Counting Designs — Nibble, Cover

Brent Moran

FU DMIII Seminar WS 2016

Quick Review — Definitions

Definition

Recall that d(G) denotes the density of the graph $d(G) = \frac{|E|}{\binom{n}{2}}$.

Quick Review — Definitions

Definition

Recall that d(G) denotes the density of the graph $d(G) = \frac{|E|}{\binom{n}{2}}$.

Definition

We say a graph G = (V, E) is (c, h)-typical if for every subset $S \subseteq V$ with $|S| \leq h$, we have that

$$\deg_G(S) = (1 \pm |S|c)d(G)^{|S|}n.$$

Quick Review — Definitions

Definition

Recall that d(G) denotes the density of the graph $d(G) = \frac{|E|}{\binom{n}{2}}$.

Definition

We say a graph G = (V, E) is (c, h)-typical if for every subset $S \subseteq V$ with $|S| \leq h$, we have that

$$\deg_G(S) = (1 \pm |S|c)d(G)^{|S|}n.$$

Definition

A graph G = (V, E) is tridivisible if it satisfies the divisibility requirements for a triangle decomposition:

(i) 3 | |E|, and

(ii)
$$2 \mid \deg(v)$$
 for all $v \in V$.

Theorem

There exists $0 < c_0 < 1$ and $n_0 \in \mathbb{N}$ such that if $n > n_0$, and G is a (c, 16)-typical tridivisible graph on n vertices, with

Theorem

There exists $0 < c_0 < 1$ and $n_0 \in \mathbb{N}$ such that if $n > n_0$, and G is a (c, 16)-typical tridivisible graph on n vertices, with (i) $d(G) > n^{-10^{-7}}$, and

Theorem

There exists $0 < c_0 < 1$ and $n_0 \in \mathbb{N}$ such that if $n > n_0$, and G is a (c, 16)-typical tridivisible graph on n vertices, with (i) $d(G) > n^{-10^{-7}}$, and (ii) $c < c_0 d(G)^{10^6}$,

Theorem

There exists $0 < c_0 < 1$ and $n_0 \in \mathbb{N}$ such that if $n > n_0$, and G is a (c, 16)-typical tridivisible graph on n vertices, with (i) $d(G) > n^{-10^{-7}}$, and (ii) $c < c_0 d(G)^{10^6}$, then G has a triangle decomposition.

- **1** Template Start with SET with some nice structure (G^*) .
- 2 Nibble
- 3 Cover
- 4 Hole
- 5 Completion

- Template Start with SET with some nice structure (G*).
 Nibble Find large SET in G \ G* using Rödl nibble.
- 3 Cover
- 4 Hole
- 5 Completion

- **1** Template Start with SET with some nice structure (G^*) .
- **2** Nibble Find large SET in $G \setminus G^*$ using Rödl nibble.
- **3** Cover Get remaining edges into \triangle s, but make a mess.
- 4 Hole
- 5 Completion

- Template Start with SET with some nice structure (G*).
 Nibble Find large SET in G \ G* using Rödl nibble.
 Cover Get remaining edges into △s, but make a mess.
 Hole Clean up the mess.
- 5 Completion

Template Start with SET with some nice structure (G*).
 Nibble Find large SET in G \ G* using Rödl nibble.
 Cover Get remaining edges into △s, but make a mess.
 Hole Clean up the mess.
 Completion Patch it together to find △-decomposition.

•
$$d(G^*) = (1 \pm 3c)d(G)^3\gamma$$
.

•
$$d(G^*) = (1 \pm 3c)d(G)^3\gamma$$
.

• (G^*, G) is jointly $(c_1, 16)$ -typical. (with $c_1 = 6c$)

•
$$d(G^*) = (1 \pm 3c)d(G)^3\gamma$$
.

- (G^*, G) is jointly $(c_1, 16)$ -typical. (with $c_1 = 6c$)
- $G \setminus G^*$ is $(c_2, 2)$ -typical. (with $c_2 = 50c$)

Definition

Let $J \subseteq G$ with V(J) = V(G) =: V, and $E(J) \subseteq E(G)$. We say J is <u>c-bounded</u> if deg_J(v) $\leq c|V|$ for all $v \in V$.

Definition

Let $J \subseteq G$ with V(J) = V(G) =: V, and $E(J) \subseteq E(G)$. We say J is <u>c-bounded</u> if deg_J(v) $\leq c|V|$ for all $v \in V$.

This week, we hope to achieve the following:

Definition

Let $J \subseteq G$ with V(J) = V(G) =: V, and $E(J) \subseteq E(G)$. We say J is <u>c-bounded</u> if deg_J(v) $\leq c|V|$ for all $v \in V$.

This week, we hope to achieve the following:

• Use the Rödl Nibble to find a SET (set of edge disjoint triangles) $N \subseteq (G \setminus G^*)$ such that $L := (G \setminus G^*) \setminus (\bigcup N)$ is c_3 -bounded with $c_3 = c_2^{1/4} = (50c)^{1/4}$.

Definition

Let $J \subseteq G$ with V(J) = V(G) =: V, and $E(J) \subseteq E(G)$. We say J is <u>c-bounded</u> if deg_J(v) $\leq c|V|$ for all $v \in V$.

This week, we hope to achieve the following:

• Use the Rödl Nibble to find a SET (set of edge disjoint triangles) $N \subseteq (G \setminus G^*)$ such that $L := (G \setminus G^*) \setminus (\bigcup N)$ is c_3 -bounded with $c_3 = c_2^{1/4} = (50c)^{1/4}$.

Find a SET M^C such that $S := \bigcup M^C \cap G^*$ is c_4 -bounded with $c_4 = \frac{10c_3}{d(G^*)^2}$.

Theorem

There are $c_0 > 0$ and $n_0 \in \mathbb{N}$ such that if $n > n_0$, $n^{-1/10} < c < c_0$, and H is a (c, 2)-typical graph on n vertices with $d(H) > \frac{1}{2}n^{-10^{-7}}$, there is a SET N such that $H \setminus (\bigcup N)$ is c'-bounded for some $c' < c^{1/4}$.

Theorem

There are $c_0 > 0$ and $n_0 \in \mathbb{N}$ such that if $n > n_0$, $n^{-1/10} < c < c_0$, and H is a (c, 2)-typical graph on n vertices with $d(H) > \frac{1}{2}n^{-10^{-7}}$, there is a SET N such that $H \setminus (\bigcup N)$ is c'-bounded for some $c' < c^{1/4}$.

Remark

We apply this theorem with $H = (G \setminus G^*)$ and $c = c_2$ to achieve the necessary c_3 .

Theorem

There are $c_0 > 0$ and $n_0 \in \mathbb{N}$ such that if $n > n_0$, $n^{-1/10} < c < c_0$, and H is a (c, 2)-typical graph on n vertices with $d(H) > \frac{1}{2}n^{-10^{-7}}$, there is a SET N such that $H \setminus (\bigcup N)$ is c'-bounded for some $c' < c^{1/4}$.

Remark

We apply this theorem with $H = (G \setminus G^*)$ and $c = c_2$ to achieve the necessary c_3 .

Remark

This is a *stronger* conclusion than we achieved with the Rödl Nibble we saw in class: c'-bounded means *every* vertex has degree at most c'n in the leave $H \setminus (\bigcup N)$.

Let $\eta = n^{-10^{-5}}$. Start with $G_0 := H$. Given a graph G_i with $0 \le i \le t_0$, we perform the following operation:

• Set $d_i := d(H)(1-\eta)^i$.

• Set
$$d_i := d(H)(1-\eta)^i$$
.
• Set $p_i := \frac{\eta}{d_i^2 n}$.

Let $\eta = n^{-10^{-5}}$. Start with $G_0 := H$. Given a graph G_i with $0 \le i \le t_0$, we perform the following operation:

Set
$$d_i := d(H)(1-\eta)^i$$
.
Set $p_i := \frac{\eta}{d_i^2 n}$.

Let T_i be a uniform randomly chosen subset of the triangles of G_i, where each triangle t is in T_i with probability p_i.

Set
$$d_i := d(H)(1-\eta)^i$$

Set $p_i := \frac{\eta}{d_i^2 n}$.

- Let T_i be a uniform randomly chosen subset of the triangles of G_i, where each triangle t is in T_i with probability p_i.
- Let $\hat{\mathcal{T}}_i := \mathcal{T}_i \setminus \{ \text{all triangles that share edges} \}.$

Set
$$d_i := d(H)(1-\eta)^i$$

Set $p_i := \frac{\eta}{d_i^2 n}$.

- Let T_i be a uniform randomly chosen subset of the triangles of G_i, where each triangle t is in T_i with probability p_i.
- Let $\hat{\mathcal{T}}_i := \mathcal{T}_i \setminus \{ \text{all triangles that share edges} \}.$

• Delete
$$E(\hat{T}_i)$$
 from G_i to create G_{i+1} .

Set
$$d_i := d(H)(1-\eta)^i$$

Set $p_i := \frac{\eta}{d_i^2 n}$.

- Let T_i be a uniform randomly chosen subset of the triangles of G_i, where each triangle t is in T_i with probability p_i.
- Let $\hat{\mathcal{T}}_i := \mathcal{T}_i \setminus \{ \text{all triangles that share edges} \}.$
- Delete $E(\hat{\mathcal{T}}_i)$ from G_i to create G_{i+1} .

Let
$$N := \bigcup_{i=0}^{t_0} \hat{\mathcal{T}}_i.$$

We don't want to keep triangles which share edges

Delete edges in triangles of $\hat{\mathcal{T}}_i$ to create G_{i+1}
Nibble — Not so simple

Discard all of these triangles.

Lemma

Let G_i be a graph such that for all $u, v \in V$,

Lemma

Let G_i be a graph such that for all $u, v \in V$,

(i)
$$\deg_{G_i}(v) = (1 \pm c^{(i)})d_in$$
, and

Lemma

Let G_i be a graph such that for all $u, v \in V$,

(i)
$$\deg_{G_i}(v) = (1 \pm c^{(i)})d_in$$
, and
(ii) $\deg_{G_i}(\{u, v\}) = (1 \pm c^{(i)})d_i^2n$,

Lemma

Let G_i be a graph such that for all $u, v \in V$,

(i)
$$\deg_{G_i}(v) = (1 \pm c^{(i)})d_in$$
, and
(ii) $\deg_{G_i}(\{u, v\}) = (1 \pm c^{(i)})d_i^2n$,

Lemma

Let G_i be a graph such that for all $u, v \in V$,

(i)
$$\deg_{G_i}(v) = (1 \pm c^{(i)})d_in$$
, and
(ii) $\deg_{G_i}(\{u, v\}) = (1 \pm c^{(i)})d_i^2n$,

(a)
$$\deg_{G_{i+1}}(v) = (1 \pm c^{(i+1)})(1-\eta)d_in$$
,

Lemma

Let G_i be a graph such that for all $u, v \in V$,

(i)
$$\deg_{G_i}(v) = (1 \pm c^{(i)})d_in$$
, and
(ii) $\deg_{G_i}(\{u, v\}) = (1 \pm c^{(i)})d_i^2n$,

(a)
$$\deg_{G_{i+1}}(v) = (1 \pm c^{(i+1)})(1-\eta)d_in$$
,
(b) $\deg_{G_{i+1}}(\{u,v\}) = (1 \pm c^{(i+1)})((1-\eta)d_i)^2n$,

Lemma

Let G_i be a graph such that for all $u, v \in V$,

(i)
$$\deg_{G_i}(v) = (1 \pm c^{(i)})d_in$$
, and
(ii) $\deg_{G_i}(\{u, v\}) = (1 \pm c^{(i)})d_i^2n$,

Lemma

Let G_i be a graph such that for all $u, v \in V$,

(i)
$$\deg_{G_i}(v) = (1 \pm c^{(i)})d_in$$
, and
(ii) $\deg_{G_i}(\{u, v\}) = (1 \pm c^{(i)})d_i^2n$,

and let G_{i+1} be the graph obtained after the next step of the algorithm. With probability $1 - o(\frac{1}{n})$, the following holds for all $u, v \in V$:

(a)
$$\deg_{G_{i+1}}(v) = (1 \pm c^{(i+1)})(1-\eta)d_i n$$
,
(b) $\deg_{G_{i+1}}(\{u,v\}) = (1 \pm c^{(i+1)})((1-\eta)d_i)^2 n$,
(c) the number of "chosen" and kept triangles is
 $(1 \pm c^{(i+1)})\eta d_i n^2/6$,

for $c^{(i+1)} = (1 + O(c^{(i)}\eta + \eta^2))c^{(i)}$.

• We bound the probability that $e \in E(G_i)$ is removed.

- We bound the probability that $e \in E(G_i)$ is removed.
- For two edges *e*₁, *e*₂, we bound the probability that both are removed.

- We bound the probability that $e \in E(G_i)$ is removed.
- For two edges *e*₁, *e*₂, we bound the probability that both are removed.
- We use these bounds to calculate the expected degree and codegree of vertices in G_{i+1}.

- We bound the probability that $e \in E(G_i)$ is removed.
- For two edges *e*₁, *e*₂, we bound the probability that both are removed.
- We use these bounds to calculate the expected degree and codegree of vertices in *G*_{*i*+1}.
- We need a stronger concentration inequality than Chebychev's to succeed with our stronger conditions.

- We bound the probability that $e \in E(G_i)$ is removed.
- For two edges *e*₁, *e*₂, we bound the probability that both are removed.
- We use these bounds to calculate the expected degree and codegree of vertices in *G*_{*i*+1}.
- We need a stronger concentration inequality than Chebychev's to succeed with our stronger conditions.
- Application of these inequalities gives us the conclusions for degree and codegree, and

- We bound the probability that $e \in E(G_i)$ is removed.
- For two edges *e*₁, *e*₂, we bound the probability that both are removed.
- We use these bounds to calculate the expected degree and codegree of vertices in *G*_{*i*+1}.
- We need a stronger concentration inequality than Chebychev's to succeed with our stronger conditions.
- Application of these inequalities gives us the conclusions for degree and codegree, and
- a degree sum on the resulting graph gives us the number of triangles we removed.

• We now apply the lemma iteratively until we reach c_3 -boundedness for $(G \setminus G^*) \setminus N$.

- We now apply the lemma iteratively until we reach c_3 -boundedness for $(G \setminus G^*) \setminus N$.
- Note that at step *i*, the maximum degree in $(G \setminus G^*) \setminus N$ is $d_i(1 + c^{(i)}) n \leq 2d_i n$.

- We now apply the lemma iteratively until we reach c_3 -boundedness for $(G \setminus G^*) \setminus N$.
- Note that at step *i*, the maximum degree in $(G \setminus G^*) \setminus N$ is $d_i(1 + c^{(i)})n \leq 2d_in$.
- Thus, we succeed at attaining our desired boundedness by reducing d_i without letting c⁽ⁱ⁾ run out of control.

Between the **Template** (whose union is G^*) and the **Nibble**, we have all but an extremely small number ($< 3c^{1/4}n^2$) of edges covered by disjoint triangles. The remaining edges lie in *L* (the **leave**).

Between the **Template** (whose union is G^*) and the **Nibble**, we have all but an extremely small number ($< 3c^{1/4}n^2$) of edges covered by disjoint triangles. The remaining edges lie in *L* (the **leave**).

L is c_3 -bounded: max degree in L is at most $c_3 n$

Use edges from G^* to cover edges from the **leave**.

We order the edges: $L = (e_i : i \in [t])$, where t := |L|.

 G^*

We want to construct an SET M^C one triangle at at time.

For $1 \le i \le t$, let T_i be a triangle chosen uniformly at random from those which contain e_i and two edges from G^* ...

... but we restrict our choices to edges which have not been previously chosen!

If we succeed, M^C will be an SET covering all edges of L.

Some edges are now in a triangle of M^{C} , and another of T, but no edge is in more.

Question

What if we want to cover e_i , but there are no appropriate edges of G^* which have not yet been used?

Cover — What could go wrong?

Question

What if we want to cover e_i , but there are no appropriate edges of G^* which have not yet been used?

Cover — What could go wrong?

Question

What if we want to cover e_i , but there are no appropriate edges of G^* which have not yet been used?

Remark

Let $S := \bigcup M^C \cap G^*$. We will require deg_S(v) to be bounded for all $v \in V$ in order to repair it later.

Cover — What could go wrong?

Question

What if we want to cover e_i , but there are no appropriate edges of G^* which have not yet been used?

Remark

Let $S := \bigcup M^C \cap G^*$. We will require deg_S(v) to be bounded for all $v \in V$ in order to repair it later.

Remark

We call S the **spill**.

Lemma

Following this procedure, for $1 \le i \le t$, with high probability, we find an appropriate T_i for each e_i , and also $S = \bigcup M^C \cap G^*$ is c_4 -bounded with

$$c_4=\frac{10c_3}{d(G^*)^2}.$$

Definition

For each $i \in [t]$, let

$$S_i = \bigcup_{j < i} (T_j \setminus e_j).$$

This is the spill from previous triangles at step i.

Definition

For each $i \in [t]$, let

$$S_i = \bigcup_{j < i} (T_j \setminus e_j).$$

This is the spill from previous triangles at step i.

Claim

If S_i is c_4 -bounded, we can always find a pair of edges of G^* to create T_i with e_i .

Definition

For each $i \in [t]$, let

$$S_i = \bigcup_{j < i} (T_j \setminus e_j).$$

This is the spill from previous triangles at step i.

Claim

If S_i is c_4 -bounded, we can always find a pair of edges of G^* to create T_i with e_i .

Note that if S_i is c_4 -bounded, then we have many choices for T_i for each e_i .

• Let B_i be the "bad event" that S_i is not c_4 -bounded.
- Let B_i be the "bad event" that S_i is not c_4 -bounded.
- Define τ as the minimum *i* such that B_i holds. Say $\tau = \infty$ if there is no such *i*.

- Let B_i be the "bad event" that S_i is not c_4 -bounded.
- Define \(\tau\) as the minimum \(i\) such that \(B_i\) holds. Say \(\tau = \infty\) if there is no such \(i\).
- Condition on *i*:

$$\mathbb{P}(\tau < \infty) \le \sum_{i=1}^{t} \mathbb{P}(\tau = i \mid \tau \ge i)$$

- Let B_i be the "bad event" that S_i is not c_4 -bounded.
- Define τ as the minimum *i* such that B_i holds. Say $\tau = \infty$ if there is no such *i*.
- Condition on *i*:

$$\mathbb{P}(\tau < \infty) \le \sum_{i=1}^{t} \mathbb{P}(\tau = i \mid \tau \ge i)$$

• Consider a fixed i_0 . We want a bound on $\mathbb{P}(\tau = i_0 \mid \tau \geq i_0)$.

• Consider a fixed i_0 . We want a bound on $\mathbb{P}(\tau = i_0 \mid \tau \geq i_0)$.

- Consider a fixed i_0 . We want a bound on $\mathbb{P}(\tau = i_0 \mid \tau \geq i_0)$.
- We can assume S_{i_0-1} is c_4 -bounded (since $\tau \ge i_0$).

- Consider a fixed i_0 . We want a bound on $\mathbb{P}(\tau = i_0 \mid \tau \ge i_0)$.
- We can assume S_{i_0-1} is c_4 -bounded (since $\tau \ge i_0$).

In fact, we will show that w.h.p., S_{i_0-1} is $\frac{c_4}{2}$ -bounded.

- Consider a fixed i_0 . We want a bound on $\mathbb{P}(\tau = i_0 \mid \tau \ge i_0)$.
- We can assume S_{i_0-1} is c_4 -bounded (since $\tau \ge i_0$).

In fact, we will show that w.h.p., S_{i_0-1} is $\frac{c_4}{2}$ -bounded.

Fix some vertex v.

- Consider a fixed i_0 . We want a bound on $\mathbb{P}(\tau = i_0 \mid \tau \geq i_0)$.
- We can assume S_{i_0-1} is c_4 -bounded (since $\tau \ge i_0$).

In fact, we will show that w.h.p., S_{i_0-1} is $\frac{c_4}{2}$ -bounded.

- Fix some vertex v.
- Define a r.v. X to be the number of edges $e_j \in L$ (with $j < i_0$) such that T_j uses e_j , and two e_j -v edges.

- Consider a fixed i_0 . We want a bound on $\mathbb{P}(\tau = i_0 \mid \tau \ge i_0)$.
- We can assume S_{i_0-1} is c_4 -bounded (since $\tau \ge i_0$).

In fact, we will show that w.h.p., S_{i_0-1} is $\frac{c_4}{2}$ -bounded.

- Fix some vertex v.
- Define a r.v. X to be the number of edges $e_j \in L$ (with $j < i_0$) such that T_j uses e_j , and two e_j -v edges.

$$deg_{S_{i_0-1}}(v) \leq deg_L(v) + 2X.$$

- Consider a fixed i_0 . We want a bound on $\mathbb{P}(\tau = i_0 \mid \tau \ge i_0)$.
- We can assume S_{i_0-1} is c_4 -bounded (since $\tau \ge i_0$).

In fact, we will show that w.h.p., S_{i_0-1} is $\frac{c_4}{2}$ -bounded.

- Fix some vertex v.
- Define a r.v. X to be the number of edges e_j ∈ L (with j < i₀) such that T_j uses e_j, and two e_j-v edges.

•
$$\deg_{S_{i_0-1}}(v) \leq \deg_L(v) + 2X$$
.

We want to bound X.

- Consider a fixed i_0 . We want a bound on $\mathbb{P}(\tau = i_0 \mid \tau \ge i_0)$.
- We can assume S_{i_0-1} is c_4 -bounded (since $\tau \ge i_0$).

In fact, we will show that w.h.p., S_{i_0-1} is $\frac{c_4}{2}$ -bounded.

- Fix some vertex v.
- Define a r.v. X to be the number of edges e_j ∈ L (with j < i₀) such that T_j uses e_j, and two e_j-v edges.

•
$$\deg_{S_{i_0-1}}(v) \leq \deg_L(v) + 2X$$
.

• We want to bound X.

•
$$X = \sum_{j < i_0} X_j$$
, where X_j is the indicator r.v. for the event $T_j = e_j \cup \{v\}$.

Definition

A random variable $Y = \sum_{i=1}^{n} Y_i$ is (μ, C) -dominated if:

Definition

A random variable $Y = \sum_{i=1}^{n} Y_i$ is (μ, C) -dominated if:

(i) $|Y_i| \leq C$ for every $1 \leq i \leq n$, and

Definition

A random variable $Y = \sum_{i=1}^{n} Y_i$ is (μ, C) -dominated if:

(i) $|Y_i| \leq C$ for every $1 \leq i \leq n$, and

(ii) there are μ_1, \ldots, μ_n such that $\sum \mu_i \leq \mu$, and conditional on any values Y_j for j < i, we have $\mathbb{E}[|Y_i|] \leq \mu_i$ for every $1 \leq i \leq n$.

Definition

A random variable $Y = \sum_{i=1}^{n} Y_i$ is (μ, C) -dominated if:

(i) $|Y_i| \leq C$ for every $1 \leq i \leq n$, and

(ii) there are μ_1, \ldots, μ_n such that $\sum \mu_i \leq \mu$, and conditional on any values Y_j for j < i, we have $\mathbb{E}[|Y_i|] \leq \mu_i$ for every $1 \leq i \leq n$.

Number of choices from e_j 's perspective is at least $\deg_{G^*}(e_j) - 2c_4n \ge d(G^*)^2n/2$ (c_4 is tiny compared to $d(G^*)$).

Definition

A random variable $Y = \sum_{i=1}^{n} Y_i$ is (μ, C) -dominated if:

(i) $|Y_i| \leq C$ for every $1 \leq i \leq n$, and

(ii) there are μ_1, \ldots, μ_n such that $\sum \mu_i \leq \mu$, and conditional on any values Y_j for j < i, we have $\mathbb{E}[|Y_i|] \leq \mu_i$ for every $1 \leq i \leq n$.

Number of choices from e_j 's perspective is at least $\deg_{G^*}(e_j) - 2c_4n \ge d(G^*)^2n/2$ (c_4 is tiny compared to $d(G^*)$).

•
$$\mathbb{P}(X_j = 1) \leq \frac{2}{d(G^*)^2 n} \implies X \text{ is } \left(\frac{2|L|}{d(G^*)^2 n}, 1\right) \text{-dominated.}$$

Lemma (Black Box — Keevash)

If Y is $(\mu, 1)$ -dominated, then

 $\mathbb{P}(|Y| > 2\mu) \le 2\exp(-\mu/6)$

Lemma (Black Box — Keevash)

If Y is $(\mu, 1)$ -dominated, then

$$\mathbb{P}(|Y| > 2\mu) \leq 2\exp(-\mu/6)$$

Now, since L is c_3 -bounded, we have

$$\mathbb{E}[X] \leq \frac{2|L|}{d(G^*)^2 n} \leq \frac{c_3 n}{d(G^*)^2}$$

Lemma (Black Box — Keevash)

If Y is $(\mu, 1)$ -dominated, then

$$\mathbb{P}(|Y| > 2\mu) \leq 2\exp(-\mu/6)$$

Now, since L is c_3 -bounded, we have

$$\mathbb{E}[X] \leq \frac{2|L|}{d(G^*)^2 n} \leq \frac{c_3 n}{d(G^*)^2},$$

and we deduce

$$\mathbb{P}\left(X > \frac{2c_3n}{d(G^*)^2}\right) < 2\exp\left(-\frac{c_3n}{12d(G^*)^2}\right) < \exp\left(-\Omega\left(n^{1/2}\right)\right)$$

Now, we have w.h.p. that $\deg_{S_i}(v) \leq \frac{c_4n}{2}$ for $j < i_0$.

Now, we have w.h.p. that $\deg_{S_i}(v) \leq \frac{c_4n}{2}$ for $j < i_0$.

There are only polynomially many choices for v.

- Now, we have w.h.p. that $\deg_{S_i}(v) \leq \frac{c_4n}{2}$ for $j < i_0$.
- There are only polynomially many choices for v.
- So a union bound (over $v \in V$) gives that w.h.p., S_{i_0-1} is $\frac{c_4}{2}$ -bounded, and so $\tau \neq i_0$.

- Now, we have w.h.p. that $\deg_{S_i}(v) \leq \frac{c_4n}{2}$ for $j < i_0$.
- There are only polynomially many choices for v.
- So a union bound (over $v \in V$) gives that w.h.p., S_{i_0-1} is $\frac{c_4}{2}$ -bounded, and so $\tau \neq i_0$.
- Now, a union bound over all $1 \le i_0 \le t$ gives that w.h.p., $\tau = \infty$, as desired.

- Now, we have w.h.p. that $\deg_{S_i}(v) \leq \frac{c_4n}{2}$ for $j < i_0$.
- There are only polynomially many choices for v.
- So a union bound (over $v \in V$) gives that w.h.p., S_{i_0-1} is $\frac{c_4}{2}$ -bounded, and so $\tau \neq i_0$.
- Now, a union bound over all $1 \le i_0 \le t$ gives that w.h.p., $\tau = \infty$, as desired.
- Thus, we successfully complete the cover of the edges of L, and S is c₄-bounded.

We had completed the **template** step, giving an SET T.

The graph on the uncovered edges is $(c_2, 2)$ -typical.

The nibble covers most of the remaining edges, but...

 \dots leaves behind a set L of uncovered edges.

L is c_3 -bounded, i.e., $\deg_L(v) \leq c_3 n$ for $v \in V$.

N, L, and T are pairwise disjoint as edge sets, and...

T, N are each an SET.

We then **cover** *L* with triangles using edges from $G^* = \bigcup T$.

This gives another SET M^C , but...

The graph on the set of edges covered twice is denoted S.

A mess, but S is c_4 -bounded: $\deg_S(v) \le c_4 n$ for all $v \in V$.
Where we now stand

This will allow us to clean up this mess next week.

Recall that the **template** step gave us an SET T with $\bigcup T = G^*$ such that

- $d(G^*) = (1 \pm 3c)d(G)^3\gamma$.
- (G^*, G) is jointly $(c_1, 16)$ -typical. (with $c_1 = 6c$)

• $G \setminus G^*$ is $(c_2, 2)$ -typical. (with $c_2 = 50c$)

Now, we have covered all edges of G with triangles. We have SETs N, T, M^C with $N \cap M^C = \emptyset$, and $N \cap T = \emptyset$. Sadly, there is a subgraph $S = (\bigcup M^C) \cap G^*$ of edges which are covered twice, with the following properties:

- *S* is *c*₄-bounded.
- S is tridivisible.