqq \binom{n-t}{k-t} \Rightarrow \kappa = 1^{\top}$
- Co-degrees are at most $\binom{n-(t+1)}{k-(t+1)} = \binom{k-t}{n-t} D \le \gamma D$ when n is large
- Satisfy Pippinger's conditions for any α
 - \Rightarrow cover (hence covering) of size at most $(1 + \alpha) \frac{\binom{n}{t}}{\binom{k}{t}}$

Proving Pippinger

"There is only one way to eat an elephant, a bite at a time." — Desmond Tutu

The failure of randomness

- Cover some vertices several times before covering others
- Fix: prevent the random process from doing so
 - Remove covered vertices from consideration

An iterative approach

- Choose a small number of edges at random
 - Hope that they are mostly disjoint
- Remove the covered vertices from the hypergraph
 - Hope that the remaining edges are still well-distributed
- Repeat until everything is covered

One Step at a Time

Lemma 6.2.4

For every integer $r \ge 2$ and reals $\lambda \ge 1$, $\varepsilon > 0$ and $\delta' > 0$, there are $\delta = \delta(r, \lambda, \varepsilon, \delta')$ and $D_0 = D_0(r, \lambda, \varepsilon, \delta')$ such that, for every $n \ge D \ge D_0$, every r-uniform n-vertex hypergraph H = (V, E) satisfying

- 1. For all vertices $v \in V$ except at most δn , $\deg(v) = (1 \pm \delta)D$,
- 2. For all vertices $v \in V$, $deg(v) < \lambda D$, and
- 3. For any pair of vertices $u, v \in V$, $deg(u, v) < \delta D$,

has a set E' of edges with the properties

- a. $|E'| = (1 \pm \delta') \left(\frac{\varepsilon n}{r}\right),$
- b. for $V' = V \setminus (\bigcup_{e \in E'} e)$ we have $|V'| = (1 \pm \delta')ne^{-\varepsilon}$, and
- c. For all but at most $\delta'|V'|$ vertices $v \in V'$, the degree of v in H[V'] is $(1 \pm \delta')De^{-\varepsilon(r-1)}$.

Using the Lemma

Plan of attack

- Start with original hypergraph $H_0 = H$ on vertex set $V_0 = V$
- Given a hypergraph H_i , apply Lemma 6.2.4 to obtain a set of edges E_i
 - Let $V_{i+1} = V_i \setminus (\bigcup_{e \in E_i} e)$ be the uncovered vertices
 - $H_{i+1} = H[V_{i+1}]$ the induced hypergraph
- Once V_t is sufficiently small, cover each remaining vertex greedily
 - \Rightarrow total size of cover is $|V_t| + \sum_{i < t} |E_i|$

Parameters

- With every application of the lemma, control over the distribution worsens
- Initial distribution of edges very good \Rightarrow lemma can be used throughout
 - Work backwards to determine what is needed

Evolution of Parameters

Before applying the lemma

- *n* vertices, all but δn have degree $(1 \pm \delta)D$
- Maximum degree $< \lambda D$
- Maximum codegree $< \delta D$

After applying the lemma

- $(1 \pm \delta')ne^{-\varepsilon}$ vertices, all but δ' proportion have degree $(1 \pm \delta')De^{-\varepsilon(r-1)}$
- Maximum degree $< \lambda D$, maximum codegree $< \delta D$

Change of parameters

- $D_{i+1} \coloneqq D_i e^{-\varepsilon(r-1)}$
- $\Rightarrow \lambda_{i+1} \coloneqq \lambda_i e^{\varepsilon(r-1)}, \delta_{i+1} \ge \delta_i e^{\varepsilon(r-1)}$
- Need $\delta_i \leq \delta(r, \lambda_i, \varepsilon, \delta_{i+1})$ to apply lemma

Size of Vertex and Edge Sets

Vertex sets

- By Lemma 6.2.4, $|V_i| \le (1 + \delta_i) |V_{i-1}| e^{-\varepsilon}$
- $\Rightarrow |V_i| \le (\prod_{j=1}^i (1+\delta_j))ne^{-i\varepsilon} \le (1+\sum_{j=1}^i \delta_j)ne^{-i\varepsilon}$

• By growing the δ_i fast enough, can ensure $\sum_{j=1}^i \delta_j \leq 2\delta_t$

Edge sets

• Lemma 6.2.4:
$$|E_i| \leq (1 + \delta_{i+1}) \frac{\varepsilon |V_i|}{r}$$

 $\leq (1 + \delta_{i+1})(1 + 2\delta_t) \frac{\varepsilon n e^{-i\varepsilon}}{r}$
 $\leq (1 + 4\delta_t) \frac{\varepsilon n e^{-i\varepsilon}}{r}$

Size of the Cover

Recall

 $|\bullet|V_i| \le (1+2\delta_t)ne^{-i\varepsilon}$ and $|E_i| \le (1+4\delta_t)\frac{\varepsilon ne^{-i\varepsilon}}{r}$

Total size of cover

• $|V_t| + \sum_{i=0}^{t-1} |E_i| \le (1+2\delta_t) n e^{-t\varepsilon} + (1+4\delta_t) \frac{\varepsilon n}{r} \sum_{i=0}^{t-1} e^{-i\varepsilon}$ $\le (1+4\delta_t) \left(r e^{-t\varepsilon} + \frac{\varepsilon}{1-e^{-\varepsilon}} \right) \frac{n}{r}$

• Choosing t large, can ensure $re^{-t\varepsilon} \leq \varepsilon$

•
$$1 - e^{-\varepsilon} \ge 1 - \left(1 - \varepsilon + \frac{1}{2}\varepsilon^2\right) = \varepsilon \left(1 - \frac{1}{2}\varepsilon\right)$$

• $\Rightarrow \frac{\varepsilon}{1 - e^{-\varepsilon}} \le \frac{1}{1 - \frac{1}{2}\varepsilon} \le 1 + \varepsilon$

• \Rightarrow cover has size at most $(1 + 4\delta_t)(1 + 2\varepsilon)\frac{n}{r}$

• By choosing ε , δ_t sufficiently small, we can ensure this is at most $(1 + \alpha)\frac{n}{r}$

Piecing It Together

Theorem 6.2.3 (Pippinger, 1989)

For every integer $r \ge 2$ and reals $\kappa \ge 1$ and $\alpha > 0$, there are $\gamma = \gamma(r, \kappa, \alpha) > 0$ and $D_0 = D_0(r, \kappa, \alpha)$ such that for every $n \ge D \ge D_0$, any r-uniform n-vertex hypergraph H with well-distributed edges has a cover of size at most $(1 + \alpha) \frac{n}{r}$.

Proof

- Choose ε , δ so that $(1 + 4\delta)(1 + 2\varepsilon) < 1 + \alpha$, and t so that $re^{-t\varepsilon} \le \varepsilon$
- Set $\lambda_i \coloneqq \kappa e^{i\varepsilon(r-1)}$ and $D_i \coloneqq De^{-i\varepsilon(r-1)}$ for each $0 \le i \le t$
- Set $\delta_t \coloneqq \delta$, and, for i = t 1, t 2, ..., 0, choose δ_i such that

• $\delta_i \leq \delta(r, \lambda_i, \varepsilon, \delta_{i+1})$ from Lemma 6.2.4, $\delta_i \leq e^{-\varepsilon(r-1)}\delta_{i+1}$ and $\delta_i \leq \frac{1}{2}\delta_{i+1}$

- Set $\gamma \coloneqq \delta_0$ and D_0 such that $D_i \coloneqq D_0 e^{-i\varepsilon(r-1)} \ge D(r, \lambda_i, \varepsilon, \delta_{i+1})$ for all i
- We can then iterate the lemma t times, giving the small cover

Any questions?

§3 The Lemma

Chapter 6: The Rödl Nibble

The Probabilistic Method

Recalling the Statement

Lemma 6.2.4

For every integer $r \ge 2$ and reals $\lambda \ge 1$, $\varepsilon > 0$ and $\delta' > 0$, there are $\delta = \delta(r, \lambda, \varepsilon, \delta')$ and $D_0 = D_0(r, \lambda, \varepsilon, \delta')$ such that, for every $n \ge D \ge D_0$, every r-uniform n-vertex hypergraph H = (V, E) satisfying

- 1. For all vertices $v \in V$ except at most δn , $\deg(v) = (1 \pm \delta)D$,
- 2. For all vertices $v \in V$, $deg(v) < \lambda D$, and
- 3. For any pair of vertices $u, v \in V$, $deg(u, v) < \delta D$,

has a set E' of edges with the properties

a.
$$|E'| = (1 \pm \delta') \left(\frac{\varepsilon n}{r}\right)$$
,

- b. for $V' = V \setminus (\bigcup_{e \in E'} e)$ we have $|V'| = (1 \pm \delta')ne^{-\varepsilon}$, and
- c. For all but at most $\delta'|V'|$ vertices $v \in V'$, the degree of v in H[V'] is $(1 \pm \delta')De^{-\varepsilon(r-1)}$.

Proof Strategy

Selection of edges

• Select each edge to be in E' independently at random

Analysis

- Estimate |E'|, $\mathbb{P}(v \in V')$ and $\mathbb{P}(e \in H[V'])$
- Concentration inequalities ⇒ hypergraph statistics close to expectations
- Quantifying over vertices
 - Polynomial concentration suffices
 - Can use Chebyshev's Inequality

Proof of Lemma, Part a

Lemma 6.2.4.a

a.
$$|E'| = (1 \pm \delta') \left(\frac{\varepsilon n}{r}\right)$$

Proof

- Select each edge to be in E' independently with probability $p = \frac{\varepsilon}{D}$
- $\bullet \Rightarrow |E'| \sim \operatorname{Bin}(e(H), p)$
- Handshake Lemma $\Rightarrow e(H) = \frac{1}{r} \sum_{v} \deg(v)$
- Sum of degrees
 - At least $(1 \delta)n \cdot (1 \delta)D + \delta n \cdot 0 = (1 \delta)^2 nD \ge (1 2\delta)nD$
 - At most $(1 \delta)n \cdot (1 + \delta)D + \delta n \cdot \lambda D = (1 \delta^2 + \delta \lambda)nD$
 - $\Rightarrow e(H) = (1 \pm \delta_1) \frac{nD}{r}$ for some $\delta_1 = \delta_1(\delta, \lambda) \to 0$ as $\delta \to 0$

Proof of Lemma, Part a

Lemma 6.2.4.a $|E'| = (1 \pm \delta') \left(\frac{\varepsilon n}{r}\right).$

Proof (cont'd)

- Recall
 - Each edge selected with probability $p = \frac{\varepsilon}{D}$
 - $e(H) = (1 \pm \delta_1) \frac{nD}{r}$
- $\Rightarrow \mathbb{E}[|E'|] = e(H)p = (1 \pm \delta_1)\frac{\varepsilon n}{r}$
- $\operatorname{Var}(|E'|) = e(H)p(1-p) \le \mathbb{E}[|E'|] = o(\mathbb{E}[|E'|]^2)$
- \therefore Chebyshev \Rightarrow with high probability, $|E'| = (1 \pm 2\delta_1) \frac{\varepsilon n}{r}$

Proof of Lemma, Part b

Lemma 6.2.4.b For $V' = V \setminus (\bigcup_{e \in E'} e)$ we have $|V'| = (1 \pm \delta')ne^{-\varepsilon}$.

•
$$|V'| = \sum_{v \in V} \mathbf{1}_{\{v \in V'\}}$$

•
$$\mathbb{E}\left[1_{\{v\in V'\}}\right] = \mathbb{P}(v\in V') = (1-p)^{\deg(v)}$$

- When $deg(v) = (1 \pm \delta)D$:
 - $\mathbb{E}\left[1_{\{v \in V'\}}\right] = \left(1 \frac{\varepsilon}{D}\right)^{(1 \pm \delta)D} = (1 \pm \delta_2)e^{-\varepsilon}$ for some $\delta_2 = \delta_2(\varepsilon, \delta) \to 0$ and D large
- At most δn exceptional vertices, for which $0 \leq \mathbb{E}\left[1_{\{v \in V'\}}\right] \leq 1$
- $\Rightarrow \mathbb{E}[|V'|] = (1 \pm \delta_3) n e^{-\varepsilon}$ for some $\delta_3 = \delta_3(\varepsilon, \delta) \to 0$

Proof of Lemma, Part b

Lemma 6.2.4.b For $V' = V \setminus (\bigcup_{e \in E'} e)$ we have $|V'| = (1 \pm \delta')ne^{-\varepsilon}$.

Proof (cont'd)

•
$$\operatorname{Var}(|V'|) = \sum_{v \in V} \operatorname{Var}\left(1_{\{v \in V'\}}\right) + \sum_{u \neq v} \operatorname{Cov}\left(1_{\{u \in V'\}}, 1_{\{v \in V'\}}\right)$$

• $\sum_{v \in V} \operatorname{Var}\left(1_{\{v \in V'\}}\right) \leq \sum_{v \in V} \mathbb{E}\left[1_{\{v \in V'\}}\right] = \mathbb{E}[|V'|]$
• $\operatorname{Cov}\left(1_{\{u \in V'\}}, 1_{\{v \in V'\}}\right) = \mathbb{E}\left[1_{\{u \in V'\}} 1_{\{v \in V'\}}\right] - \mathbb{E}\left[1_{\{u \in V'\}}\right] \mathbb{E}\left[1_{\{v \in V'\}}\right]$
 $= (1 - p)^{\operatorname{deg}(u) + \operatorname{deg}(v) - \operatorname{deg}(u, v)} - (1 - p)^{\operatorname{deg}(u) + \operatorname{deg}(v)}$
 $\leq (1 - p)^{-\operatorname{deg}(u, v)} - 1 \leq \left(1 - \frac{\varepsilon}{D}\right)^{-\delta D} - 1$
• $\Rightarrow \operatorname{Cov}\left(1_{\{u \in V'\}}, 1_{\{v \in V'\}}\right) \leq \delta_4 \text{ for some } \delta_4 = \delta_4(\varepsilon, \delta) \to 0$

Proof of Lemma, Part b

Lemma 6.2.4.b For $V' = V \setminus (\bigcup_{e \in E'} e)$ we have $|V'| = (1 \pm \delta')ne^{-\varepsilon}$.

Proof (cont'd)

- Recall
 - $\mathbb{E}[|V'|] = (1 \pm \delta_3)ne^{-\varepsilon}$
 - $\operatorname{Cov}\left(1_{\{u\in V'\}}, 1_{\{v\in V'\}}\right) \leq \delta_4$
- \Rightarrow Var(|V'|) $\leq \mathbb{E}[|V'|] + \delta_4 n^2 \leq 2\delta_4 n^2$
- Chebyshev: $\mathbb{P}(|V'| \neq (1 \pm \delta_5)ne^{-\varepsilon}) \leq \frac{2\delta_4 n^2}{(\delta_5 \delta_3)^2 n^2 e^{-2\varepsilon}}$
 - This can be made arbitrarily small for appropriate choice of $\delta_5
 ightarrow 0$

Proof of Lemma, Part c

Lemma 6.2.4.c

For all but at most $\delta'|V'|$ vertices $v \in V'$, the degree of v in H[V'] is $(1 \pm \delta')De^{-\varepsilon(r-1)}$.

Proof (outline)

- Fix a vertex $v \in V$, and condition on $v \in V'$
- Need to study how many edges $e \ni v$ survive in H[V']
 - Edge e survives if and only if $u \in V'$ for all $u \in e$
- We have good control over vertices of degree $(1 \pm \delta)D$
 - \Rightarrow can control edges whose vertices are all of typical degree
 - Call such edges *good*, and *bad* otherwise
- \Rightarrow can control deg(v) if most edges $e \ni v$ are good
- Shall show that degree conditions ⇒ most vertices are mostly in good edges

Good Edges

Claim 6.3.1

There is some $\delta_6 \rightarrow 0$ such that:

- i. all but at most $\delta_6 n$ vertices have $\deg(v) = (1 \pm \delta_6)D$, and are in at most $\delta_6 D$ bad edges.
- ii. if an edge *e* is good, then given some $v \in e$, we have $|\{f \in E : v \notin f, f \cap e \neq \emptyset\}| = (1 \pm \delta_6)(r-1)D.$

Proof of i.

- At most δn vertices have $\deg(v) \neq (1 \pm \delta)D$
- \Rightarrow there are at most $\delta n \cdot \lambda D$ bad edges.
- \Rightarrow at most $\frac{\delta\lambda nD}{\delta_6 D}$ vertices can be in more than $\delta_6 D$ bad edges
- For a suitable choice of $\delta_6 \to 0$, this is less than $(\delta_6 \delta)n$

Good Edges

Claim 6.3.1

There is some $\delta_6 \rightarrow 0$ such that:

i. all but at most $\delta_6 n$ vertices have $\deg(v) = (1 \pm \delta_6)D$, and are in at most $\delta_6 D$ bad edges.

ii. if an edge *e* is good, then given some $v \in e$, we have $|\{f \in E : v \notin f, f \cap e \neq \emptyset\}| = (1 \pm \delta_6)(r-1)D.$

Proof of ii.

- $e \text{ good} \Rightarrow \text{for the } r 1 \text{ vertices } u \in e, u \neq v$, we have $\deg(u) = (1 \pm \delta)D$
- $\Rightarrow |\{f \in E : v \notin f, f \cap e \neq \emptyset\}| \le (1 + \delta)(r 1)D$
- Overcounted: edges *f* that meet two vertices of *e*
 - Co-degree bound \Rightarrow at most $\binom{r}{2}\delta D$ such edges
- $\Rightarrow |\{f \in E : v \notin f, f \cap e \neq \emptyset\}| \ge (1 \delta)(r 1)D {r \choose 2}\delta D$

Survival of Good Edges

Claim 6.3.2

There is some $\delta_7 \to 0$ such that, if we condition on $v \in V'$, and e is a good edge containing v, then $\mathbb{P}(e \subseteq V') = (1 \pm \delta_7)e^{-\varepsilon(r-1)}$.

- $v \in V' \Rightarrow$ no edge containing v was selected in E'
- $e \subseteq V' \Rightarrow$ every $u \in e$ is also in V'
 - \Rightarrow no edge $f \in E$ with $f \cap e \neq \emptyset$ is selected in E'
- By assumption, this is true for every $f \ni v$
 - \Rightarrow need only consider $\{f \in E : v \notin f, f \cap e \neq \emptyset\}$
- Claim 6.3.1.ii \Rightarrow there are $(1 \pm \delta_6)(r-1)D$ such edges
- Probability none are selected in E' is $(1-p)^{(1\pm\delta_6)(r-1)D}$

•
$$p = \frac{\varepsilon}{D} \Rightarrow$$
 this is $(1 \pm \delta_7)e^{-\varepsilon(r-1)}$

Claim 6.3.3

There is some $\delta_8 \to 0$ such that, if v is a vertex as in Claim 6.3.1.i and we condition on $v \in V'$, then the expected degree $\deg'(v)$ of v in H[V'] is $(1 \pm \delta_8) De^{-\varepsilon(r-1)}$.

- For each edge $e \in E$, let 1_e be the indicator for the event $e \subseteq V'$
- \Rightarrow degree of v in H[V'] is $\sum_{e \ni v} 1_e$
- At most $\delta_6 D$ bad edges containing v
 - $\deg'(v) = \sum_{e \ni v, e \text{ good}} 1_e \pm \delta_6 D$
- Number of good edges containing v is $(1 \pm \delta \pm \delta_6)D$
- Claim 6.3.2 $\Rightarrow \mathbb{E}[1_e] = (1 \pm \delta_7)e^{-\varepsilon(r-1)}$ for every good $e \ni v$
- $\bullet \Rightarrow \mathbb{E}[\deg'(v)] = (1 \pm \delta \pm \delta_6)(1 \pm \delta_7)De^{-\varepsilon(r-1)} \pm \delta_6 D$

Variance in Degrees

Claim 6.3.4

There is some $\delta_9 \to 0$ such that, if v is a vertex as in Claim 6.3.1.i and we condition on $v \in V'$, then $Var(deg'(v)) \leq \delta_9 D^2$.

- As usual, $\operatorname{Var}(\operatorname{deg}'(v)) \leq \mathbb{E}[\operatorname{deg}'(v)] + \sum_{v \in e, f; e \neq f} \operatorname{Cov}(1_e, 1_f)$
- Contribution to sum from bad edges is at most $\delta_6(1+\delta)D^2$
- Fix good $e \ni v$, and estimate $\sum_{f \text{ good}: v \in f \neq e} \text{Cov}(1_e, 1_f)$
- Let $T(e) = \{h \in E : v \notin h, v \cap e \neq \emptyset\}$, and let $t(e, f) = |T(e) \cap T(f)|$

•
$$\operatorname{Cov}(1_e, 1_f) = \mathbb{E}[1_e 1_f] - \mathbb{E}[1_e]\mathbb{E}[1_f]$$

= $(1-p)^{|T(e)\cup T(f)|} - (1-p)^{|T(e)|+|T(f)|}$
 $\leq (1-p)^{-t(e,f)} - 1$

Variance in Degrees

Claim 6.3.4

There is some $\delta_9 \to 0$ such that, if v is a vertex as in Claim 6.3.1.i and we condition on $v \in V'$, then $Var(deg'(v)) \leq \delta_9 D^2$.

Proof (cont'd)

- Recall
 - $T(e) = \{h \in E : v \notin h, v \cap e \neq \emptyset\}$ and $t(e, f) = |T(e) \cap T(f)|$
 - $\operatorname{Cov}(1_e, 1_f) \le (1-p)^{-t(e,f)} 1$
- For each $u \in e$, $\deg(u, v) \le \delta D$
 - \Rightarrow at most $(r-1)\delta D$ edges f with $|e \cap f| \ge 2$
- Otherwise $e \cap f = \{v\}$
 - \Rightarrow for all $h \in T(e) \cap T(f)$ there are $u \in e \setminus \{v\}, u' \in f \setminus \{v\}$ with $u, u' \in h$
 - $\Rightarrow t(e, f) \le (r 1)^2 \delta D$

•
$$\Rightarrow \operatorname{Cov}(1_e, 1_f) \le \left(1 - \frac{\varepsilon}{D}\right)^{-(r-1)^2 \delta D} - 1 \le r^2 \varepsilon \delta$$

Variance in Degrees

Claim 6.3.4

There is some $\delta_9 \to 0$ such that, if v is a vertex as in Claim 6.3.1.i and we condition on $v \in V'$, then $Var(deg'(v)) \leq \delta_9 D^2$.

Proof (cont'd)

• $\operatorname{Var}(\operatorname{deg}'(v)) \leq 2\delta_6 D^2 + \sum_{v \in e, e \text{ good}} \sum_{v \in f, f \text{ good}} \operatorname{Cov}(1_e, 1_f)$ $\leq 2\delta_6 D^2 + \sum_{v \in e, e \text{ good}} \left((r-1)\delta D + \sum_{f \text{ good}, f \cap e = \{v\}} \operatorname{Cov}(1_e, 1_f) \right)$ $\leq 2\delta_6 D^2 + \sum_{v \in e, e \text{ good}} \left((r-1)\delta D + \sum_{f \text{ good}, f \cap e = \{v\}} r^2 \varepsilon \delta \right)$ $\leq 2\delta_6 D^2 + (1+\delta) D \cdot \left((r-1)\delta D + (1+\delta) D \cdot r^2 \varepsilon \delta \right)$

• For appropriate $\delta_9 \rightarrow 0$, this is at most $\delta_9 D^2$

Completing the Proof

Lemma 6.2.4.c

For all but at most $\delta'|V'|$ vertices $v \in V'$, the degree of v in H[V'] is $(1 \pm \delta')De^{-\varepsilon(r-1)}$.

- All but at most $\delta_6 n$ vertices are as in Claim 6.3.1.i; can ignore the rest
- For such a vertex v, conditioning on $v \in V'$:
 - Claim 6.3.3: $\mathbb{E}[\deg'(v)] = (1 \pm \delta_8) De^{-\varepsilon(r-1)}$
 - Claim 6.3.4: $\operatorname{Var}(\operatorname{deg}'(v)) \leq \delta_9 D^2$
- Chebyshev: for some $\delta_{10} \to 0$, $\mathbb{P}(\deg(v) \neq (1 \pm \delta_{10})De^{-\varepsilon(r-1)}) \leq \delta_6$
- Markov: the probability of having more than $2\delta_6 |V'|$ such vertices in V'whose degree is not $(1 \pm \delta_{10})De^{-\varepsilon(r-1)}$ is less than $\frac{1}{2}$

Epilogue

Central question

- For which *n* does a *t*-(*n*, *k*, 1) design exist?
- Divisibility conditions ⇒ infinite sequence of possible values
 - These conditions are necessary, but *not* sufficient

Erdős-Hanani Conjecture / Rödl's Theorem

• \Rightarrow for all large *n*, *asymptotic* designs exist

Exact results

- Wilson (1972-1975): $t = 2, k \ge 3, n$ large and satisfying divisibility conditions
- Keevash (2014+): generalised Wilson to all t
 - Follows the steps of Rödl Nibble, but uses an algebraic construction to complete design
- Glock, Kühn, Lo and Osthus (2016+): new proof of existence of designs
 - Proof is purely combinatorial/probabilistic

Any questions?