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Recall that d(G) denotes the of the graph d(G) = |(f)|
2

We say a graph G = (V, E) is ((c, h)-typical| if for every subset
S C V with |S] < h, we have that

deg(S) = (1 + [S|c)d(G)In.

Definition
A graph G = (V,E) is if it satisfies the divisibility
requirements for a triangle decomposition:

(i) 3||E|, and

(ii) 2| deg(v) forall v € V.
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Quick Review — Main result

We are proving the following theorem:

Theorem

There exists 0 < cg < 1 and ng € N such that if n > ng, and G is
a (¢, 16)-typical tridivisible graph on n vertices, with

(i) d(G) > n=107" and

(i) c < cod(G)los,

then G has a triangle decomposition.



Quick Review — Strategy

Template Start with SET with some nice structure (G*).
Nibble

Cover

Hole

Completion



Quick Review — Strategy

Template Start with SET with some nice structure (G*).
Nibble Find large SET in G \ G* using Rodl nibble.
Cover

Hole

Completion



Quick Review — Strategy

Template Start with SET with some nice structure (G*).
Nibble Find large SET in G \ G* using Rodl nibble.
Cover Get remaining edges into As, but make a mess.
Hole

Completion



Quick Review — Strategy

Template Start with SET with some nice structure (G*).
Nibble Find large SET in G \ G* using Rodl nibble.
Cover Get remaining edges into As, but make a mess.
Hole Clean up the mess.

Completion



Quick Review — Strategy

Template Start with SET with some nice structure (G*).
Nibble Find large SET in G \ G* using Rodl nibble.
Cover Get remaining edges into As, but make a mess.
Hole Clean up the mess.

Completion Patch it together to find A-decomposition.
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Where we stand

Last week, we used the template step to get a subgraph G* C G
such that:

m d(G*) = (1+3¢)d(G)>.
m (G*, G) is jointly (c1,16)-typical. (with ¢; = 6¢)
B G\ G"is (¢,2)-typical. (with c; = 50c¢)
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Goal this week

Definition
Let J C G with V(J) = V(G) =: V, and E(J) C E(G). We say J
is if deg,(v) < c|V| forallve V.

This week, we hope to achieve the following:

m Use the Radl Nibble to find a SET (set of edge disjoint
triangles) N C (G \ G*) such that L:= (G \ G*)\ (UN) is
c3-bounded with ¢3 = c21/4 = (50¢)Y/%.

m Find a SET M€ such that S := U MC€ N G* is ¢s-bounded

].0C3

d(G*)*

with ¢ =
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Nibble — What we need

Theorem

There are co > 0 and ng € IN such that if n > ng, n=/10 < ¢ < ¢,
and H is a (c,2)-typical graph on n vertices with d(H) > %n_10_7,
there is a SET N such that H\ (U N) is ¢’-bounded for some

¢ < cl/4,

Remark

We apply this theorem with H = (G \ G*) and ¢ = ¢, to achieve
the necessary cs.

Remark

This is a stronger conclusion than we achieved with the Rodl
Nibble we saw in class: ¢’-bounded means every vertex has degree
at most c’n in the leave H\ (U N).
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Nibble — Setup

Let n = n~107". Start with Gy := H. Given a graph G; with

0 < i < ty, we perform the following operation:
m Set d; == d(H)(1—17)".

i/

d?n’

m Let 7; be a uniform randomly chosen subset of the triangles of
Gj, where each triangle t is in T; with probability p;.

m Let 7; := 77\ {all triangles that share edges}.
m Delete E(7A7> from G; to create Gjy1.

m Set p; ;=

to
Let N := U’7A7

i=0
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Throw these back to create 77



Simplified example — not to scale
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Delete edges in triangles of 7 to create Git1




Nibble — Not so simple

Discard all of these triangles.
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Nibble Step Lemma

Let G; be a graph such that for all u,v € V,

(i) degg (v) = (1£cD)d;n, and

(i) degg,({u,v})=(1+ c(i))dl-zn,
and let Gj11 be the graph obtained after the next step of the
algorithm. With probability 1 — o(%), the following holds for all
uveV:
(a) degGM(v) = (1 + c(i+1))(1 —n)d;n,

(b) degg,,,({u,v}) = (1 £ V(1 —n)d;)*n,
(c) the number of “chosen” and kept triangles is
(1 £ c*))nd;n?/6,

for 1) = (14 O(cDn + n?))cl.



Nibble Step Proof (very) Sketch

m We bound the probability that e € E(G;) is removed.



Nibble Step Proof (very) Sketch

m We bound the probability that e € E(G;) is removed.

m For two edges e1, &2, we bound the probability that both are
removed.



Nibble Step Proof (very) Sketch

m We bound the probability that e € E(G;) is removed.

m For two edges e1, &2, we bound the probability that both are
removed.

m We use these bounds to calculate the expected degree and
codegree of vertices in Gjy1.



Nibble Step Proof (very) Sketch

m We bound the probability that e € E(G;) is removed.

m For two edges e1, &2, we bound the probability that both are
removed.

m We use these bounds to calculate the expected degree and
codegree of vertices in Gjy1.

m We need a stronger concentration inequality than Chebychev's
to succeed with our stronger conditions.



Nibble Step Proof (very) Sketch

We bound the probability that e € E(G;) is removed.

For two edges e;, e, we bound the probability that both are
removed.

m We use these bounds to calculate the expected degree and
codegree of vertices in Gjy1.

m We need a stronger concentration inequality than Chebychev's
to succeed with our stronger conditions.

Application of these inequalities gives us the conclusions for
degree and codegree, and



Nibble Step Proof (very) Sketch

We bound the probability that e € E(G;) is removed.

For two edges e;, e, we bound the probability that both are
removed.

m We use these bounds to calculate the expected degree and
codegree of vertices in Gjy1.

m We need a stronger concentration inequality than Chebychev's
to succeed with our stronger conditions.

Application of these inequalities gives us the conclusions for
degree and codegree, and

a degree sum on the resulting graph gives us the number of
triangles we removed.
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Applying the lemma

m We now apply the lemma iteratively until we reach
cs3-boundedness for (G \ G*) \ N.

m Note that at step /, the maximum degree in (G \ G*) \ N is
di(1+ cD)n < 2d;n.

m Thus, we succeed at attaining our desired boundedness by
reducing d; without letting ¢(!) run out of control.
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Cover — Idea

Between the Template (whose union is G*) and the Nibble, we
have all but an extremely small number (< 3c'/4n?) of edges
covered by disjoint triangles. The remaining edges lie in L (the
leave).

L is c3-bounded: max degree in L is at most c3n
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We order the edges: L = (e; :

i € [t]), where t :=|L|.

G*
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L €

G*
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For 1 < i <t, let T; be a triangle chosen uniformly at random
from those which contain e; and two edges from G*...

G*
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... but we restrict our choices to edges which have not been
previously chosen!

G*




Cover — Idea

If we succeed, M€ will be an SET covering all edges of L.

G*




Cover — ldea

Some edges are now in a triangle of M€, and another of T, but no
edge is in more.

G*
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Cover — What could go wrong?

Question

What if we want to cover e;, but there are no appropriate edges of
G* which have not yet been used?

Remark
Let S :=JMC N G*. We will require degs(v) to be bounded for
all v € V in order to repair it later.

We call S the spill.




Cover Lemma

Lemma

Following this procedure, for 1 < i < t, with high probability, we
find an appropriate T; for each e;, and also S = |JM¢ N G* is

cs-bounded with
10C3

d(G*)?

Cyp =
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Proof of Cover Lemma

For each i € [t], let

Si=J(T\ &)

j<i

This is the spill from previous triangles at step i.

Claim

If S; is cs-bounded, we can always find a pair of edges of G* to
create T; with e;.

Note that if S; is c4-bounded, then we have many choices for T;
for each e;.
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Proof of Cover Lemma

m Consider a fixed ip. We want a bound on P(7 =iy | 7 > ip).

m We can assume Sj,_1 is cs-bounded (since 7 > fp).
. . C
m In fact, we will show that w.h.p., 5;,_1 is %—bounded.

m Fix some vertex v.

m Define a r.v. X to be the number of edges e; € L (with
J < lg) such that T; uses e, and two e;-v edges.

n degsirl(v) < deg;(v) +2X.
m We want to bound X.

B X = Zj<io X;j, where X; is the indicator r.v. for the event
Tj=¢ U{v}.
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A random variable Y = "7, Y; is (x, C)-dominated if:

(i) |Yi] < C forevery 1 <i<n,and

(i) there are p, ..., pn such that Y u; < p, and conditional on
any values Y; for j < i, we have E[|Yi|] < pu; for every
1<i<n.

m Number of choices from ej 's perspective is at least
degg-(ej) — 2can > d(G*)*n/2 (c4 is tiny compared to
d(6*)).
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Proof of Cover Lemma

Lemma (Black Box — Keevash)

If'Y is (u,1)-dominated, then

P(|Y] > 2u) < 2exp(—p/6)

Now, since L is c3-bounded, we have

2|L]| can
7 S 20
d(G*)°n — d(G¥)

E[X] <

and we deduce

]P(X> d??nf) <26Xp<_12£&)2> < op(-a(n2))
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Proof of Cover Lemma

m Now, we have w.h.p. that degsj(v) < &7 for j < .
m There are only polynomially many choices for v.

m So a union bound (over v € V) gives that w.h.p., 5;,_1 is
5-bounded, and so 7 # ip.

m Now, a union bound over all 1 < jp < t gives that w.h.p.,
T = 00, as desired.



Proof of Cover Lemma

m Now, we have w.h.p. that degsj(v) < &7 for j < .
m There are only polynomially many choices for v.

m So a union bound (over v € V) gives that w.h.p., 5;,_1 is
5-bounded, and so 7 # ip.

m Now, a union bound over all 1 < jp < t gives that w.h.p.,
T = 00, as desired.

m Thus, we successfully complete the cover of the edges of L,
and S is ¢s-bounded.



Where we now stand
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We had completed the template step, giving an SET T.



Where we now stand
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The graph on the uncovered edges is (cp, 2)-typical.



Where we now stand

The nibble covers most of the remaining edges, but. ..



Where we now stand

... leaves behind a set L of uncovered edges.



Where we now stand

L is c3-bounded, i.e., deg;(v) < czn for v € V.



Where we now stand

N, L, and T are pairwise disjoint as edge sets, and. ..



Where we now stand
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T, N are each an SET.



Where we now stand

We then cover L with triangles using edges from G* =J T.



Where we now stand

This gives another SET M, but. ..



Where we now stand

(UMS)n G #0.



Where we now stand

The graph on the set of edges covered twice is denoted S.



Where we now stand

A mess, but S is cs-bounded: degg(v) < cgn forall v € V.



Where we now stand

This will allow us to clean up this mess next week.



Where we now stand — All on one page

Recall that the template step gave us an SET T with |J T = G*
such that

m d(G*) = (1+3c)d(G)>.

m (G*, G) is jointly (c1,16)-typical. (with ¢ = 6¢)

m G\ G*is (¢,2)-typical. (with c; = 50c¢)
Now, we have covered all edges of G with triangles. We have
SETs N, T, M€ with NN MS =0, and NN T = . Sadly, there is
a subgraph S = (U I\/IC) N G* of edges which are covered twice,
with the following properties:

m S is ¢s-bounded.

m S is tridivisible.



