Counting Designs

Paper by Peter Keevash

November 25, 2016

Introduction

- A simple (n, q, r, λ) -design is a family $\mathcal{F} \in \binom{[n]}{q}$ such that every $A \in \binom{[n]}{r}$ is contained in exactly λ members of \mathcal{F} .
- Divisibility conditions

$$\binom{q-i}{r-i}$$
 divides $\lambda \binom{n-i}{r-i}$, $0 \le i \le r-1$. (1)

Theorem (Keevash)

For fixed q, r, and λ , there exists $n_0(q, r, \lambda)$ such that if $n > n_0(q, r, \lambda)$ satisfies the divisibility conditions (1) then an (n, q, r, λ) -design exists.

• Proving Keevash's theorem for (n, 3, 2, 1)-designs.

When does a graph have triangle decomposition?

- When does a graph G have triangle decompositions? i.e, G is edge-disjoint of triangles.
- Assume that G has a triangle decomposition.
 - i) 3 divides e(G).
 - ii) deg(v) is even for all $v \in V(G)$.
- **Definition.** G is tridivisible if (i) and (ii) hold.
- Does every tridivisible graph have a triangle decomposition?
- Answer: No, e.g C_6 .

(c, h)-typical graph

- G: graph on n vertices. G(v): set of neighbors of v.
- Density of G is $d(G) = e(G)/\binom{n}{2}$.
- G is (c,h)-typical if for any $S \subseteq V(G)$ with $|S| \leq h$, then

$$|\cap_{x\in S} G(x)| = |G(S)| = (1 \pm |S|c)d(G)^{|S|}n.$$

- For example, G is (c, 2)-typical (or c-typical) if
 - i) $|G(v)| = (1 \pm c)d(G)n, \forall v \in V(G),$
 - ii) $|G(u) \cap G(v)| = (1 \pm 2c)d(G)^2n, \forall u, v \in V(G), u \neq v.$
- Example. K_n is 1/n-typical. We have $d(K_n) = 1$
 - i) $|G(v)| = n 1 = n \pm 1 = (1 \pm 1/n)n(= (1 \pm c)d(G)n),$
 - ii) $|G(u) \cap G(v)| = n 2 = (n \pm 2)(= (1 \pm 2c)d(G)^2n).$

Keevash's main Theorem

Theorem (Keevash, 2015)

There exists $0 < c_0 < 1$ and $n_0 \in \mathbb{N}$ so that if $n \ge n_0$ and G is a (c,16)-typical tridivisible graph on n vertices with $d(G) > n^{-10^{-7}}$ and $c < c_0 d(G)^{10^6}$ then G has a triangle decomposition.

- The theorem is also true for (c, 2)-typical graphs.
- Density decays polynomially with n.
- Theorem holds for large n and small c.

Strategy for proof

- Use Randomized Algebraic Construction method.
- Combination of algebraic structure with the probabilistic constructions.
- The proof has 5 stages (in 4 lectures).
- **Notation.** Let $K_3(G)$ denote the set of triangles in G.
- Let T be set of edge-disjoint triangle of G. We write $\cup T$, the union of all edges in triangles in T.

5 stages for proof

• $J \subseteq G$ is c-bounded if |J(v)| < cn, for every $v \in V(G)$, where $J(v) = \{u \in V(G) : uv \in J\}$ is the neighbourhood of v in J.

Find triangle decomposition

1. **Template.** Find a SET (set of edge-disjoint triangle) T in $\mathsf{K}_3(\mathsf{G})$ via an algebraic construction.

 $G^* = UT \subseteq G$.

2. Nibble: Find a SET N in G\G*.

2. Nibble: Find a SET N in G\G*.

2. Nibble: Find a SET N in G\G*.

2. Nibble: We want the leave L:= $(G\backslash G^*)\backslash UN$ is c_1 -bounded.

3. **Cover**: Given L, cover each edge in L by triangle using two edges in G^* s.t new triangle is edge-disjoint from previous choices.

3. **Cover**: Given L, cover each edge in L by triangle using two edges in G* s.t new triangle is edge-disjoint from previous choices.

3. **Cover**: Given L, cover each edge in L by triangle using two edges in G* s.t new triangle is edge-disjoint from previous choices.

3. **Cover**: Given L, cover each edge in L by triangle using two edges in G* s.t new triangle is edge-disjoint from previous choices.

4. & 5. **Hole & Completion.** Switch triangles in T to get a triangle decomposition.

4. & 5. **Hole & Completion.** Switch triangles in T to get a triangle decomposition.

4. & 5. **Hole & Completion.** Switch triangles in T to get a triangle decomposition.

