FREIE UNIVERSITÄT BERLIN INSTITUT FÜR MATHEMATIK STOCHASTIK 1

WINTER SEMESTER 2013/14 14 OKTOBER 2013

Dozent: Prof. Tibor Szabó,

TUTOREN: TILMAN MIRSCHEL, OLAF PARCZYK, YIZHENG YUAN

Übungsblatt 1

Abzugeben bis zum 24. Oktober, in der Fächern der Tutoren

Aufgabe 1 [10 Punkte] Sei $\Omega = \{1, 2, 3, 4\}$. Geben Sie alle σ -Algebren über Ω an. Beweisen Sie dass es kein

Sei $\Omega = \{1, 2, 3, 4\}$. Geben Sie alle σ -Algebren über Ω an. Beweisen Sie dass es kein mehr gibt.

Aufgabe 2 [10 Punkte]

Sei Ω beliebig und \mathcal{E} eine σ -Algebra auf Ω . Für eine Teilmenge $C \subseteq \Omega$ definieren wir die $Spur\ von\ E\ in\ C$ durch $\mathcal{E}_C := \{E \cap C \mid E \in \mathcal{E}\}$. Zeigen Sie, daß

- (i) \mathcal{E}_C eine σ -Algebra ist (möglicherweise *nicht* auf Ω);
- (ii) wenn $C \in \mathcal{E}$, dann $\mathcal{E}_C = \{E \in \mathcal{E} | E \subseteq C\}$.

Aufgabe 3 [10 Punkte]

 \mathbb{P}_1 und \mathbb{P}_2 seien Wahrscheinlichkeitsmaße auf (Ω, \mathcal{E}) . Wir definieren die Abbildung $\mathbb{P}: \mathcal{P} \to \mathbb{R}$ durch

$$\mathbb{P}(E) := \min{\{\mathbb{P}_1(E), \mathbb{P}_2(E)\}}.$$

Zeigen Sie, dass \mathbb{P} genau dann ein Wahrscheinlichkeitsmaße ist, wenn $\mathbb{P}_1 = \mathbb{P}_2$.

Aufgabe 4 [10 Punkte]

Sei Ω eine Menge mit $|\Omega| \geq 2$ und sei $\mathcal{E} = \mathcal{P}(\Omega)$ die Potenzmenge von Ω . Sei zwei verschiedene Elemente $x_0, y_0 \in \Omega$ fest gewählt. Weiter seien $a, b, c, d \in \mathbb{R}$ reele Zahlen. Definieren wir die Abbildung $\mathbb{P} : \mathcal{E} \to [0, 1]$ wie folgt:

$$\mathbb{P}(E) := \begin{cases} a & \text{wenn } x_0 \notin E \text{ and } y_0 \notin E \\ b & \text{wenn } x_0 \in E \text{ and } y_0 \notin E \\ c & \text{wenn } x_0 \notin E \text{ and } y_0 \in E \\ d & \text{wenn } x_0 \in E \text{ and } y_0 \in E \end{cases}$$

Finden Sie notwendige und hinreichende Bedingungen an a, b, c, d dafür, dass durch \mathbb{P} ein Wahrscheinlichkeitsmaßdefiniert wird.