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Quick Review — Definitions

Definition

Recall that d(G ) denotes the density of the graph d(G ) = |E |
(n2)

.

Definition

We say a graph G = (V ,E ) is (c , h)-typical if for every subset
S ⊆ V with |S | ≤ h, we have that

degG (S) = (1± |S |c)d(G )|S|n.

Definition

A graph G = (V ,E ) is tridivisible if it satisfies the divisibility
requirements for a triangle decomposition:

(i) 3 | |E |, and

(ii) 2 | deg(v) for all v ∈ V .
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Quick Review — Main result

We are proving the following theorem:

Theorem

There exists 0 < c0 < 1 and n0 ∈ N such that if n > n0, and G is
a (c , 16)-typical tridivisible graph on n vertices, with

(i) d(G ) > n−10
−7

, and

(ii) c < c0d(G )10
6

,

then G has a triangle decomposition.
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Quick Review — Strategy

1 Template Start with SET with some nice structure (G ∗).

2 Nibble Find large SET in G \ G ∗ using Rödl nibble.

3 Cover Get remaining edges into 4s, but make a mess.

4 Hole Clean up the mess.

5 Completion Patch it together to find 4-decomposition.



Where we stand

Last week, we used the template step to get a subgraph G ∗ ⊆ G
such that:

d(G ∗) = (1± 3c)d(G )3γ.

(G ∗,G ) is jointly (c1, 16)-typical. (with c1 = 6c)

G \ G ∗ is (c2, 2)-typical. (with c2 = 50c)



Where we stand

Last week, we used the template step to get a subgraph G ∗ ⊆ G
such that:

d(G ∗) = (1± 3c)d(G )3γ.

(G ∗,G ) is jointly (c1, 16)-typical. (with c1 = 6c)

G \ G ∗ is (c2, 2)-typical. (with c2 = 50c)



Where we stand

Last week, we used the template step to get a subgraph G ∗ ⊆ G
such that:

d(G ∗) = (1± 3c)d(G )3γ.

(G ∗,G ) is jointly (c1, 16)-typical. (with c1 = 6c)

G \ G ∗ is (c2, 2)-typical. (with c2 = 50c)



Where we stand

Last week, we used the template step to get a subgraph G ∗ ⊆ G
such that:

d(G ∗) = (1± 3c)d(G )3γ.

(G ∗,G ) is jointly (c1, 16)-typical. (with c1 = 6c)

G \ G ∗ is (c2, 2)-typical. (with c2 = 50c)



Goal this week

Definition

Let J ⊆ G with V (J) = V (G ) =: V , and E (J) ⊆ E (G ). We say J
is c-bounded if degJ(v) ≤ c |V | for all v ∈ V .

This week, we hope to achieve the following:

Use the Rödl Nibble to find a SET (set of edge disjoint
triangles) N ⊆ (G \ G ∗) such that L := (G \ G ∗) \ (

⋃
N) is

c3-bounded with c3 = c
1/4
2 = (50c)1/4.

Find a SET MC such that S :=
⋃

MC ∩ G ∗ is c4-bounded

with c4 =
10c3

d(G ∗)2
.
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Nibble — What we need

Theorem

There are c0 > 0 and n0 ∈ N such that if n > n0, n−1/10 < c < c0,
and H is a (c , 2)-typical graph on n vertices with d(H) > 1

2n
−10−7

,
there is a SET N such that H \ (

⋃
N) is c ′-bounded for some

c ′ < c1/4.

Remark

We apply this theorem with H = (G \ G ∗) and c = c2 to achieve
the necessary c3.

Remark

This is a stronger conclusion than we achieved with the Rödl
Nibble we saw in class: c ′-bounded means every vertex has degree
at most c ′n in the leave H \ (

⋃
N).
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Nibble — Setup

Let η = n−10
−5

. Start with G0 := H. Given a graph Gi with
0 ≤ i ≤ t0, we perform the following operation:

Set di := d(H)(1− η)i .

Set pi :=
η

d2
i n

.

Let Ti be a uniform randomly chosen subset of the triangles of
Gi , where each triangle t is in Ti with probability pi .

Let T̂i := Ti \ {all triangles that share edges}.

Delete E
(
T̂i
)

from Gi to create Gi+1.

Let N :=

t0⋃
i=0

T̂i .
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Simplified example — not to scale

Choose triangles to be in Ti uniformly at random



Simplified example — not to scale

We don’t want to keep triangles which share edges



Simplified example — not to scale

Throw these back to create T̂i



Simplified example — not to scale

Delete edges in triangles of T̂i to create Gi+1



Nibble — Not so simple

Discard all of these triangles.



Nibble Step Lemma

Lemma

Let Gi be a graph such that for all u, v ∈ V ,

(i) degGi
(v) =

(
1± c(i)

)
din, and

(ii) degGi
({u, v}) =

(
1± c(i)

)
d2
i n,

and let Gi+1 be the graph obtained after the next step of the
algorithm. With probability 1− o

(
1
n

)
, the following holds for all

u, v ∈ V :

(a) degGi+1
(v) =

(
1± c(i+1)

)
(1− η)din,

(b) degGi+1
({u, v}) =

(
1± c(i+1)

)
((1− η)di )

2n,

(c) the number of “chosen” and kept triangles is(
1± c(i+1)

)
ηdin

2/6,

for c(i+1) =
(
1 + O

(
c(i)η + η2

))
c(i).
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Nibble Step Proof (very) Sketch

We bound the probability that e ∈ E (Gi ) is removed.

For two edges e1, e2, we bound the probability that both are
removed.

We use these bounds to calculate the expected degree and
codegree of vertices in Gi+1.

We need a stronger concentration inequality than Chebychev’s
to succeed with our stronger conditions.

Application of these inequalities gives us the conclusions for
degree and codegree, and

a degree sum on the resulting graph gives us the number of
triangles we removed.
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Applying the lemma

We now apply the lemma iteratively until we reach
c3-boundedness for (G \ G ∗) \ N.

Note that at step i , the maximum degree in (G \ G ∗) \ N is
di
(
1 + c(i)

)
n ≤ 2din.

Thus, we succeed at attaining our desired boundedness by
reducing di without letting c(i) run out of control.
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Cover — Idea

Between the Template (whose union is G ∗) and the Nibble, we
have all but an extremely small number (< 3c1/4n2) of edges
covered by disjoint triangles. The remaining edges lie in L (the
leave).

N TL
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Between the Template (whose union is G ∗) and the Nibble, we
have all but an extremely small number (< 3c1/4n2) of edges
covered by disjoint triangles. The remaining edges lie in L (the
leave).

N TL

L is c3-bounded: max degree in L is at most c3n
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from those which contain ei and two edges from G ∗. . .
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. . . but we restrict our choices to edges which have not been
previously chosen!

L G ∗Tiei



Cover — Idea

If we succeed, MC will be an SET covering all edges of L.

L G ∗Tiei



Cover — Idea

Some edges are now in a triangle of MC , and another of T , but no
edge is in more.

L G ∗ei Ti
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Question

What if we want to cover ei , but there are no appropriate edges of
G ∗ which have not yet been used?

L G ∗ei
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Cover — What could go wrong?

Question

What if we want to cover ei , but there are no appropriate edges of
G ∗ which have not yet been used?

Remark

Let S :=
⋃

MC ∩ G ∗. We will require degS(v) to be bounded for
all v ∈ V in order to repair it later.

Remark

We call S the spill.



Cover Lemma

Lemma

Following this procedure, for 1 ≤ i ≤ t, with high probability, we
find an appropriate Ti for each ei , and also S =

⋃
MC ∩ G ∗ is

c4-bounded with

c4 =
10c3

d(G ∗)2
.
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Definition

For each i ∈ [t], let

Si =
⋃
j<i

(Tj \ ej).

This is the spill from previous triangles at step i .

Claim

If Si is c4-bounded, we can always find a pair of edges of G ∗ to
create Ti with ei .

Note that if Si is c4-bounded, then we have many choices for Ti

for each ei .
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Consider a fixed i0. We want a bound on P(τ = i0 | τ ≥ i0).

We can assume Si0−1 is c4-bounded (since τ ≥ i0).

In fact, we will show that w.h.p., Si0−1 is
c4
2

-bounded.

Fix some vertex v .

Define a r.v. X to be the number of edges ej ∈ L (with
j < i0) such that Tj uses ej , and two ej -v edges.

degSi0−1
(v) ≤ degL(v) + 2X .

We want to bound X .

X =
∑

j<i0
Xj , where Xj is the indicator r.v. for the event

Tj = ej ∪ {v}.
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Definition

A random variable Y =
∑n

i=1 Yi is (µ,C )-dominated if:

(i) |Yi | ≤ C for every 1 ≤ i ≤ n, and

(ii) there are µ1, . . . , µn such that
∑
µi ≤ µ, and conditional on

any values Yj for j < i , we have E[|Yi |] ≤ µi for every
1 ≤ i ≤ n.

Number of choices from ej ’s perspective is at least
degG∗(ej)− 2c4n ≥ d(G ∗)2n/2 (c4 is tiny compared to
d(G ∗)).

P(Xj = 1) ≤ 2

d(G ∗)2n
=⇒ X is

(
2|L|

d(G∗)2n
, 1
)

-dominated.
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Lemma (Black Box — Keevash)

If Y is (µ, 1)-dominated, then

P(|Y | > 2µ) ≤ 2 exp(−µ/6)

Now, since L is c3-bounded, we have

E[X ] ≤ 2|L|
d(G ∗)2n

≤ c3n

d(G ∗)2
,

and we deduce

P

(
X >

2c3n

d(G ∗)2

)
< 2 exp

(
− c3n

12d(G ∗)2

)
< exp

(
−Ω
(
n1/2

))
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Now, we have w.h.p. that degSj (v) ≤ c4n
2 for j < i0.

There are only polynomially many choices for v .

So a union bound (over v ∈ V ) gives that w.h.p., Si0−1 is
c4
2 -bounded, and so τ 6= i0.

Now, a union bound over all 1 ≤ i0 ≤ t gives that w.h.p.,
τ =∞, as desired.

Thus, we successfully complete the cover of the edges of L,
and S is c4-bounded.



Where we now stand

TG \ G ∗

We had completed the template step, giving an SET T .
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The graph on the uncovered edges is (c2, 2)-typical.



Where we now stand

TN

The nibble covers most of the remaining edges, but. . .



Where we now stand

TN L

. . . leaves behind a set L of uncovered edges.



Where we now stand

TN L

L is c3-bounded, i.e., degL(v) ≤ c3n for v ∈ V .



Where we now stand

TN L

N, L, and T are pairwise disjoint as edge sets, and. . .



Where we now stand

TN L

T , N are each an SET.



Where we now stand

TN L

We then cover L with triangles using edges from G ∗ =
⋃
T .



Where we now stand

TN MC

This gives another SET MC , but. . .



Where we now stand

TN MC

. . .
(⋃

MC
)
∩ G ∗ 6= ∅.



Where we now stand

TN S

The graph on the set of edges covered twice is denoted S .



Where we now stand

TN L MC S

A mess, but S is c4-bounded: degS(v) ≤ c4n for all v ∈ V .



Where we now stand

TN L MC S

This will allow us to clean up this mess next week.



Where we now stand — All on one page

Recall that the template step gave us an SET T with
⋃
T = G ∗

such that

d(G ∗) = (1± 3c)d(G )3γ.

(G ∗,G ) is jointly (c1, 16)-typical. (with c1 = 6c)

G \ G ∗ is (c2, 2)-typical. (with c2 = 50c)

Now, we have covered all edges of G with triangles. We have
SETs N,T ,MC with N ∩MC = ∅, and N ∩ T = ∅. Sadly, there is
a subgraph S =

(⋃
MC

)
∩ G ∗ of edges which are covered twice,

with the following properties:

S is c4-bounded.

S is tridivisible.


