FREIE UNIVERSITÄT BERLIN INSTITUT FÜR MATHEMATIK STOCHASTIK 1

WINTER SEMESTER 2013/14 14 OKTOBER 2013

Dozent: Prof. Tibor Szabó,

TUTOREN: TILMAN MIRSCHEL, OLAF PARCZYK, YIZHENG YUAN

Übungsblatt 0

Überlegen und diskutieren in den Übungsgruppen in der ersten Woche

Aufgabe 1

Sei $\Omega = \{1, 2, 3, 4\}$. Geben Sie drei verschiedene σ -Algebren über Ω an.

Aufgabe 2

Es sein $\Omega \neq \emptyset$ eine Menge und $\mathcal{E} \subseteq \mathcal{P}(\Omega)$ ein Mengensystem auf Ω . Das Mengensystem \mathcal{E} kann dann gewisse Eigenschaften haben. Wir kürzen sie so ab:

E1: $\emptyset \in \mathcal{E}$ und $\Omega \in \mathcal{E}$;

E2: Für beliebige $E \in \mathcal{E}$ gilt es auch $\Omega \setminus E \in \mathcal{E}$;

E3: Für beliebige $E_1, E_2, \ldots \in \mathcal{E}$ gilt es auch $\bigcup_{i=1}^{\infty} E_i \in \mathcal{E}$;

E4: Sei I eine beliebige Menge von Indices. Für beliebige Auswähl $E_{\alpha} \in \mathcal{E}$ von Mengen für jede $\alpha \in I$, gilt es auch $\bigcup_{\alpha \in I} E_{\alpha} \in \mathcal{E}$;

E5: Für beliebige $E, F \in \mathcal{E}$ gilt es auch $E \cup F \in \mathcal{E}$;

(Zur Erinnerung: \mathcal{E} wird eine σ -Algebra genannt, wenn $\mathbf{E1}$, $\mathbf{E2}$ und $\mathbf{E3}$ erfüllt sind.) Prüfen Sie für die folgenden drei Beispiele nach, welche die Eigenschaften $\mathbf{E1}$, ..., $\mathbf{E5}$ gelten.

- a) Ω ist beliebig, und $\mathcal{E} = \mathcal{P}(\Omega)$.
- b) Ω is beliebige endliche Menge, und $\mathcal{E} = \{E \mid E \subseteq \Omega \text{ und } |E| \text{ ist gerade}\}$
- c) $\Omega \neq \emptyset$ ist eine beliebige nichtleere Menge, $x_0 \in \Omega$ ist fixiert, und $\mathcal{E} := \{E \mid E \subseteq \Omega \text{ und } x_0 \in E\}$

Aufgabe 3

Es sei Ω eine Menge, und sei $\mathcal{E} = \mathcal{P}(\Omega)$ die Potenzmenge von Ω . Wir fixieren ein $\omega_0 \in \Omega$ und definieren dann Abbildung $\mathbb{P} : \mathcal{E} \to [0, 1]$ wie folgt:

$$\mathbb{P}(E) := \left\{ \begin{array}{ll} 1 & \text{wenn } \omega_0 \in E; \\ 0 & \text{wenn } \omega_0 \notin E. \end{array} \right.$$

Zeigen Sie, dass \mathbb{P} ein Wahrscheinlichkeitsmaßist. (Es wird das $zu \,\omega_0$ gehörige $Punkt-ma\beta$ genannt.)

Aufgabe 4

Sei $\Omega = \{-100.000, \dots, 100.000\}$. Welches der folgenden Mengensysteme ist eine σ -Algebra auf Ω und warum?

- a) Alle Teilmengen, für die die Summe der Elemente Null ergibt (die leere Summe ist als Null definiert).
- b) Alle Teilmengen, für die der Schnitt mit der Menge $\{1,2,\dots,12\}$ eine gerade Anzahl von Elementen hat.
- c) Das Mengensystem, das aus \emptyset und allen Teilmengen der Form $\{-100.000,\ldots,0\}\cup E$ mit $E\subseteq\{1,\ldots,100.000\}$ besteht.