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A simple proof of the representation of bipartite planar graphs as 
the contact graphs of orthogonal straight line segments * 
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Let S be a collection of closed, orthogonal (i.e., 
vertical and horizontal) straight line segments. The 
contact graph of a collection S of segments with 
pairwise disjoint interiors has S as its set of vertices 
and two segments are adjacent if and only if they 
touch. De Freysseix, de Mendez, and Path [l] gave 
a linear algorithm for representing a bipartite planar 
graph as the contact graph of a set of orthogonal 
straight line segments. Their method is based on a 
linear algorithm for constructing bipolar orientations 
of 2-connected planar graphs. 

In this note we give a direct and simple linear time 
algorithm for representing a bipartite planar graph as 
the contact graph of a set of orthogonal, closed straight 
line segments. 

Theorem 1. There is linear time algorithm for repre- 
senting bipartite planar graphs as the contact graphs 
of orthogonal, closed straight line segments. 
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Proof. We show by induction on the number of ver- 
tices of the graph G that the required representation 
exists. In fact we show that there exists a representa- 
tion in which the segments representing the vertices of 
the outer face form a “ladder” in the segment repre- 
sentation of the graph. 

To start, let X, y be two adjacent vertices in the outer 
face; represent x, y by horizontal, vertical segments 
on the x-, y-axis, respectively (see Fig. 1). Take any 
node u in the outer face of the graph. Let this vertex 
be adjacent to d vertices, say 1,2, . . . , d. Delete u and 
all the links adjacent to it. The resulting graph, call it 
H, is planar bipartite. By the induction hypothesis it 
has a representation in which the vertices of the outer 
face form a “ladder” in the segment representation 
of the graph H. Since the graph is bipartite the 
segments representing vertices 1,2, . . . , d are either 
all horizontal or all vertical. Without loss of generality 
we may assume they all are horizontal. As depicted 
in Fig. 1 we can extend the segments representing 
1,2, . . , d and add a new vertical segment u in such 
a way that u touches all segments 1,2, . . , , d. The 
resulting representation clearly satisfies the inductive 
condition and completes the proof of the theorem. q 
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Fig. 1. Inductive construction of the ladder in the outer face of the graph G from the graph H by joining the vertex u. The vertices 1,2, , d 

are represented by horizontal steps of the ladder. 
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